Primality Criterion for Safe Primes

Predrag Terzić

Bulevar Pera Ćetkovića 139, Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

Abstract: Polynomial time primality test for safe primes is introduced .

Keywords: Primality test, Polynomial time, Prime numbers.

AMS Classification: 11A51.

1 Introduction

In 1750 Euler stated following theorem

```
Theorem 1.1. Let p \equiv 3 \pmod{4} be prime, then 2p + 1 is prime iff 2p + 1 \mid 2^p - 1.
```

In 1775 Lagrange gave a proof of the theorem , see [1] . In this note we provide a proof to the theorem that is similar to the Euler-Lagrange theorem .

2 The Main Result

```
Theorem 2.1. Let p \equiv 5 \pmod{6} be prime, then 2p + 1 is prime iff 2p + 1 \mid 3^p - 1.
```

Proof. Suppose q=2p+1 is prime. $q\equiv 11\pmod {12}$ so 3 is quadratic residue module q and it follows that there is an integer n such that $n^2\equiv 3\pmod q$. This shows $3^p=3^{(q-1)/2}\equiv n^{q-1}\equiv 1\pmod q$ showing 2p+1 divides 3^p-1 .

Conversely, let 2p+1 be factor of 3^p-1 . Suppose that 2p+1 is composite and let q be its least prime factor. Then $3^p\equiv 1\pmod q$ and so we have $p=k\cdot \operatorname{ord}_q(3)$ for some integer k. Since p is prime there are two possibilities $\operatorname{ord}_q(3)=1$ or $\operatorname{ord}_q(3)=p$. The first possibility cannot be true because q is an odd prime number so $\operatorname{ord}_q(3)=p$. On the other hand $\operatorname{ord}_q(3)\mid q-1$, hence p divides q-1. This shows q>p and it follows $2p+1>q^2>p^2$ which is contradiction since p>3, hence 2p+1 is prime .

Q.E.D.

References

[1] P. Ribenboim.1996: How to Recognize Whether a Natural Number Is a Prime. *The New Book of Prime Number Records*. New York: Springer-Verlag, 90-91