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Abstract 

 

 

This paper proposes the generalization of the both binary (strong) and ternary (weak) Goldbach’s 

Conjectures (BGC and TGC)[1,2,3][4,5,6,7], briefly called “the Vertical Goldbach’s Conjectures” (VBGC 

and VTGC), which are essentially meta-conjectures (as VBGC states an infinite number of conjectures 

stronger than BGC). VBGC was discovered in 2007
[1]

 and perfected until 2017
[3]

 by using the arrays ( pS  

and 
,i pS ) of Matrix of Goldbach index-partitions (GIPs) (simple ,p nM  and recursive 

, ,i p nM , with iteration 

order 0i  ), which are a useful tool in studying BGC by focusing on prime indexes (as the function nP  that 

numbers the primes is a bijection). Simple M  ,p nM  and recursive M  , ,i p nM  are related to the concept 

of generalized “primeths” (a term first introduced by N. J. A. Sloane and Robert G. Wilson in their “primeth 

recurrence” concept [A007097]; the term “primeth” was then used from 1999 by Fernandez N. in his “The 

Exploring Primeness Project”
 
[8]), which is the generalization with iteration order 0i   of the known 

“higher-order prime numbers” (alias “super-prime numbers”, “super-prime numbers”, ”super-primes”, ” 

super-primes” or “prime-indexed primes[PIPs]”) as a subset of (simple or recursive) primes with (also) 

prime indexes ( i
xP  is the x-th i-primeth, with iteration order 0i  as explained later on).  

The author of this article also brings in a S-M-synthesis of some Goldbach-like conjectures (GLC) 

(including those which are “stronger” than BGC) and a new class of GLCs “stronger” than BGC, from 

which VBGC (which is essentially a variant of BGC applied on a serial array of subsets of primeths with a 

general iteration order 0i  ) distinguishes as a very important conjecture of primes (with great importance 

in the optimization of the BGC experimental verification and other potential useful theoretical and practical 

applications in mathematics [including cryptography and fractals] and physics [including crystallography 

and M-Theory]), and a very special self-similar property of the primes subset of (noted/abbreviated as 

or * as explained later on in this article). 

 

Keywords: Prime (number), primes with prime indexes aka prime-index primes (PIPs), i-primeths 

(i-PIPs with iteration order i≥0), the Binary Goldbach Conjecture (BGC), the Ternary Goldbach Conjecture 

(TGC), Goldbach index-partition (GIP), fractal patterns of the number and distribution of Goldbach index-

partitions, Goldbach-like conjectures (GLC), the Vertical Binary Goldbach Conjecture (VBGC) and 

Vertical Ternary Goldbach Conjecture (VTGC) the as applied on i-primeths 
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Introduction 

 

 

Primes (which are considered natural numbers [positive integers] >1 that each has no positive 

divisors other than 1 and itself by the latest modern conventional definition, as number 1 is a special 

case[9,10] which is considered neither prime nor composite, but the unit of all integers) are conjectured to 

have a sufficiently dense and (sufficiently) uniform distribution in , so that: (1) any natural even number 

2 , 1n with n   can be splitted in at least one Goldbach partition/pair(GP)[11] OR (2) any positive integer 

1n   can be expressed as the arithmentic average of at least one pair of primes (GC is specifically 

reformulated by the author of this article in order to emphasize the importance of studying the Primes 

Distribution (PD)
 
[12,13,14,15] defined by a global and local density and uniformity with multiple 

interesting fractal patterns [16]: GC is in fact an auto-recursive fractal property of PD in alias the 

Goldbach Distribution of Primes (GDP) (as the author will try to prove later on in this article), but also a 

property of , a property which is indirectly expressed as GC, using the subset of even naturals).  

Primes are the subject of many other conjectures
 [URL1, URL2]

 and other mathematical theorems and 

formulas 
[URL1, URL2, URL3]

. 
 

*** 

 

 

https://oeis.org/wiki/List_of_prime_conjectures
https://en.wikipedia.org/wiki/Category:Conjectures_about_prime_numbers
http://mathworld.wolfram.com/PrimeFormulas.html
http://mathworld.wolfram.com/PrimeNumber.html
http://mathworld.wolfram.com/Pi-Prime.html
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Part A. 

The array pS  of the simple Matrix of Goldbach Index-Partitions  ,p nM   

 

 

Definition of *  and . We may define the prime subset of  as *   

      1 2 32 , 3 , 5 ,..., ,..., ,...x yP P P P P P   , with , * 0x y and x y   , with  x yP P  being the x-th 

(y-th) primes of *  and P  marking the already proved fact that *  has an infinite number of (natural) 

elements (Euclid's 2
nd

 theorem [17]). The numbering function of primes  nP  is a bijection that 

interconnects *  with * so that each element of *  corresponds to only (just) one element of * and 

vice versa:  11 2P  ,  22 3P  , ..., xx P  (the x-th prime), yy P  (the y-th prime), …, P . 

Originally, Goldbach considered that number 1 was the first prime: although still debated until present, today 

the mainstream considers that number 1 is neither prime or composite, but the unity of all the other 

integers.
[9,10]

. However, in respect to the first "ternary" formulation of GC (TGC) (which was re-formulated 

by Euler as the BGC and also demonstrated by the same Euler to be stronger than TGC, as TGC is a 

consequence of BGC), the author of this article also defines 0 1P   (the unity of all integers, implicitly the 

unity of all primes) and          0 1 2 31 , 2 , 3 , 5 ,..., ,..., ,...x yP P P P P P P    , with 

, 0x y and x y   , although only *  shall be used in this work (as it is used in the mainstream of 

modern mathematics). 

 

*** 

 

The 1
st
 formulation of BGC. For any even integer 2n  , it will always exist at least one pair of 

(other two) integers , *x y with x y   so that x yP P n  , with  x yP P  being the x-th (y-th) primes 

of * . Important observation: The author considers that analyzing those “homogeneous” triplets of three  

naturals  , ,n x y  (no matter if primes or composites) is more convenient and has more “analytical” potential 

than analyzing (relatively) “inhomogeneous” triplets of type  , ,x yn P P : that’s why the author proposes 

Goldbach index partitions (GIPs) as an alternative to the standard Goldbach partitions (GPs) proposed by 

Oliveira e Silva
[11]

. The existence of (at least) a triplet  , ,n x y  for each even integer 2n   (as BGC 

claims) may suggest that BGC is profoundly connected to the generic primality (of any xP  and yP ) and, 

more specifically, argues that GC is in fact a property of PD in  (and a property of *  as composed of 

indexed/numbered elements). The most important property of Primes and PD and is that 

 ln ,xP x x for x    or  ln ,xP x x forany progressively large x   (which is the alternative 

[linearithmic] expression of the Prime Number Theorem [18], as if *  is a result of an apparently random 

quantized linearithmization of  1*  so that  lnnP n n  . In conclusion: For any even integer 2n  , 

at least one GIP exists (BGC – 1
st
 condensed formulation) 

 

*** 

 

The 2
nd

 formulation of BGC using the Matrix of Goldbach index-partitions (M-GIP or M).  

