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Abstract 

 
 

Christian Goldbach (March 18, 1690 – November 20, 1764) was a German mathematician. He 

is remembered today for Goldbach's conjecture. 

 

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory 

and all of mathematics. It states: Every even integer greater than 2 can be expressed as the sum 

of two primes. 

 

On 7 June 1742, the German mathematician Christian Goldbach wrote a letter to Leonhard 

Euler (letter XLIII) in which he proposed the following conjecture: 

Every even integer which is ≥ 4 can be written as the sum of two primes (the strong conjecture) 

He then proposed a second conjecture in the margin of his letter: 

 

Every odd integer greater than 5 can be written as the sum of three primes (the weak 
conjecture). 

 

In number theory, Goldbach's weak conjecture, also known as the ternary Goldbach problem, 

states that every odd number greater than 5 can be expressed as the sum of three primes. (A 

prime may be used more than once in the same sum). In 2013, Harald Helfgott finally proved 

Goldbach's weak conjecture, a huge contribution to mathematics and number theory. 

 
The “strong” conjecture has been shown to hold up through 4 × 1018, but remains unproven for 

almost 300 years despite considerable effort by many mathematicians throughout history. 

 

The author would like to give many thanks to Harald Helfgott for his proof of the weak 

conjecture, because this elementary proof of the strong conjecture is completely dependent on 

Helfgott’s proof. Without Helfgott’s proof, this elementary proof would not be possible. 
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Proof 

 
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory 

and all of mathematics. It states: Every even integer greater than 2 can be expressed as the sum 

of two primes. 

 

The Goldbach Conjecture states that for every even integer N, and N > 2, then N = P1 + P2, 

where P1, and P2, are prime numbers. 
 

For example, when N = 4, then 4 = 2 + 2, and since 2 is prime then the Goldbach Conjecture is 

satisfied. When N = 6, then 6 = 3 + 3, and since 3 is prime then the Goldbach Conjecture is 

satisfied again. 

 

A proof of the strong Goldbach conjecture implies the ternary Goldbach conjecture, that is, all 

odd numbers greater than 5 are the sum of three primes. For example, in order to express an odd 

number n > 5 as the sum of three primes, subtract 3 and obtain an even number n - 3 ≥ 2. If the 

strong conjecture is true, we can express n – 3 as a sum of two primes p1, p2; thus, since n - 3 is 

an even ≥ 2, then n = (n − 3) + 3 is the sum of the primes p1, p2 and 3, which is the sum of three 

prime numbers. Thus, proving the ternary Goldbach conjecture, if the strong conjecture is true. 

That is, for n > 5, 

 

n = (n − 3) + 3 

 

n = p1 +  p2  + 3 
 

While the weak Goldbach conjecture was finally proved, by Helfgott [1][2] in 2013, however the 

strong conjecture has remained unsolved. In this paper we shall use Helfgott’s proof of the ternary 

Goldbach conjecture to prove the strong conjecture of even numbers. 

 

Helfgott’s proof of the ternary Goldbach conjecture does establish that every even number can 

be written as the sum of at most 4 primes. For example, subtract any odd prime number, p4, from 

every even number, m, that is greater than the prime number being subtracted results with 

another odd number. That is, m - p4  = an odd number. Now, to Helfgott’s credit we can write the 

odd number, m - p4, as the sum of three primes. This can be written as: 

 

m - p4  = p1  + p2  + p3 

m = p1  + p2  + p3  + p4 

Thus, proving every even number can be written as the sum of at most 4 primes. However, to 

prove that the strong Goldbach conjecture we must reduce this improvement of sum of four 

primes down to the sum of two primes. 

 
Let n > 5 be any odd number, then it is the sum of three primes p1, p2, p3, then the ternary 

Goldbach conjecture can be written as follows: 
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n = p1 + p2 + p3 

 

Also, we assume p1, p2, and p3, are all > 2  

 

Subtract p3 from both sides and the following even number is generated: 
 

n - p3 = p1 + p2 

 

and, n - p3 ≥ 4 
 

This proves that this even number is the sum of two primes, but it does not guarantee that every 

even number is the sum of two primes. 

 

Now we will prove that every even number can be written as the sum of two prime numbers.  

