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Abstract

Bipolar fuzzy set theory provides a basis for bipolar cognitive modeling and mul-
tiagent decision analysis, where in some situations, the product operator may be
preferred to the min operator, from theoretical and experimental aspects. In this
paper, the definition of product bipolar fuzzy graphs (PBFGs) is modified. The
concepts of product bipolar fuzzy multigraphs (PBFMGs), product bipolar fuzzy
planar graphs (PBFPGs) and product bipolar fuzzy dual graphs (PBFDGs) are
introduced and investigated. Product bipolar fuzzy planarity value of PBFPG is
introduced. The relation between PBFPG and PBFDG is also established. Iso-
morphism between PBFPGs is discussed. Finally, an application of the proposed
concepts is provided.

Keywords: Product bipolar fuzzy graph; Product bipolar fuzzy multigraph; Product
bipolar fuzzy planar graph; Product bipolar fuzzy dual graph.

1 Introduction

Graph theory is now briskly moving into the core of mathematics because of its appli-
cations in different fields like biochemistry, computer science, operations research and
electrical engineering. In 1736, Euler first introduced the theory of planar graphs, by
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finding an important formula relating the numbers of vertices, edges and faces of poly-
hedrons, that can be represented by planar graphs. In real-world applications, planar
graphs arise quite naturally such as electric printed circuits, railway or road maps, chem-
ical molecules, etc. In modern age, pipelines, subway tunnels, metro lines are essential in
a city planning, where routes without crossing are perfect for safety. But, due to lack of
space, crossing of such lines is allowed. Since crossing between congested (strong) route
and non-congested (weak) route is more safe than the crossing between two congested
(strong) routes. The terms ‘strong route’ and ‘weak route’ lead strong edge and weak
edge of a fuzzy graph, respectively. And the permission of crossing between strong and
weak edges leads to the concept of fuzzy planar graph.

In 1965, Zadeh [19] originally introduced the concept of fuzzy set, characterized by
a membership function in [0, 1], which is very useful in dealing with uncertainty and
vagueness. Yager [17] initiated the concept of fuzzy multisets (fuzzy bag). Bipolar fuzzy
sets (BFSs) as a generalization of fuzzy sets were first introduced by Zhang [20, 21]. The
range of membership degree of BFSs is [−1, 1]. In a BFS, the membership degree (0, 1]
of an element indicates that the element satisfies the property, the membership degree
[−1, 0) of an element indicates that the element satisfies the implicit counter-property
and the membership degree 0 of an element means that the element is irrelevant to the
corresponding property. BFSs have received great attention from researchers and have
been applied to many fields, such as artificial intelligence, information science, decision
science, economics, medical science, social science, computer science, and neural science.

Basically, graphs are the bonding of objects. To emphasis on a real life problem, the
objects are being bonded by some relations, such as friendship is the bonding of people.
But when the ambiguousness or uncertainty in bonding exists, then the corresponding
graph can be modelled as fuzzy graph model. The concept of fuzzy graphs was initiated by
Kaufmann [8], based on Zadeh’s fuzzy relations. Later in 1975, considering fuzzy relations
between fuzzy sets, Rosenfeld [15] developed the structure of fuzzy graphs, obtaining
analogs of several basic graph theoretical concepts. Some remarks on fuzzy graphs were
given by Bhattacharya [6]. The concept of fuzzy dual graph was initiated by Jabbar et
al. [10]. Several properties of bipolar fuzzy graphs and its applications were discussed by
Akram [1, 2, 3]. Rashmanlou [14] introduced the concept of product bipolar fuzzy graphs.
Recently, fuzzy planar graph and its extensions [4, 5, 13, 16] have been studied.

Definition of PBFGs in [14] is valid only for the product of even number of negative-
membership values. But for odd number of negative-membership values this definition is
invalid. So, we give a modified definition of PBFGs.

The rest of the paper is organized as follows: Section 2 reviews basic concepts related
to BFSs and PBFGs. Section 3 proposes the concepts of multigraphs, planar graphs and
dual graphs under bipolar fuzzy environment based on the product operator. In Section
4, we define isomorphism between PBFPGs. In Section 5, an application of the proposed
concepts is provided. Section 6 ends up the paper with some concluding remarks.

In this paper, we have used standard definitions and terminologies. For other termi-
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nologies and applications not mentioned here, the readers are referred to [7, 11, 18].

2 Preliminaries

In this section, we recall some basic concepts which are necessary for this paper.