[1] Let us consider an infinite string of matrices  1 2 3, , ,..., ,...nS M M M M M , with each generic 

nM  being composed of lines made by GIPs  ,x y , such as: 

 

https://en.wikipedia.org/wiki/Prime_number_theorem
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( j  is the index of any chosen line of nM , j 1 and j nm ) 

( nm  is the total maximum number of j-indexed lines of nM ) 

(xn,i,yn,i *  , xn,i < xn,i+1 for mn ≥2,   1, ni m  ) 

 

[2] Let us also consider the function that counts the lines of any nM , such as: ( ) nl n m . This 

function (that numbers the lines of a GM) is classically named as ( ) ( ) nr n l n m   (“r” stands for the 

number of “rows”).[11] 

[3] An empty matrix  M
  is defined as a matrix with a 0 number of rows and/or columns. 

 

Using S , M , M


 and ( )r n  as previously defined, BGC has 2 formulations sub-variants: 

1. nM M


  (OR S  doesn’t contain any M


) for any even integer 2n   or shortly: 

2 neveninteger n M M     (the 2
nd

  formulation of BGC – 1
st
 sub-variant). 

2. For any even integer 2n  , ( ) 0r n   or shortly: 2 ( ) 0eveninteger n r n     (the 2
nd

  

formulation of BGC – 2
nd

 sub-variant). 

 

*** 

 

 The 3
rd

 formulation of BGC using the generalization of S  pS  and the generalization of 

M  ,p nM  for GIPs matrix containing more than 2 columns (as based on GIPs with more than 2 

elements).  

[1]Let us consider an infinite set OF infinite strings OF matrix:  

a)  2 2,1 2,2 2,3 2 2, ,, , ,..., ,...nS M M M M M   (the generic 2,nM  of 2S  has 2 columns based on 

[binary] GIPs with 2 elements); 

b)  3 3,1 3,2 3,3 3,3,
, , ,..., ,...

n
S M M M M M   (the generic 3,nM  of 3S  has 3 columns based on 

[ternary] GIPs with 3 elements); 

c) …; 

d)  ,1 ,2 ,3 , ,, , ,..., ,...p p n pp p pS M M M M M   (the generic ,p nM  of pS  has p columns based 

on [p-nary] GIPs with p elements and natural p>3);  

e) …,  

f)  ,1 ,2 ,3 , ,, , ,..., ,...nS M M M M M      (the generic ,M n  of S  has potentially 

infinite    number of columns based on nary  GIPs with a potentially infinite    

number of elements) 

g) With each generic ,p nM  being composed of ,p nm  lines and p columns made by p-nary GIPs 

with p elements, such as: 
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( j  is the index of any chosen line of ,p nM , j 1  and ,p nj m   

and ,p nm  is the total maximum number of j-indexed lines of ,p nM ) 

( k  is the index of any chosen column of ,p nM , k 1  and k p   

and p  is the total number of k -indexed columns of ,p nM ) 

(
,

*
n k j

x


 ,
, , 1n j n j

x x


  for , 2p nm  ,  , j 1,  k 1,p nm and p      ) 

 

[2] Let us also consider the function that counts the lines of any ,p nM , such as: 

,( , ) ( , ) p nr p n l p n m  . 

[3] An empty matrix  M
  is defined as a matrix with a 0 number of rows and/or columns. 

 

Using pS , ,p nM , M


 and ( , )r p n  as previously defined, BGC has 2 formulations sub-variants: 

1. 
2,n

M M


  (OR 
2

S  doesn’t contain any M
 ) for any even integer 2n   or shortly: 

2,
2

n
eveninteger n M M     (the 3

rd
  formulation of BGC – 1

st
 sub-variant). 

2. For any even integer 2n  , (2, ) 0r n   or shortly: 2 (2, ) 0eveninteger n r n      (the 3
rd

  

formulation of BGC –2
nd

 sub-variant). 

 

 

*** 
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Part B. 

A synthesis and A/B classification of the main GLCs using the ,p nM  concept 

 

The Goldbach-like conjectures (GLCs) category/class. 

 

GLCs definition. A GLC may be defined as any additional special (observed/conjectured) property 

of pS  and its elements ,p nM  other that GC (with 2n  ), with possibly other inferior limits 2a  , with  

2n a  ). 

 

GLCs classification. GLCs may be classified in two major classes using a double criterion such as: 

 

1. Type A GLCs (A-GLCs) are those GLCs that claim: [1] Not only that all ,p nM M


   for a 

chosen p>1 and for any / any odd / any even integer 2n a   (with a  being any finite natural 

established by that A-GLC and n a ) BUT ALSO [2] any other non-trivial(nt) accessory 

property/properties of all  ,p nM M


  of pS . A specific A-GLC is considered authentic if the 

other non-trivial accessory property/properties of all  ,p nM M


  (claimed by that A-GLC) 

isn’t/aren’t a consequence of the 1
st
 claim (of the same A-GLC). Authentic (at least conjectured 

as such) A-GLCs are (have the potential to be) “stronger” than GC as they claim “more” than 

GC does. 

 

2. Type B GLCs (B-GLCs) are those GLCs that claim: no matter if all ,p nM M


  or just some 

,p nM M


  for a chosen p>1 and for some / some odd / some even integer 2n a   (with a   

being any finite natural established by that B-GLC and n a ), all those ,p nM  that are yet non-

M


 (for n a ) have (an)other non-trivial accessory property/properties. A specific B-GLC is 

considered authentic if the other non-trivial accessory property/properties of all  ,p nM M


  

(claimed by that B-GLC for n a ) isn’t/aren’t a consequence of the fact that some ,p nM M


  

for n a . Authentic (at least conjectured as such) B-GLCs are “neutral” to GC (uncertainly 

“stronger” or “weaker” conjectures) as they claim “more” but also “less” than GC does 

(although they may be globally weaker and easier to formally prove than GC). 