 

The formal definition of an odd number is that it is an integer of the form n = 2k + 1, where k is 

an integer. Consider the following where every odd number, n can be represented in the 

following form: 

 

n = 2k + 1, for k ≥ 1 

 

The formal definition of an even number is that it is an integer of the form m = 2k, where k is 

an integer. Consider the following where every even number, m can be represented in the 

following form: 

 

m = 2k, for k ≥ 1 
 

Reviewing, Harald Helfgott has proven the Ternary Goldbach conjecture, which can 

be written as follows, for an odd number n > 5: 
 

n = p1 + p2 + p3 

 

2k + 1 = n = p1 + p2 + p3 

 

Reducing, 

 

2k = p1 + p2 + p3 – 1 

 

Therefore, since 2k is every even number, we have drawn a step closer to proving the 

Goldbach conjecture, as follows: 
 

2k = p1 + p2 + (p3 – 1) 

 

Rearranging, 

 

       2k + (1 - p3) = p1 + p2 
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Now, we have proven that 2k + (1 - p3) = p1 + p2, however, we must still prove that every even 

integer greater than 2 can be expressed as the sum of two primes (p1 + p2).  To accomplish this, 

we will take an approach to prove that 2k + (1 - p3) includes, at a minimum, every even 

positive integer greater than 2. First let us review that every even number greater than 2, m can 

be represented in the following form: 

 

m = 2k, for k ≥ 2 

 

Or, in other words, m = 2k, for k = 2, 3, 4 … ∞ 

 

First, we know that 2k + (1 - p3) is always even since p3 is always odd (unless p3 is equal to 2, 

however, by definition we will exclude 2 from being equal to p3 since we are only interested in 

2k + (1 - p3) being even. Therefore, we observe that the minimum vale for p3 is 3, since it is 

prime.  When p3 is 3 and k = 2, then 2k + (1 - p3) = 2*2 + (1 - 3) = 4 -2 = 2, however, for 

Goldbach’s Conjecture we are only interested in even integer greater than 2. Therefore, when p3 

is 3 and k = 3, then 2*3 + (1 - 3) = 6 – 2 = 4, which is the first even number we are interested in. 

We should notice here that when p3 is large, there will be times when 2k + (1 - p3)  will be 

negative even numbers, this does not matter if negative even numbers are included as long as all 

positive even numbers greater than 2 are included. 

 

Now we will examine 2k + (1 - p3) more closely. First, we know that 2k + (1 - p3) represents 4 

the first even number of interest, when p3 is 3 and k = 3.  Since k = 2, 3, 4 … ∞, then 2k + (1 - 

p3) will continue to increase in steps of 2 until k reaches infinity, and we know by definition 

infinity will never be reached, however, because of this all even numbers greater than 2 will be 

reached in increments of 2.  We will demonstrate this with the following example, by showing 

that the largest even number is reached using both methods: 

 

Recall, all even numbers greater than 2 are defined as, m = 2k, for k = 2, 3, 4 … ∞ 

Therefore, the largest even number is,  m = 2k, for k = ∞ 

 

Now examining, 2k + (1 - p3), the largest even number that can be reached is when k = ∞ 

Therefore, the largest even number is,  m = 2k + (1 - p3), for k = ∞ 

 

However, since ∞ is indeterminant because it has no end, we will demonstrate that both methods 

are the largest even number because the largest even number is indeterminant because it is 

infinite. First, we will examine the first form, 

 

m = (2)(∞) = ∞, this is because for any integer a, (a)(∞) = ∞ 

 

Second,  

 

(2)(∞) + (1 - p3) = ∞ + (1 - p3) = ∞, ∞, this is because for any integer a, where a ≠ ∞, then  

∞ + a = ∞ 

   

Therefore, when k = ∞, then m = 2k = ∞, and 2k + (1 - p3) = ∞ 

Therefore, we can conclude that, 2k = 2k + (1 - p3), when k = ∞ 
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Thus, we have proven that both methods include all even numbers from 4 to infinity, therefore 

all even numbers of the Goldbach Conjecture have been included in our proof. 

 

We recall, that when p3 is large, there will be times when 2k + (1 - p3)  will be negative even 

numbers, this does not matter if negative even numbers are included, this just implies that 2k + 

(1 - p3) is a larger set of infinity than 2k, because it covers some of the negative even numbers, 

while 2k only covers the positive even numbers. For the Goldbach Conjecture, all that matters is 

that the positive even integers are covered by both methods. 

 

Thus, we have proven that 2k + (1 - p3) = every even integer greater than 2.    

 

Therefore, since, 2k + (1 - p3) = p1 + p2 we have proven the Goldbach Conjecture.    
 

Again, the author expresses his eternal gratitude to Harald Helfgott for his outstanding 
proof of the of the ternary Goldbach conjecture. Without Helfgott proof, the author’s 
elementary proof would not have been possible, it is totally dependent on Helfgott’s proof. 
 

The author is not aware of an attempt having previously been made to approach the 

Goldbach conjecture in this way. If that is so, it would be remarkable that such a simple 

argument has hitherto been overlooked. 
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