A graph is a pair of sets G = (V,E), satisfying E ⊆ V ×V . The elements of V are the
vertices and the elements of E are the edges of the graph G. The (open) neighborhood
N (x) of a vertex x in a graph G is the set of all the neighbors of x. The degree of a
vertex x in G is the number of edges incident with x, denoted by degG(x). If every two
distinct vertices of G are adjacent, then G is a complete graph. For a vertex set V of G,
define an equivalence relation ∼ on V × V − {xx | x ∈ V } as follows: x1x2 ∼ x

′

1x
′

2 if and
only if either x1x2 = x

′

1x
′

2 or x1 = x
′

2 and x2 = x
′

1. The quotient set obtained in this way

is denoted by Ṽ 2. A graph with no loops but more than one edge can join two vertices
is called multigraph. A graph can be drawn in many different ways. A planar graph is
a particular diagram which can be drawn on the plane so that no two edges intersect
geometrically except at a vertex at which they are both incident. Any plane drawing of a
planar graph G divides the plane into a set of regions, called faces. In any planar graph,
the unbounded face is called an infinite face. If a cycle in a planar graph is a boundary of
a face, then it is a facial cycle. A graph is said to be a non-planar if it cannot be drawn
without crossing. The minimum number of crossings that can occur when G is drawn in
the plane is called the crossing number cr(G) of a graph G.
Euler‘s Formula: Let G be a connected planar graph with order n, size m and f faces.
Then n−m+ f = 2.
A dual graph of a planar graph G is constructed as follows: place a vertex in each face of
G and if two faces have an edge e in common, join the corresponding vertices by an edge
e
′

crossing only e.
A fuzzy relation on a set V is a mapping µ : V × V → [0, 1]. A fuzzy graph [12]

G = (V, σ, µ) is a non-empty set V together with a pair of functions σ : V → [0, 1] and
µ : V ×V → [0, 1], such that µ(xy) ≤ σ(x)∧σ(y) for all x, y ∈ V , where x∧y = min{x, y}.
We call σ the fuzzy vertex set of G and µ the fuzzy edge set of G. Degree of a vertex
x ∈ V of a fuzzy graph G is defined by degG(x) =

∑
x,y 6=x

µ(xy). An edge xy of a fuzzy

graph G is strong if 2µ(xy) ≥ σ(x) ∧ σ(y) [13].

Definition 2.1. [17] A fuzzy multiset X drawn from nonempty set V is characterized by
a function, ‘count membership’ of X denoted by CMX such that CMX : V → Q, where
Q is the set of all crisp multisets drawn from the unit interval [0, 1]. Then for any x ∈ V ,
the value CMX(x) is a crisp multiset drawn from [0, 1].

Definition 2.2. [13] Let V be a non-empty set and σ : V → [0, 1] be a mapping. Let
µ = {(xy, µ(xy)k) | k = 1, 2, . . . , mxy, xy ∈ V ×V } be a fuzzy multiset of V ×V such that
µ(xy)k ≤ σ(x) ∧ σ(y) for all k = 1, 2, . . . , mxy, where mxy = max{k | µ(xy)k 6= 0}. Then
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G = (V, σ, µ) is called fuzzy multigraph, where σ(x) and µ(xy)k denote the membership
value of the vertex x and the membership value of the edge xy in G, respectively.

Definition 2.3. [21] A BFS X in a non-empty set V is an object having the form
X = {(x, µP

X(x), µ
N
X(x)) | x ∈ V }, where µP

X : V → [0, 1] and µN
X : V → [−1, 0] are

two mappings.

Definition 2.4. [21] A mapping Y = (µP
Y , µ

N
Y ) : V × V → [0, 1] × [−1, 0] is said to be

a bipolar fuzzy relation on a non-empty set V such that µP
Y (xy) ∈ [0, 1] and µN

Y (xy) ∈
[−1, 0].

Definition 2.5. [9, 14] A PBFG of a graph G = (V,E) is a pair G = (X, Y ), where

X = (µP
X , µ

N
X) is a BFS in V and Y = (µP

Y , µ
N
Y ) is a bipolar fuzzy relation on Ṽ 2 such that

µP
Y (xy) ≤ µP

X(x) × µP
X(y), µ

N
Y (xy) ≥ −(µN

X(x) × µN
X(y)) for all xy ∈ Ṽ 2 and µP

Y (xy) =

µN
Y (xy) = 0 for all xy ∈ Ṽ 2 −E.

Definition 2.6. [4] A bipolar fuzzy multiset X drawn from nonempty set V is charac-
terized by two functions: ‘count positive membership’ of X (CMP

X) and ‘count negative
membership’ of X (CMN

X ) given respectively by CMP
X : V → Q1 and CMN

X : V → Q2,
where Q1 and Q2 are the sets of all crisp multisets drawn from the intervals [0, 1] and
[−1, 0].

3 Product Bipolar Fuzzy Planar Graphs

Definition 3.1. A PBFG of a graph G is a pair G = (X, Y ), where X = (τPX , τNX ) is a

BFS in V and Y = (τPY , τ
N
Y ) is a BFS in Ṽ 2 such that

τPY (xy) ≤ τPX (x)τ
P
X (y), τNY (xy) ≥ −|τNX (x)||τNX (y)| for all xy ∈ Ṽ 2 and

τPY (xy) = τNY (xy) = 0 for all xy ∈ Ṽ 2 − E.