 

*** 

 

Other variants
 [1]

 of GC and GLCs include the statements that: 

 

1. “[…] Every [integer] number that is greater than 2 is the sum of three primes” (Goldbach's 

original conjecture formulated in 1742, sometimes called the "ternary" Goldbach conjecture, 

written in a June 7, 1742 letter to Euler)
[1]

 (which is equivalent to: “every integer >2 is the sum of 

at least one triad of primes*”, *with the specification that number 1 was also considered a prime 

by the majority of mathematicians contemporary to Goldbach, which is no longer the case 

now]”). This (first) variant of GC can be formulated using (ternary) 3,nM  (based on GIPs with 3 

elements) such as: 

a. Type A formulation variant as applied to ( *)not just to  : 

“ 3,2 ninteger n M M     (with 
, ,

0
n j k

x   and 
, ,n j k

xP  )” 

b. Type B (neutral) formulation variant: not supported. 

 

2. “Every even integer 4n   is the sum of 2 odd primes.” (Euler’s binary reformulation of the 

original GC, which was initially expressed by Goldbach in a ternary form as previously 

explained)
 [1]

. Since BGC (as originally reformulated by Euler) contains the obvious triviality that 

there are infinite many even positive integers of form 2p p p   (with p  being any prime), the 
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non-trivial BGC (ntBGC) sub-variant that shall be used in this article (alias “BGC” or “ntBGC”) 

is that: “every even integer 6n   is the sum of at least one pair of distinct odd primes”
 
[19,20] 

(which is equivalent to: “every even integer 3m   is the arithmetic average of at least one pair 

of distinct odd primes”). Please note that ntBGC doesn’t support the definition of a GLC, as 

2p p p   is a trivial property of some even integers implying the complementary relative 

triviality that: 2 2c p p p    (with c  being any composite natural number and p  being any 

prime). ntBGC can be formulated using (binary) 2,nM  (based on GIPs with 2 elements) such as: 

a. Type A formulation variant: “ 6eveninteger n  ,  2, nnM M M


  AND 

 2, nnM M  contains at least one line with both elements (GIPs)≠1 (as 1 2P   is the only 

even prime) AND distinct to each other (as distinct GIPs means distinct primes as based 

on the bijection of the prime numbering function)” 

b. Type B (neutral) formulation variant: “ 6eveninteger n  , all  2, nnM M  that are 

non-empty (as pS  may also contain empty  2, nnM M M


   for some specific [but still 

unfound] n  values ) will contain at least one line with both elements (GIPs)≠1 (as 1 2P   

is the only even prime) AND distinct to each other (as distinct GIPs means distinct primes 

as based on the bijection of the prime numbering function)” 

 

3. “ 5odd integer n  , n  is the sum of 3 (possibly identical) primes.”
 
[1,21] (the [weak] Ternary 

Goldbach's conjecture [TGC/TGT – Ternary Goldbach’s conjecture/theorem]; formally 

proved by Harald Helfgott in 2013 [22,23,24], so that TGC is very probably [but not surely 

however] a proved theorem, and no longer a “conjecture”) (which is equivalent to: 

“ 5odd integer n  , n   is the sum of at least one triad of [possibly identical] primes”). TGC 

can be formulated using (ternary) 3,nM  (based on GIPs with 3 elements) such as: 

a. Type A formulation variant: “ 3,5 nodd integer n M M    ” 

b. Type B (neutral) formulation variant: not supported. 

 

4. “ 17integer n  , n  is the sum of exactly 3 distinct primes.”
 [1,19]

 (cited as “Conjecture 3.2” by 

Pakianathan and Winfree in their article, which is equivalent to: “ 17integer n  , n  is the sum 

of at least one triad of distinct primes”) (this is a conjecture stronger than TGC, but weaker than 

BGC as it is implied by BGC). This stronger version of TGC(sTGC) can also be formulated 

using (ternary) 3,nM  (based on GIPs with 3 elements) such as: 

a. Type A formulation variant: “ 17integer n   3,nM M


  AND 3,nM  contains at 

least one line with all 3 elements (GIPs) distinct from each other” 

b. Type B (neutral) formulation variant: “ 17integer n    those 3,nM  which are 

M


  will contain at least one line with all 3 elements (GIPs) distinct from each other” 

 

5. “ 5odd integer n  , n  is the sum of a prime and a doubled prime [which is twice of any 

prime].” (Lemoine’s conjecture [LC]
 
[25,26] which was erroneously attributed by MathWorld to 

Levy H. who pondered it in 1963 [26,27,28]). LC is stronger than TGC, but weaker than BGC. 

LC also has an extension formulated by Kiltinen J. and Young P. (alias the "refined Lemoine 

conjecture" [29]), which is stronger than LC, but weaker than BGC and won’t be discussed in this 

article (as I shall mainly focus on those GLCs stronger than BGC). LC can be formulated using 

(ternary, not binary) 3,nM  (based on GIPs with 3 elements) such as: 

a. Type A formulation variant: “ 5odd integer n   3,nM M


  AND 3,nM  contains 

at least one line with at least 2 identical elements (GIPs)” 
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b. Type B (neutral) formulation variant: “ 5odd integer n   those 3,nM  which are 

M


   will contain at least one line with at least 2 identical elements (GIPs)” 

 

6. There are also a few original conjectures[30] on partitions of integers as summations of primes 

published by Smarandache F. that won’t be discussed in this article, as these conjectures depart 

from VBGC (as VBGC presentation is the main purpose of this article). 

 

*** 

 

There are also a number of (relative recently discovered) GLCs stronger than BGC (and implicitly 

stronger than TGC), that can also be synthesized using ,p nM  concept:  these stronger GLCs (as VBGC 

also is) are tools that can inspire new strategies in finding a formal proof for BGC, as I shall try to 

demonstrate next. Additionally, there are some arguments that Twin Prime Conjecture (TPC)
 
[31] may be 

also (indirectly) related to BGC as part of a more extended and profound conjecture [6] [16,32,33, 34], so 

that any new clue for BGC formal proof may also help in TPC (formal) demonstration. Moreover, TPC may 

be weaker (and possibly easier to proof) than BGC (at least regarding the efforts toward the final formal 

proof) as the superior limit of the primes gap was recently “pushed“ to be ≤246 [35], but the Chen's Theorem 

I (that ”every sufficiently large even number can be written as the sum of either 2 primes, OR a prime and a 

semiprime [the product of just 2 primes]”
 
[36,37,38]) has not been improved since a long time (at least by 

the set of proofs that are accepted in the present by the mainstream) except Cai’s new proved theorem 

published in 2002 (“There exists a natural number N such that every even integer n larger than N is a sum of 

a prime ≤ n
0.95

 and a semi-prime”
 
[39,40], a theorem which is a similar but a weaker statement than LC that 

hasn’t a formal proof yet). 

 

1. “ 4eveninteger n  , there is at least one prime number p  [so that] / 2n p n   and 

q n p   is also prime [with n p q  implicitly]” (the Goldbach-Knjzek conjecture [GKC]
 
[41] 

which is stronger than BGC) (GKC can also be reformulated as: “every even integer 4n   is the 

sum of at least one pair of primes with at least one element in the semi-open interval  , / 2n n 


”. 

GKC can be formulated using (binary) 2,nM  (based on GIPs with 2 elements) such as: 

a. Type A formulation variant: “ 4eveninteger n    2, nnM M M


  AND 

 2, nnM M  contains at least one line with at least one element in the semi-opened 

interval  , / 2n n 


”. 

b. Type B (neutral) formulation variant: “ 4eveninteger n    those  2, nnM M  

which are M


  will contain at least one line with at least one element in the semi-

opened interval  , / 2n n 


” 

 

2. “ 4eveninteger n  , there is at least one prime number p  [so that] 4n p n   and 

q n p   is also prime [with n p q  implicitly]” (the Goldbach-Knjzek-Rivera conjecture 

[GKRC] [42] which is obviously stronger than BGC, but also stronger than GKC for 64n  ) 

(GKRC can also be reformulated as: “ 4eveninteger n  , n  is the sum of at least one pair of 

primes with one element in the double-open interval  , 4n n ”. GKRC can be formulated 

using (binary) 2,nM   (based on GIPs with 2 elements) such as: 

a. Type A formulation variant: “ 4eveninteger n    2, nnM M M


  AND 

 2, nnM M  contains at least one line with one element in the double-open interval 

 , 4n n ” 
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b. Type B (neutral) formulation variant: “ 4eveninteger n   those  2, nnM M  

which are M


  will contain at least one line with one element in the double-open 

interval  , 4n n ” 

 

3. Any other GLC that establishes an additional inferior limit 0a   for  2,r n  so that 

 2, 0r n a   (like Woon’s GLC [43]) can also be considered stronger that BGC, as BGC only 

suggests  2, 0r n   for any even integer 6n   (which implies a greater average number of GIPs 

per each n  than the more selective Woon’s GLC does). 

 

*** 

 

There is also a remarkable set of original conjectures (many of them stronger than BGC and/or TPC) 

originally proposed by Sun Zhi-Wei
[URL2]

 [44,45], a set from which I shall cite [46] (by rephrasing) some of 

those conjectures that have an important element in common with the first special case of VBGC: the 

recursive 
xP

P function in which xP  is the x-th prime and 
xP

P  is the xP -th prime (which is denoted in the 

next cited conjectures as qP  which is the q-th prime, with q being also a prime number) 

 

1. Conjecture 3.1 (Unification of GC and TPC, 29 Jan. 2014). For any integer 2n   there is at 

least one triad of primes      2
1 2 1 , 2 , 2

q
q n n q P


     
  

 (Sun’s Conjecture 3.1 [SC3.1 or 

U-GC-TPC], which is obviously stronger than BGC and was tested up to 82 10n   ) 

 

2. Conjecture 3.2 (Super TPC [SPTC], 5 Feb. 2014). For any integer 2n   there is at least one 

triad      0 , 2 , 2
n kPk

k n P prime P prime


      
 

 (Sun’s Conjecture 3.2 [SC3.2 or 

SPTC], which is obviously stronger than TPC and was tested up to 910n  )
 
[47,48] 

 

3. Conjecture 3.3 (28 Jan. 2014). For any integer 2n   there is at least one pentad 

         0 1 , 6 1 , 6 1 , , 2
n k n k

k n k prime k prime P prime P prime
 

          
 

 (Sun’s 

Conjecture 3.3 [SC3.3], which is obviously stronger than TPC as it implies TPC; SC3.3 was 

tested up to 72 10n   ) 

 

4. Conjecture 3.7-i (1 Dec. 2013). There are infinite many positive even integers 3n   which are 

associated with a hexad of primes            1 , 1 , , , 1 , 1n n n nn n P n P n nP nP         (Sun’s 

Conjecture 3.7-1 [SC3.7-i], which is obviously stronger than TPC as it implies TPC; 22 110n   

is the first/smallest value of n  predicted by SC3.7-I) 

 

5. Conjecture 3.12-i (5 Dec. 2013). All positive integers 7n   have at least one associated pair 

   1 , 2k

n k
k n P prime


    
 

 (Sun’s Conjecture 3.12-i [SC3.12-i]) 

 

6. Conjecture 3.12-ii (6 Dec. 2013). All positive integers 3n   have at least one associated pair 

   1 , !
n k

k n k P prime


    
 

 (Sun’s Conjecture 3.12-ii [SC3.12-ii]) 

 

7. Remark 3.19 (which is an implication of the Conjecture 3.19 not cited in this article). There 

is an infinite number of triads of primes      1 , 1 , 1q rq r P q P r      
 

 (Sun’s Remark on 

Sun’s Conjecture 3.19 [SRC3.19]) 

 

https://en.wikipedia.org/wiki/Sun_Zhiwei
http://maths.nju.edu.cn/~zwsun/
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8. Conjecture 3.21-i (6 Mar. 2014). For any integer 5n   there will always exist at least one triad 

     0 , 2 1 ,
k n

k n k prime P k n prime


       
 

 (Sun’s Conjecture 3.21-i [SC3.21-i]) 

 

9. Conjecture 3.23-i (1 Feb. 2014). For any integer 13n   there is at least one triad of primes 

     1 , 2 , 1n qq n q P q
     
 

 (the Sun’s Conjecture 3.23-i [SC3.23-i]) 

 

*** 
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Part C.  

The ‘i-primeths’ ( *i ) definition 

 

 

The definition of “i-primeths”, which is slightly different from Fernandez’s definition
[8]

 

I have chosen to use the term “primeth(s)” (Fernandez N. introduced it for the first time in 1999, in 

his “The Exploring Primeness Project” 
[8]

) because this is the shortest and also the most suggestive of all the 

alternatives [49] used until now (as the “th” suffix includes by abbreviation the idea of “index of primes”). 