Considering above modified definition of PBFGs, we define PBFMG using the concept
of bipolar fuzzy multiset. Further based on these concepts, the concept of PBFPG is
introduced.

Definition 3.2. A PBFMG with an underlying set V is defined to be a pair G =
(X, Y ), where X = (µP

X , µ
N
X) is a BFS in V and Y = {(xy, µP

Y (xy)k, µ
N
Y (xy)k) | k =

1, 2, . . . , m, xy ∈ Ṽ 2} is a bipolar fuzzy multiset in Ṽ 2 such that

µP
Y (xy)k ≤ µP

X(x)µ
P
X(y), µ

N
Y (xy)k ≥ −|µN

X(x)||µ
N
X(y)| for all xy ∈ Ṽ 2

and µP
Y (xy)k = µN

Y (xy)k = 0 for all xy ∈ Ṽ 2 −E, for all k = 1, 2, . . . , m.

In PBFMG G, Y is called product bipolar fuzzy multiedge set.
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Example 3.1. Consider a multigraph G = (V,E), where V = {v1, v2, v3} and E =
{v1v2, v1v2, v2v3, v1v3}. Let X be a BFS of V and Y be a bipolar fuzzy multiedge set of

Ṽ 2 defined by

v1 v2 v3
µP
X 0.6 0.5 0.4

µN
X −0.4 − 0.7 − 0.3

v1v2 v1v2 v2v3 v3v1
µP
Y 0.3 0.2 0.2 0.1

µN
Y −0.1 − 0.1 − 0.2 − 0.1

b

b

b

v1(0.6,−0.4)

v3(0.4,−0.3) v2(0.5,−0.7)

(0.2,−0.2)

(0.1,−0.1)
(0.3,−0.1)

(0.2,−0.1)

Figure 1: PBFMG.

Definition 3.3. Let G = (X, Y ) be a PBFMG, where Y = {(xy, µP
Y (xy)k, µ

N
Y (xy)k) | k =

1, 2, . . . , m, xy ∈ Ṽ 2}. The degree of a vertex x ∈ V in G, is denoted by degG(x) and is

defined as degG(x) = (
m∑
k=1

µP
Y (xy)k,

m∑
k=1

µN
Y (xy)k) for all y ∈ V .

Example 3.2. In Example 3.1, degG(v1) = (0.6,−0.3), degG(v2) = (0.7,−0.4) and
degG(v3) = (0.3,−0.3).

Definition 3.4. Let Y = {(xy, µP
Y (xy)k, µ

N
Y (xy)k) | k = 1, 2, . . . , m, xy ∈ Ṽ 2} be a

bipolar fuzzy multiedge set in PBFMG G. A multiedge xy of G is strong if µP
X(x)µ

P
X(y) ≤

2µP
Y (xy)k and −|µN

X(x)||µ
N
X(y)| ≥ 2µN

Y (xy)k, k is fixed integer.

Example 3.3. In Example 3.1, (µP
Y (v2v3), µ

N
Y (v2v3)) is a strong edge as (0.4)(0.5) < 2(0.2)

and −| − 0.3|| − 0.7| > 2(−0.2).

Definition 3.5. Let G = (X, Y ) be a PBFMG, where Y = {(xy, µP
Y (xy)k, µ

N
Y (xy)k) | k =

1, 2, . . . , m, xy ∈ Ṽ 2} is a bipolar fuzzy multiedge set. An edge xy of G is effective if
µP
X(x)µ

P
X(y) = µP

Y (xy)k and −|µN
X(x)||µ

N
X(y)| = µN

Y (xy)k, k is fixed integer.

Definition 3.6. A PBFMG G = (X, Y ), where Y = {(xy, µP
Y (xy)k, µ

N
Y (xy)k) | k =

1, 2, . . . , m, xy ∈ Ṽ 2}, is said to be complete if µP
Y (xy)k = µP

X(x)µ
P
X(y) and µN

Y (xy)k =
−|µN

X(x)||µ
N
X(y)| for all x, y ∈ V and for all k = 1, 2, . . . , m.
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Example 3.4. Consider a multigraphG = (V,E), where V = {v1, v2} andE = {v1v2, v1v2, v1v2}.

Let X be a BFS of V and Y be a bipolar fuzzy multiedge set of Ṽ 2 defined by

v1 v2
µP
X 0.5 0.2

µN
X −0.6 − 0.5

v1v2 v1v2 v1v2
µP
Y 0.1 0.1 0.1

µN
Y −0.3 − 0.3 − 0.3

b

b

v1(0.5,−0.6)

v2(0.2,−0.5)

(0.1,−0.3)

(0.1,−0.3)

(0
.1
,−

0.
3)

Figure 2: complete PBFMG

By routine computations, it is easy to see that it is a complete PBFMG.