 Primeths were originally defined by Fernandez N. as a subset of primes with (also) prime indexes 
[8]

 

(the numbering of the elements of * starts with 1 2P  ). As primes are in fact those positive integers with 

a prime index 
[8]

 (the “prime index” being non-tautological defined as a positive integer >1 that has only 2 

distinct divisors: 1 and itself), all the standard primes may be considered primeths with iteration order i=0 

(or shortly: 0-primeths) NOT with i=1 (as Fernandez first considered
[8]

) (as the i=0 marks the genesis of *  

from the ordinary *  and cannot be considered an iteration on * ). This new definition of i-primeths 

( i P containing i
xP

 
elements with 0i   and *x ) has three advantages:  

1. the iteration order i is also the number of (“vertical”) iterations for producing the i-primeths from 

the 0-primeths  0 *P   (as in the Fernandez’s original primeths definition, the standard 

primes were considered 1-primeths not 0-primeths, as if they were produced from  using 1 

vertical iteration, but  doesn’t contain just primes, as *  ); 

a. these iterations numbered by order i are easy to follow when implemented in different 

algorithms using a programming language on a computer 

2. the concept of primes can be generalized as i-primeths that also includes *  as the special case 

of 0-primeths  0 *P  ;  

3. this definition clearly separates *  from the ordinary  using 0 (not 1) as a starting order (i) 

for *   0 P  and considering  as a 
 1

P


 (a “bulky” 
 1 P

 “contaminated” with composite 

positive integers that can be considered “(-1)-primeths” convertible to 0-primeths by different 

sieves of primes, which are another kind of iterations than those producing i-primeths from 0-

primeths) 

a. 0 P  inevitably “contains” * by its indexes , in the sense that 
0 P contains all the 

generic 0
xP  elements with indexes *x  (an index x  that scrolls all *). The same 

prime may be part of more than one i-primeths subset 
i P , as x  is not necessarily a 

prime. 

b. This slightly different definition of the i-primeths (
i P  containing generic 

i
xP  elements 

with 0i   and *x , as explained previously) is NOT a new “anomaly” and it was 

also practiced by Smarandache F. as cited by Murthy A.[50]
 
and also by Seleacu V. and 

Bălăcenoiu I.
 
[51] 

 

The elements of the group 
i P  

        0 0 0 0 0
1 1 2 2 3 32 3 , 5 ,... ,..., x xP P P P P P P P P        (alias 0-primeths) 

      
1 2

1 1 1 1
1 2 2 33 5 ,... ,...,

xp p x pP P P P P P P P P        (alias 1-primeths [52]) 

      
1 2

2 2 2 2
51 3 25 11 ,... ,...,

P PxPp p x pP P P P P P P P P     , … 

21
1 2... ... ...

, ,..., ,...
P PP x

P P P

i iterations of P i iterations of Pi iterations of P

i i i i
xP P PP P P P

 
  
 
 
  

    , with * {1,2}x    
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Part D. 

Meta-conjecture VBGC  - The extension and generalization of BGC as applied on i-primeths  i P  

 

Meta-conjecture VBGC – main statement:  

1. Defining i-primeths (i-prime-indexed-primes) as: 0

0
x

iterations
of P on P

P P x

 
 


 
 
 

,  1

1
x

iteration
of P on P

P P P x

 
 

  
 
 

, 

  2

2
x

iterations
of P on P

P P P P x

 
 

  
  
 

…    
 0

...

i

i
x

iterations

P P P P P x



 
 
 
 

, with  P x  being the x-th prime in the set of 

standard primes (usually denoted as  P x  or xP  and equivalent to 0
xP  alias “0-primeths”) and the 

generic i
xP  being named the generic set of i-primeths (with” i” being  the  “iterative”/recursive 

order of that i-primeth which measures the number of P-on-P iterations associated with that specific 

i-primeth subset).  

a. I have used the notation 0
xP  and i

xP   instead of the standard notation 

   1 0
xP x P x P   

 AND    
 1

.. ( ) x

i

ii

nested functionsP

P x P P P x P
  

  
, so that to strictly 

measure the number of P-on-P recursive steps (iterations) to produce a generic set 
iP  

from 
0P  AND ALSO to not generate the confusion between     .. ( )i

i nested functionsP

P x P P P x  

and the exponential product        ...
i

i times

P x P x P x P x     . 

b. It is also true that producing the elements of the (prime) function  P x  from the natural 

set * is also like selecting just the naturals with prime indexes from * , so that 
0P  can 

be theoretically identified with * and  the set of primes *  can be identified with 
1P : 

however, * is not a set of primes and that is why I have avoided to note *  with 
0P  

but to 
 1

P


 (like the result of an inverse iteration)  AND ALSO decided to count the sets 

of i-primeths starting from 0 (so that  0
xP P x ) in the purpose to strictly measure the 

number of P-on-P iterations starting from 1, so that  1

1iteration
xP P P x

 
  

 
. 

 

2. The inductive variant of (the meta-conjecture) VBGC (iVBGC) states that:  

“Any/every even positive integer  ,2 2 fx a bm   AND (also)  2 ,2 2 fx a bm   , with 

 

 

   

     

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)( 2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a ab a b a

a b a b a b

for a b

fx a b for a b AND a

for a b AND a OR b

   

    

      

  



  


     

 AND 
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 

 

   

     

2

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)(

2

2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a b a b a

a b a b a

a

b

for a b

fx a b for a b AND a

for a b AND a OR b

   

    

      

  



  


     

, can be written 

as the sum of at least one pair of DISTINCT odd i-primeths x y
a bP P , with the positive 

integers pair  , , 0a b witha b   defining the (recursive) orders of each of those i-primeths 

pair AND the pair of distinct positive integers  , , 1x y with x y   defining the indexes of 

each of those i-primeths pair.”.  

a. A 2
nd

 inverse formulation of iVBGC based on the previously defined  ,fx a b  and  

 2 ,fx a b  : “Any/every positive integer  ,fx a bm   AND (also)  2 ,fx a bm  ,  can 

be written as the arithmetic average/mean of at least one pair of DISTINCT odd i-

primeths x y
a bP P ” 

 

3. Alternative formulation for the inductive variant of (the meta-conjecture) VBGC 

(iVBGC), using the standard notation (1-prime)    1 0
xP x P x P   

, (2-

prime)     2 1
xP x P P x P   

 and (a-prime and any analogous b-prime and generic i-

prime [equivalent to a (i-1)-primeth])        1
... x

aaP x P P P x P
  

 
:  

“Any even positive integer  var ,2 2 fx a bm    AND even  var2 ,2 2 fx a bm   , with 

 

 

   

     

var

( )

[ ( 1)/( 1)]

( ) ( 4

( )

)

1

2 1

, 2 1

2 0 0

a b a b

a b a b a

a b b a b

a

a

for a b

fx a b for a b and a

for a b AND a OR b

  

     

   



 

  



  


     

 AND 

 

 

   

     

var2

( )

[ ( 1)/( 1)] 2( 1

( ) ( 4)

)

2 1

, 2 1

2 0 0

a b a b

a b a b a

a b a b b

a

a

for a b

fx a b for a b and a

for a b AND a OR b

  

     

     



  



  


     

, can 

be written as the sum of at least one pair of DISTINCT odd i-primes    a bP x P y , 

with the positive integers pair  , , 1a b witha b   defining the (recursive) orders of 

each of those i-primes pair    ,a bP x P y 
 

  AND the distinct positive integers pair 

 , , 1x y with x y   defining the indexes of each of those i-primes pair”.  