Assume that geometric insight for PBFG has only one crossing between bipolar fuzzy
edges (uv, µP

Y (uv)k, µ
N
Y (uv)k) and (wx, µP

Y (wx)k, µ
N
Y (wx)k). If (µ

P
Y (uv)k, µ

N
Y (uv)k) = (1,−1)

and (µP
Y (wx)k, µ

N
Y (wx)k) = (0, 0) or (µP

Y (uv)k, µ
N
Y (uv)k) = (0, 0) and (µP

Y (wx)k, µ
N
Y (wx)k) =

(1,−1), the PBFG has no crossing, while if (µP
Y (uv)k, µ

N
Y (uv)k) = (1,−1) and (µP

Y (wx)k, µ
N
Y (wx)k) =

(1,−1), then there exists a crossing for the representation of the graph.

Definition 3.7. The strength of the bipolar fuzzy edge uv is defined as

Iuv = (IPuv, I
N
uv) =

(
µP
Y (uv)k

µP
X(u)µ

P
X(v)

,
−µN

Y (uv)k
−|µN

X(u)||µ
N
X(v)|

)
.

An edge uv of a PBFMG is strong if IPuv ≥ 0.5 and INuv ≤ −0.5. An edge of a PBFMG
which is not strong is called weak.

Definition 3.8. Let G = (X, Y ) be a PBFMG, where Y contains two edges (uv, µP
Y (uv)r, µ

N
Y (uv)r)

and (wx, µP
Y (wx)s, µ

N
Y (wx)s) intersecting at a point C (r and s are fixed integers). The

intersecting value at the point C is defined as

IC = (IP
C , I

N
C ) =

(
IPuv + IPwx

2
,
INuv + INwx

2

)
.

In a PBFMG, if the number of point of intersections increases, planarity decreases. That
is, IC is inversely proportional to the planarity.
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Definition 3.9. Let G be a PBFMG and let C1, C2, . . . , Cz be the intersecting points
between the edges for geometric insight. G is called a PBFPG with product bipolar fuzzy
planarity value f , where

f = (fP , fN) =

(
1

1 + {IP
C1

+ IP
C2

+ . . .+ IP
Cz
}
,

−1

1− {IN
C1

+ IN
C2

+ . . .+ IN
Cz
}

)
.

Obviously, f is bounded and 0 < fP ≤ 1, −1 ≤ fN < 0. If geometric insight of a PBFPG
has no point of intersection, then its product bipolar fuzzy planarity value is (1,−1) and
this PBFPG has underlying crisp graph as the crisp planar graph.

Example 3.5. Consider a PBFMG G, such that V = {v1, v2, v3, v4, v5, v6} and E =
{v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, v2v5, v2v5, v3v6, v1v4}.

b b

b

b

b

b
v4(0.5,−0.4)

v1(0.3,−0.5)

v5(0.7,−0.4)

v6(0.5,−0.4) v3(0.3,−0.7)

v2(0.5,−0.6)

(0.1,−0.4)

(0.2,−0.1)

(0.1,−0.3)

(0.1,−0.2)

(0.1,−0.2)

(0.2,−0.1)

(0.3,−
0.1)

(0.1,−0.1)

(0.1,−0.1)

(0
.1
,−
0.
2)

C1C2

Figure 3: PBFMG.

There are two point of intersections C1 and C2 in PBFMG. C1 is the point of intersection
between the edges (v2v5, 0.2,−0.1) and (v3v6, 0.1,−0.1) and C2 is the point of intersection
between the edges (v2v5, 0.1,−0.2) and (v3v6, 0.1,−0.1). For the edges (v2v5, 0.2,−0.1),
(v2v5, 0.1,−0.2) and (v3v6, 0.1,−0.1), Iv2v5 = (0.57,−0.42), Iv2v5 = (0.29,−0.83) and
Iv3v6 = (0.67,−0.36), respectively. For the first point of intersection C1, IC1

= (0.62,−0.39).
For the second point of intersection C2, IC2

= (0.48,−0.60). Therefore, the product bipo-
lar fuzzy planarity value for PBFMG is f = (fP , fN) = (0.48,−0.50).

Theorem 3.1. Let G be a PBFMG such that each intersecting edge is effective. Then

product bipolar fuzzy planarity value f of G is given by

f = (fP , fN) =

(
1

1 + nC

,
−1

1 + nC

)

where nC is the number of point of intersections between the edges in G.

Proof. Let G be a PBFMG such that each intersecting edge is effective. Let C1, C2, . . . , Cz,
z ∈ Z be the point of intersections between the edges in G. For each intersecting edge
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uv in G, Iuv = (IPuv, I
N
uv) =

(
µP
Y
(uv)k

µP
X
(u)µP

X
(v)

,
µN
Y
(uv)k

|µN
X
(u)||µN

X
(v)|

)
= (1,−1). Thus for C1, the point

of intersection between the edges uv and wx, IC1
= (IP

C1
, IN

C1
) = (1+1

2
, −1−1

2
) = (1,−1).