 

4. A secondary inductive (form of) (the meta-conjecture) VBGC (siVBGC[a,0]) states that:  

“Any/every even positive integer  22 intm fy a    , with   4afy a e , can be written as 



14 

the sum of at least one pair of DISTINCT odd i-primeths 0
x y

aP P , with the positive 

integers pair  ,0 , 0a witha   defining the (recursive) orders of the i-primeths pair 

 0,x y
aP P  AND the distinct positive integers pair  , , 1x y with x y   defining the indexes of 

each of those i-primeths.”.  

a. A 2
nd

 inverse formulation of siVBGC[a,0] based on the previously defined  fy a : 

“Any/every positive integer  int ,0m fy a     can be written as the arithmetic 

average/mean of at least one pair of DISTINCT odd i-primeths 0
x y

aP P ” 

5. The analytical variant of (the meta-conjecture) VBGC (aVBGC) (from which the inductive 

VBGC can be intuitively inducted) states that: “For any pair of finite positive integers 

 , , 0a b witha b   defining the (recursive) orders of an a-primeth  aP  and a b-primeth 

respectively  bP ,  there will always exist a single finite positive integer  , ,
3

a b b a
n n   so 

that, for any positive integer 
,a b

m n  it will always exist at least one pair of  finite distinct 

positive integers  , , 1x y with x y   (indexes of distinct odd i-primeths) so that: 

2x y
a bP P m   AND a b

x yP P
 
AND the function      , ,

, , 3
a b b a

f a b f b a n n     has 

a finite positive integer value for any combination of finite positive integers  ,a b , without 

any catastrophic-like infinities for any  ,a b  pair of finites positive integers.  

a. Important note. I have chosen the additional conditions    0 1a b x y       

a b
x yP P so that to lower the nof. lines per each GM and to simplify the algorithm 

of searching   ,x y
a bP P  pairs, as the set 

aP  is much less dense that the set 
bP  for 

a b  AND the sieve using 
aP  (which searches an  

aP  starting from 2 3m to ) finds 

a  ,a b
x yP P  pair much more quicker than a sieve using 

bP  (if a b ). 

b.    0,0n f 0,0 3  

c.      1,0 0,10,1f n n   f 1,0 3 (  1,0f is smaller than  2,0 2564f  ) 

d.      2,0 0,20,2f n n   f 2,0 2 564  (  2,0f is smaller than  1,1f ) 

e.    1,1n f 1,1 40 306 (  1,1f is larger than  2,0 2564f  , as also predicted by 

   1,1 2,0fx fx ) 
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f.      3,0 0,30,3f n n   f 3,0 125 771  (  3,0f  is obviously larger than 

 2,0 2564f  , as also predicted by    3,0 2,0fx fx ;  3,0f is smaller than 

 2,1 1 765 126f  , as also predicted by    3,0 2,1fx fx ;  3,0f  is ALSO larger 

than  1,1 =40 306f , as also predicted by    3,0 1,1fx fx ) 

g.      2,1 1,21,2f n n   f 2,1 1 765 126 (  2,1f  is larger than  3,0 125 771f  , 

as also predicted by    2,1 3,0fx fx ;  2,1f is obviously smaller than 

 2,2 161 352 166f  , as also predicted by    2,1 2,2fx fx ) 

h.      4,0 0,40,4f n n   f 4,0 6 204 163  (  4,0f  is obviously larger than 

 3,0 125 771f  , as also predicted by    4,0 3,0fx fx ;  4,0f  is smaller than 

 2,2 161 352 166f  , which is also predicted by    4,0 2,2fx fx ) 

i.      3,1 1,31,3f n n   f 3,1 32 050 472(?) (verifying in progress;  3,1f  is 

obviously larger than  2,1 1 765 126f  , as also predicted by    3,1 2,1fx fx ; 

 3,1f  is larger than  4,0 6 204 163f   as also predicted by    3,1 4,0fx fx ; 

   3,1 2,2fx fx  probably erroneously predicts that  3,1f  is larger than 

 2,2 161 352 166f  , BUT this prediction is contradicted by computing until 

present and also by the “step 4 rule” (see next); the function fx  estimates  3,1f  at 

  133,1 7.04 10fx    which exceeds the limit of  computations of our software 

102 10m  : however,   133,1 7.04 10fx    surely overestimates  3,1f  which has a 

relatively high probability to be under 102 10m  , as also predicted by the “step 4 

rule” [see next]) 

j.    2,2n f 2, 2 161 352 166  (  2,2f  is obviously larger than  2,1 1 765 126f  , 

as also predicted by    2,2 2,1fx fx ,  2,2f  is also larger than 

 4,0 6 204 163f  , as also predicted by    2,2 4,0fx fx ;  2,2f  is smaller than 

 5,0 260 535 479f  , which is also predicted by    2,2 5,0fx fx ) 

k.      5,0 0,50,5f n n   f 5,0 260 535 479  (coincidentally or not,  5,0f  is a 

prime/0-primeth;  5,0f is obviously larger than  4,0 6 204 163f  , as also 

predicted by    5,0 4,0fx fx ; however,   115,0 5.5 10fx    overestimates  5,0f  

over 
102 10m  , which may also be the case of   133,1 7.04 10fx    overestimating 

 3,1f ) 

l.      4,1 1,41,4f n n   f 4,1 ?  (computing in progress; expected to be smaller 

than  3,2f  according to the prediction    4,1 3,2fx fx ; obviously expected to be 
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larger than  3,1f  as also according to the prediction    4,1 3,1fx fx ; ALSO 

expected to be larger than  3,3f  as according to the prediction    4,1 3,3fx fx ; 

however,   204,1 1.5 10fx    surely overestimates  4,1f ) 

m.      3,2 2,32,3f n n   f 3, 2 ? (computing in progress;   243,2 2.4 10fx    

probably overestimates  3,2f ) 

n.    3,3n f 3, 3 ?  (computing in progress;   133,3 3.5 10fx    probably 

overestimates  3,3f  over 102 10m  ) 

o.  

p. …[working progress on other higher indexes function values] 

q. The 2D matrix/array of the finite values  ,f a b  can be organized in a both square 

or triangular (Pascal-like) table and was proposed to OEIS as the sequence A281929, 

BUT rejected in the meantime (see the review-history
[URL2, URL3, URL4, URL5, URL6

 for the 

whole discussion, ALSO in downloadable pdf format containing the email-history 

and my final conclusions), with the main argument that OEIS doesn’t accept 

conjectured meta-sequences and that it wasn’t in an “appropriate” form (although I 

have strictly respected all the given indications), although OEIS doesn’t mention this 

(main) exclusion-criterion (applied to VBGC f[a,b] meta-sequence) explicitly in their 

publishing policy
[URL2, URL3]

; my meta-sequence proposed as A281929 is also related 

to other integer sequences: A000040, A006450, A038580, A049090, A049203, 

A049202, A057849, A057850, A057851, A057847, A058332, A093047, A002372, 

A002375)  (A281929 is now occupied with another sequence that was approved in the 

meantime by OEIS) 

r. The conjectured sequence of all even integers that cannot be expressed as the sum of 

two distinct 2-primeth and 0-primeth 2 0
x yP P  was also submitted to OEIS as 

A282251 (review completed and approved; see also review history, which is also 

available in downloadable/printable pdf format at this URL) 

s. The wiki user page of Andrei-Lucian Drăgoi on OEIS can be found at:  URL1, 

URL2 (I don’t have the permission to edit those pages, as I don’t belong yet to the 

official approved Wiki Users List). The list of all sequences submitted by Andrei-

Lucian Drăgoi can be found at this URL. 

t. Interestingly,  ,f a b  applied on  0,5a  and  0,5b  has its values in the set 

         

       ,

  
 
  

3 , 2564 , 40306 , 125 771 , 1 765 126 ,
F =

6 204 163 , 32 050 472 161 352 166 , 260 535 479
 which has an 

exponential (relatively) compact pattern such as: 

                  , ,


FE 1.1 , 7.8 , 10.6 , 11.7 , 14.4 , 15.6 , 17.3 18.9 19.4 , with a 

relatively constant geometric progression (of about 1.2 0.15 ) between its last 7 

elements so that 

       

     
 

19.4 / 18.9 18.9 / 17.3 17.3 / 15.6 15.6 / 14.4

14.4 / 11.7 11.7 / 10.6 10.6/ 7.8

      

     

    
  
  
 

1.2 ± 0.15 . 

https://oeis.org/A281929
https://oeis.org/history?seq=A281929&start=50
https://oeis.org/history?seq=A281929&start=40
https://oeis.org/history?seq=A281929&start=30
https://oeis.org/history?seq=A281929&start=20
https://oeis.org/history?seq=A281929&start=10
https://oeis.org/history?seq=A281929
http://dragoii.com/VBGC_A281929_OEIS_rejection_history.pdf
https://oeis.org/wiki/OEIS_FAQ#Q:_How_long_can_I_expect_to_wait_before_my_submission_is_accepted_or_rejected.3F
https://oeis.org/wiki/OEIS_FAQ
https://oeis.org/wiki/OEIS_Help_Page
https://oeis.org/A000040
https://oeis.org/A006450
https://oeis.org/A038580
https://oeis.org/A049090
https://oeis.org/A049203
https://oeis.org/A049202
https://oeis.org/A057849
https://oeis.org/A057850
https://oeis.org/A057851
https://oeis.org/A057847
https://oeis.org/A058332
https://oeis.org/A093047
https://oeis.org/A002372
https://oeis.org/A002375
https://oeis.org/A281929
https://oeis.org/A282251
https://oeis.org/draft/A282251
https://oeis.org/history?seq=A282251
http://dragoii.com/VBGC_A282251_OEIS_approval_history.pdf
https://oeis.org/wiki/User:Andrei-Lucian_Dragoi
https://oeis.org/wiki/User/Andrei-Lucian_Dragoi
https://oeis.org/wiki/OeisWiki:Wikiuser
https://oeis.org/draft?user=Andrei-Lucian%20Dragoi
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The single exception of this rule is the gap between the exponents 1.1  and 7.8 .  

See the next figures. 

  

u. 
         

       ,

  
 
  

3 , 2 564 , 40 306 , 125 771 , 1 765 126 ,
F =

6 204 163 , 32 050 472 161 352 166 , 260 535 479
 has ALSO a 

correspondent matrix in which a  is a column index and b  is a line index 

 

           

           

           

         

0,0 1,0 0,1 2,0 0,2 3,0 0,3 4,0 0,4 5,0 0,5

0,1 1,0 1,1 2,1 1,2 3,1 1,3 4,1 1,4 5,1 1,5

0,2 2,0 1,2 2,1 2,2 3,2 2,3 4,2 2,4 5,2 2,5

0,3 3,0 1,3 3,1 2,3 3,2 3,3 4,3 3,4 5,3 3
,f a b

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n n n n n
M

n n n n n n n n n n n

    

    

    


     

           

           

           

           

         

,5

0,4 4,0 1,4 4,1 2,4 4,2 3,4 4,3 4,4 5,4 4,5

5,50,5 5,0 1,5 5,1 2,5 5,2 3,5 5,3 4,5 5,4

? ?

? ?

n n n n n n n n n n n

n n n n n n n n n n n

 
 
 
 
 
 
 
 
 

    
 
 

      



3 3 2564 125 771 6 204 163 260 535 479

3 40 306 1 765 126 32 050 472

2564 1 765 126 161 352 166  

           

           

           

?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

 
 
 
 
 
 
 
 
  

125 771 32 050 472

6 204 163

260 535 479

 and a matrix of exponents in which a  is also a column index and b  is also a line 

index 

 

           

           

           

         

0,0 1,0 0,1 2,0 0,2 3,0 0,3 4,0 0,4 5,0 0,5

0,1 1,0 1,1 2,1 1,2 3,1 1,3 4,1 1,4 5,1 1,5

0,2 2,0 1,2 2,1 2,2 3,2 2,3 4,2 2,4 5,2 2,5

0,3 3,0 1,3 3,1 2,3 3,2 3,3 4,3 3,4 5,3
,f a b

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n n n n n
ME LN

n n n n n n n n n n

    

    

    


     

           

           

3,5

0,4 4,0 1,4 4,1 2,4 4,2 3,4 4,3 4,4 5,4 4,5

5,50,5 5,0 1,5 5,1 2,5 5,2 3,5 5,3 4,5 5,4

n

n n n n n n n n n n n

n n n n n n n n n n n

 
 
 
 
 
 
 
 
 

    
 
 

      

, 



18 

 

           

           

           

           

           

           

,

? ?