Hence ICη
= (1,−1) for all η = 1, 2, . . . , z.

Now f = (fP , fN) = ( 1
1+{IP

C1
+IP

C2
+...+IP

Cz
}
, −1
1−{IN

C1
+IN

C2
+...+IN

Cz
}
) = ( 1

1+{1+1+...+1}
, −1
1−{−1−1,...,−1}

) =

( 1
1+nC

, −1
1+nC

), where nC is the number of point of intersections between the edges in G.

Definition 3.10. A PBFPG G is said to be strong if the product bipolar fuzzy planarity
value f = (fP , fN) of G is such that fP ≥ 0.5 and fN ≤ −0.5.

In Example 3.5, the product bipolar fuzzy planarity value f = (fP , fN) of the PBFPG
G is such that fP ≤ 0.5 and fN ≥ −0.5. So, G is not strong.

Corollary 3.1. Let G be a complete PBFMG. Then the product bipolar fuzzy planarity

value f of G is given by

f = (fP , fN) =

(
1

1 + nC

,
−1

1 + nC

)

where nC is the number of point of intersections between the edges in G.

Theorem 3.2. Let G be a strong PBFPG. Then the number of point of intersections

between strong edges in G is at most one.

Proof. Let G be a strong PBFPG. Suppose G has at least two point of intersections
C1 and C2 between two strong edges in G. For any strong edge (uv, µP

Y (uv)k, µ
N
Y (uv)k),

µP
X(u)µ

P
X(v) ≤ 2µP

Y (uv)k and −|µN
X(u)||µ

N
X(v)| ≥ 2µN

Y (uv)k, that is, I
P
uv ≥ 0.5 and INuv ≤

−0.5. Therefore, if two strong edges (uv, µP
Y (uv)k, µ

N
Y (uv)k) and (wx, µP

Y (wx)k, µ
N
Y (wx)k)

intersect, then IP
C1

= IPuv+IPwx

2
≥ 0.5 and IN

C1
= INuv+INwx

2
≤ −0.5. Similarly, IP

C2
≥ 0.5 and

IN
C2

≤ −0.5. This implies that, 1 + IP
C1

+ IP
C2

≥ 2 and 1 − (IN
C1

+ IN
C2
) ≥ 2. Therefore,

fP = 1
1+{IP

C1
+IP

C2
}
≤ 0.5 and fN = −1

1−{IN
C1

+IN
C2

}
≥ −0.5, a contradiction, as G is a strong

PBFPG.

A fundamental theorem of PBFPG is given below.

Theorem 3.3. A PBFPG G does not contain any point of intersection between two strong

edges, if G has product bipolar fuzzy planarity value f = (fP , fN) such that fP > 0.67
and fN < −0.67.

Proof. Let G be a PBFPG with product bipolar fuzzy planarity value f , such that fP >

0.67 and fN < −0.67. Let C be the point of intersection between two strong bipolar
fuzzy edges (uv, µP

Y (uv)k, µ
N
Y (uv)k) and (wx, µP

Y (wx)k, µ
N
Y (wx)k). For any strong edge

(uv, µP
Y (uv)k, µ

N
Y (uv)k), µ

P
X(u)µ

P
X(v) ≤ 2µP

Y (uv)k and −|µP
X(u)||µ

P
X(v)| ≥ 2µP

Y (uv)k. That
is, IPuv ≥ 0.5 and INuv ≤ −0.5. Similarly IPwx ≥ 0.5 and INwx ≤ −0.5. For the minimum
value of IPuv and IPwx, I

P
C = 0.5+0.5

2
= 0.5 and for the maximum value of INuv and INwx,

IN
C = −0.5−0.5

2
= −0.5. So, fP = 1

1+IP
C

≤ 0.67 and fN = −1
1−IN

C

≥ −0.67, a contradiction.

Hence, G does not contain any point of intersection between strong edges.
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We denote a PBFPG with product bipolar fuzzy planarity value f = (fP , fN) such
that fP > 0.67 and fN < −0.67, as (0.67,−0.67)-PBFPG.

Face of a PBFPG is an important feature. Face of a PBFPG is a region bounded by
bipolar fuzzy edges. If all the edges in the boundary of a product bipolar fuzzy face have
membership value (1,−1), then it is a crisp face. If one of such edges is removed or has
membership value (0, 0), the product bipolar fuzzy face does not exist. A product bipolar
fuzzy face and its positive membership and negative membership values are defined below.

Definition 3.11. Let G = (X, Y ) be a PBFPG, with product bipolar fuzzy planarity
value (1,−1). A region bounded by the set of bipolar fuzzy edges E∗ ⊂ E of a geometric
representation of G is said to be a product bipolar fuzzy face of G. The positive and
negative membership values of the product bipolar fuzzy face are

∏
{IPuv | uv ∈ E∗} and

−
∏
{|INuv| | uv ∈ E∗}.

Definition 3.12. A product bipolar fuzzy face is said to be strong if its positive mem-
bership value is greater than and equal to 0.5 and negative membership value is less than
and equal to −0.5. A product bipolar fuzzy face which is not strong is called weak. Every
PBFPG has an infinite region called outer product bipolar fuzzy face. Other faces are
called inner product bipolar fuzzy faces.

Remark 3.1. Every edge of a strong product bipolar fuzzy face is a strong bipolar fuzzy
edge.

Example 3.6. Consider a PBFPG G. Let f1, f2 and f3 be the product bipolar fuzzy faces,

b

b

b

v1(0.4,−0.6)

v2(0.5,−0.3) v3(0.3,−0.8)

(0.15,−0.2)

(0.1,−0.1)

(0.25,−0.2)

(0.1,−
0.3)

b
v4(0.5,−0.9)

(0
.1
,−

0.
7)

f1 f3
f2

Figure 4: Faces in PBFPG.

f1 is bounded by the edges (v1v2, (0.1,−0.1)), (v2v3, (0.15,−0.2)), (v3v1, (0.1,−0.3)), f2 is
bounded by the edges (v2v3, (0.15,−0.2)), (v3v4, (0.1,−0.7), (v2v4, (0.25,−0.2)) and f3 is
bounded by the edges (v1v2, (0.1,−0.1)), (v1v3, (0.1,−0.3)), (v3v4, (0.1,−0.7)), (v2v4, (0.25,−0.2).
The positive membership and negative membership values of product bipolar fuzzy faces
f1, f2 and f3 are (0.42,−0.29), (0.67,−0.6) and (0.28,−0.25), respectively. Here f2 is a
strong product bipolar fuzzy face and f1, f3 are weak product bipolar fuzzy faces.
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Now we define dual of (0.67,−0.67)-PBFPG.

Definition 3.13. Let G be a (0.67,−0.67)-PBFPG, where Y = {(xy, µP
Y (xy)k, µ

N
Y (xy)k) | k =

1, 2, . . . , m, xy ∈ Ṽ 2} is a bipolar fuzzy multiset on Ṽ 2. Let f1, f2, . . . , ft be the strong
product bipolar fuzzy faces of G. A PBFPG G

′

= (X
′

, Y
′

) such that V
′

= {xi, i =
1, 2, . . . , t}, and the vertex xi of G

′

is considered for the face fi of G is said to be
a PBFDG of G. The positive membership values of vertices are given by the map-
ping µP

X
′ : V

′

→ [0, 1] such that µP
X

′ (xi) =
∏
{µP

Y (uv)k, k = 1, 2, . . . , m | uv is an
edge of the boundary of the strong product bipolar fuzzy face fi} and negative mem-
bership values of vertices are given by the mapping µN

X
′ : V

′

→ [−1, 0] such that

µN
X

′ (xi) = −
∏
{|µN

Y (uv)k|, k = 1, 2, . . . , m | uv is an edge of the boundary of the strong
product bipolar fuzzy face fi}.

There may exist at least two common edges between two faces fi and fj of G. So,
there may exist at least two edges between two vertices xi and xj in PBFDG G

′

. The
positive membership values and negative membership values of the bipolar fuzzy edges of
the PBFDG are µP

Y (uv)
l
k = µP

Y
′ (xixj)l and µN

Y (uv)
l
k = µN

Y
′ (xixj)l, where (uv)l is an edge

in the boundary between two strong product bipolar fuzzy faces fi and fj, l = 1, 2, . . . , s,
where s is the number of edges between xi and xj or the number of common edges in the
boundary between fi and fj .

Example 3.7. Consider a planar graph G = (V,E), where V = {v1, v2, v3, v4, v5} and
E = {v1v2, v2v3, v3v4, v4v5, v5v1, v1v4}. Let X be a BFS of V and Y be a bipolar fuzzy

multiedge set of Ṽ 2 defined by

v1 v2 v3 v4 v5
µP
X 0.8 0.9 0.7 0.5 0.3

µN
X −0.7 − 0.5 − 0.6 − 0.9 − 0.3

v1v2 v2v3 v3v4 v4v5 v5v1 v1v4
µP
Y 0.7 0.6 0.3 0.15 0.2 0.4

µN
Y − 0.3 − 0.3 − 0.5 − 0.2 − 0.2 − 0.6

Clearly, it is a (0.67,−0.67)-PBFPG (as shown in Fig. 5) with three strong product
bipolar fuzzy faces f1, f2 and f3. Product bipolar fuzzy face f1 is bounded by edges
(v1v2, 0.7,−0.3), (v2v3, 0.6,−0.3), (v3v4, 0.3,−0.5) and (v1v4, 0.4,−0.6). f2 is bounded by
edges (v1v4, 0.4,−0.6), (v4v5, 0.15,−0.2) and (v5v1, 0.2,−0.2). f3 is bounded by edges
(v1v2, 0.7,−0.3), (v2v3, 0.6,−0.3), (v3v4, 0.3,−0.5), (v4v5, 0.15,−0.2) and (v5v1, 0.2,−0.2).

We represent the vertices of PBFDG by small white circles and the edges by dashed
lines. For each strong product bipolar fuzzy face, we consider a vertex for the PBFDG.
Thus the vertex set V

′

= {x1, x2, x3}, where the vertex xi is taken corresponding to the
strong product bipolar fuzzy face fi, i = 1, 2, 3. Therefore

10



v1
b

b

b b

b

v4 v3

v2

v5
x1

x3

x2

Figure 5: PBFDG.

µP
X

′ (x1) = (0.7)(0.6)(0.3)(0.4) = 0.05,

µN
X

′ (x1) = −| − 0.3|| − 0.3|| − 0.5|| − 0.6| = −0.03,

µP
X

′ (x2) = (0.4)(0.2)(0.15) = 0.01,

µN
X

′ (x2) = −| − 0.6|| − 0.2|| − 0.2| = −0.02,

µP
X

′ (x3) = (0.7)(0.6)(0.3)(0.15)(0.2) = 0.004,

µN
X

′ (x3) = −| − 0.3|| − 0.3|| − 0.5|| − 0.2|| − 0.2| = −0.002.

There are three common edges v1v2, v2v3 and v3v4 between the faces f1 and f3 in
G. Therefore, there exist three edges between the vertices x1 and x3, in PBFDG of G.
Positive and negative membership values of the edges of PBFDG are given by

µP
Y

′ (x1x2) = µP
Y (v1v4) = 0.4, µN

Y
′ (x1x2) = µN

Y (v1v4) = −0.6,

µP
Y

′ (x2x3) = µP
Y (v1v5) = 0.2, µN

Y
′ (x2x3) = µN

Y (v1v5) = −0.2,

µP
Y

′ (x2x3) = µP
Y (v4v5) = 0.15, µN

Y
′ (x2x3) = µN

Y (v4v5) = −0.2,

µP
Y

′ (x1x3) = µP
Y (v1v2) = 0.7, µN

Y
′ (x1x3) = µN

Y (v1v2) = −0.3,

µP
Y

′ (x1x3) = µP
Y (v2v3) = 0.6, µN

Y
′ (x1x3) = µN

Y (v2v3) = −0.3,

µP
Y

′ (x1x3) = µP
Y (v3v4) = 0.3, µN

Y
′ (x1x3) = µN

Y (v3v4) = −0.5.

So, the edge set of PBFDG is

Y
′

= {(x1x2, 0.4,−0.6), (x2x3, 0.2,−0.2), (x2x3, 0.15,−0.2), (x1x3, 0.7,−0.3), (x1x3, 0.6,−0.3),
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(x1x3, 0.3,−0.5)}.

We state the following theorems without their proofs.

Theorem 3.4. Let G be a (0.67,−0.67)-PBFPG without weak edges, with n vertices, m

bipolar fuzzy edges and f strong faces, and let G
′

be a PBFDG of G with n
′

vertices, m
′

edges and f
′

faces, then n
′

= f , m
′

= m and f
′

= n.

Theorem 3.5. Let G
′

be a PBFDG of a (0.67,−0.67)-PBFPG G. The number of strong

product bipolar fuzzy faces in G
′

is less than or equal to the number of vertices of G.

4 Isomorphism between PBFPGs

Definition 4.1. A homomorphism h : G1 → G2 of two PBFPGs G1 and G2 is a mapping
h : V1 → V2 which satisfies

(a) µP
X1
(x1) ≤ µP

X2
(h(x1)), µ

N
X1
(x1) ≥ µN

X2
(h(x1)),

(b) µP
Y1
(x1y1) ≤ µP

Y2
(h(x1)h(y1)), µ

N
Y1
(x1y1) ≥ µN

Y2
(h(x1)h(y1))

for all x1 ∈ V1, x1y1 ∈ Ṽ 2
1 .

Definition 4.2. An isomorphism h : G1 → G2 of two PBFPGs G1 and G2 is a bijective
mapping h : V1 → V2 which satisfies

(c) µP
X1
(x1) = µP

X2
(h(x1)), µ

N
X1
(x1) = µN

X2
(h(x1)),

(d) µP
Y1
(x1y1) = µP

Y2
(h(x1)h(y1)), µ

N
Y1
(x1y1) = µN

Y2
(h(x1)h(y1))

for all x1 ∈ V1, x1y1 ∈ Ṽ 2
1 .

Definition 4.3. A weak isomorphism h : G1 → G2 of two PBFPGs and G2 is a bijective
mapping h : V1 → V2 which h : V1 → V2 which satisfies

(e) h is homomorphism,

(f) µP
X1
(x1) = µP

X2
(h(x1)), µ

N
X1
(x1) = µN

X2
(h(x1))

for all x1 ∈ V1.

Definition 4.4. A co-weak isomorphism h : G1 → G2 of two PBFPGs and G2 is a bijective
mapping h : V1 → V2 which h : V1 → V2 which satisfies

(g) h is homomorphism,

(h) µP
Y1
(x1y1) = µP

Y2
(h(x1)h(y1)), µ

N
Y1
(x1y1) = µN

Y2
(h(x1)h(y1))

for all x1y1 ∈ Ṽ 2
1 .
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As isomorphism between PBFGs is an equivalence relation, if there exits an isomor-
phism between two PBFGs and one is PBFPG, then the other will also be PBFPG. This
result is given below.

Theorem 4.1. Let h : G → H be an isomorphism from a PBFPG G to a PBFG H. Then

H can be drawn as PBFPG with same planarity value of G.

Proof. Let h : G → H be an isomorphism. Since isomorphism preserves size and order of
PBFGs. So, the size and order of H will be equal to size and order of G and drawing of
G and H is same. Thus the number of intersections between edges and product bipolar
fuzzy planarity value of H will be same as G. Hence H can be drawn as PBFPG with
same product bipolar fuzzy planarity value as of G.

Using above Theorem, we can immediately prove the following results.

Theorem 4.2. Two isomorphic PBFGs have the same product bipolar fuzzy planarity

values.

Theorem 4.3. Let G1 and G2 be two weak isomorphic PBFGs with product bipolar fuzzy

planarity values f1 = (fP
1 , f

N
1 ) and f2 = (fP

2 , f
N
2 ), respectively. If the edge positive

membership and negative membership values of corresponding intersecting edges are same.

Then (fP
1 , f

N
1 ) = (fP

2 , f
N
2 ).

Theorem 4.4. Let G1 and G2 be two co-weak isomorphic PBFGs with product bipolar

fuzzy planarity values f1 = (fP
1 , f

N
1 ) and f2 = (fP

2 , f
N
2 ), respectively. If the minimum

of positive membership values and maximum of negative membership values of the end

vertices of corresponding intersecting edges are same. Then (fP
1 , f

N
1 ) = (fP

2 , f
N
2 ).

5 Application of PBFPGs

We consider a road network as shown in Fig.5. Each city in the network may be referred
as vertex and each road between any two cities may be called as edge. This graph does
not contain loops and multiple edges. It is well known that, the length of a road between
any two cities is a crisp quantity but vehicle travel time or vehicle capacity on a road
network is fuzzy.

In this network, the membership values of vertices are representing the degree of capacity
of vehicles of a city belongs to a network of 5 cities. The degree of capacity of vehicles of
a city is defined in terms of its positive membership and negative membership. Positive
membership degree can be depicted as how much capacity, vehicles of a city posses and
negative membership can be depicted as how much capacity is lost by the vehicles of a
city. The membership values of edges of this graph show the capacity of vehicles on the
road joining any two cities. The positive and negative membership degree of edges can
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Figure 6: Product bipolar fuzzy planar graph of a road network.

be interpreted as the percentage of increasing and decreasing capacity of vehicles on the
road between any two cities.

Due to crossing, the vehicle capacity or vehicle travel time decreases, in order to reach
from one city to another city and so traveling cost decreases. But we construct the roads
in such a way that the number of crossing decreases, that is, the planarity value increases,
because generally, as the crossing road increases, vehicle capacity increases, due to the
increase of crowdedness on roads. That’s why, the measurement of product bipolar fuzzy
planarity value is important.

There are only two crossings, at the points C1 and C2, between the roads AC and
BE, and AD and BE, respectively, in this road network of Fig.5. For the roads AC,
BE and AD, IAC = (0.36,−0.14), IBE = (0.33,−0.18) and IAD = (0.24,−0.50), re-
spectively. For first crossing at C1, IC1

= (0.35,−0.16) and for second crossing at C2,
IC2

= (0.29,−0.34). Therefore, the product bipolar fuzzy planarity value f of above road
network is (0.61,−0.67). So, the roads are not to much crowded and due to road crossing
between cities vehicle travel time saves and traveling cost decreases.

6 Conclusion

Fuzzy graph theory is highly exploited in computer science applications. Particularly, in
research areas of computer science including image capturing, data mining, clustering,
image segmentation, networking etc. In this paper, we have initiated the concepts of
multigraphs, planar graphs and dual graphs under bipolar fuzzy environment based on
the product operator. We have also introduced the product bipolar fuzzy planarity value
of PBFPGs. If the product bipolar fuzzy planarity value of a PBFPG is (1,−1), that is,
if there exists no crossing between edges, then the PBFPG is same as crisp planar graph.
Therefore, the product bipolar fuzzy planarity value measures the amount of planarity in
a PBFPG.
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