? ? ?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

f a b
ME



 
 
 
 

  
 
 
 
  

1.1 1.1 7.85 11.74 15.64 19.38

1.1 10.6 14.38 17.28

7.85 14.38 18.9

11.74 17.28

15.64

19.38

.  
 ,f a b

ME  can be 

graphed as a surface (see the next figure). 

 

v. The previous matrices generate half-dome-like graphs, apparently with no closed 

“depression” regions, as all elements tend to become greater when: moving on the 

lines from left to right, moving on the columns from up to down, moving on the 

diagonals, from sides to the center. The exponents from each column of 
 ,f a b

ME  

tend to grow linearly from up to down (but also on diagonals, from left to center-

right and vice versa): see the next figure. 
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w. The first line of  
 ,f a b

ME  (which is identical to its first column), has sufficiently 

many terms to create a function that reasonably approximates the elements on this 

first line/column, such as:    4fey a a  0 4 8 12 16 20 , with 

  6( ) 4fey a afy a e e


     
6

1 54.6 2981 162754.8 8.8×10 485×10 , which is 

very close to the first of 
 ,f a b

ME               1.1 1.1 7.85 11.74 15.64 19.38  

and the first line of 

 ,f a b
M              3 3 2564 125 771 6 204 163 260 535 479  respectively.  

i.  6fy  predicts a value for     106,0 6 2.65 10f fy    which is beyond the 

verification-capabilities of our current software. We have ALSO verified this 

hypothesis with our software AND confirmed that  6,0f  is larger than the 

limit 102 10m  . The exception of VBGC(6,0) smaller-and-closest to 102 10m   is 

9 997 202 434 = 2×4 998 601 217  

ii.  7fy  predicts a value for     127,0 7 1.45 10f fy    which is far beyond 

the verification capabilities of our current software. 

iii. On the 2nd line/column of 
 ,f a b

ME               1.1 10.6 14.38 ? ? ? , the 

elements may also grow in a arithmetical progression with an (exponential)  

step 4s


  (starting from  1,1 10.6Ef   to  2,1 14.38 10.6Ef s   ), with 

the exception of a first gap between  0,1 1.1Ef   and  1,1 10.6Ef  , which is 

correspondent to the gap between  1,0 1.1Ef   and  2,0 7.85Ef  . As 
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observed, the step 4s   is conserved on all lines, columns and secondary 

diagonals, so that the main diagonal probably has a step of 2 8s  . 

1. The 5
th

 unknown element    4,1Ef  ?  from the 2
nd

 line may have a 

value of    
?

4,1 2,1 2 14.38 8 22.38Ef ef s        as predicted by the 

same step 4s  . An  
?

,1 18.38Ef r   corresponds to a hypothetical 

 
?

(4,1) 22.38 94,1 5 242 162 809 5.2 10
Ef

f e e     
 

 which is ALSO 

under the limit 102 10m   and may also be (relatively) verified with our 

software. However, as  
?

94,1 5.2 10f    is probably very close to the limit 

102 10m  , the conjecture VBGC[4,1] may not be testified by a 

“sufficiently” large gap) 

2. Other values of  ,f a b  which are predicted to be under the limit 
102 10m   

are:    
?

1,4 4,1f f   
9

5.2×10 ,      
?

3,2 2,3f f to   
9

5.2 8.8 ×10 . 

See the next table. 
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Table D-1. The verified values of  , , 0f a b witha b   (written as exact positive integers: the shaded cells of 

the table) and the estimated maximum values of  ,f a b  using the step 4s   “rule” (written in exponential 

format)  

 ,f a b  0 1 2 3 4 5 6 7 

0 3 3 2,564 125,771 6,204,163 260,535,479 1.4E+10 7.8E+11 

1 3 40,306 1,765,126 32,050,472 5.2E+09 2.9E+11 1.6E+13 8.5E+14 

2 2,564 1,765,126 161,352,166 5.2E+09 2.9E+11 1.6E+13 8.5E+14 4.7E+16 

3 125,771 32,050,472 8.8E+09 2.9E+11 1.6E+13 8.5E+14 4.7E+16 2.5E+18 

4 6,204,163 5.2E+09 4.8E+11 1.6E+13 8.5E+14 4.7E+16 2.5E+18 1.4E+20 

5 260,535,479 2.9E+11 2.6E+13 8.5E+14 4.7E+16 2.5E+18 1.4E+20 7.6E+21 

6 1.4E+10 1.6E+13 1.4E+15 4.7E+16 2.5E+18 1.4E+20 7.6E+21 4.1E+23 

7 7.8E+11 8.5E+14 7.8E+16 2.5E+18 1.4E+20 7.6E+21 4.1E+23 2.3E+25 

 

x.   ( ) 4fey a afy a e e  predicts so accurately the first line of 
 ,f a b

M , so that I also 

propose a secondary inductive (form of) VBGC (siVBGC[a,0]) which states that:  

“Any/every even positive integer  2 2 intm fy a     , with   4afy a e , can be 

written as the sum of at least one pair of DISTINCT odd i-primeths 0
x y

aP P , with 

the positive integers pair  ,0 , 0a witha   defining the (recursive) orders of  the i-

primeths pair  0,x y
aP P  AND the distinct positive integers pair  

 , , 1x y with x y   defining the indexes of each of those i-primeths.”.  

i. The set of conjectures siVBGC(a,0) can be used to verify much more rapidly 

ntBGC, by searching using ONLY the subsets 
aP  from the x

aP  which is 

closest to  42 2 int am e   down to 2
aP  and testing the primality of 

 2 x
am P  

y. Interestingly, the differences between consecutive elements on any line or column of 

 

           

           

           

           

           

           

,

? ?

? ? ?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

f a b
ME



 
 
 
 

  
 
 
 
  

1.1 1.1 7.85 11.74 15.64 19.38

1.1 10.6 14.38 17.28

7.85 14.38 18.9

11.74 17.28

15.64

19.38

 have a 1
st
 or a 2

nd
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value that is slightly above 4s  , with all the other values (the 2
nd

 /3
rd

, the 4
th

 etc) being 

smaller or approximately equal to 4s  : see the next tables and graphs. 

 

Table D-2A. The differences between consecutive (known) elements from the lines of  

 ,f a b
ME  ( a  is the index of a column of 

 ,f a b
ME  AND b  is the index of a line of 

 ,f a b
ME ) 

 

 

1,

,

f a b

f a b

 
 

 

 

1,

0,

f b

f b


 

 

 

2,

1,

f b

f b


 

 

 

3,

2,

f b

f b


 

 

 

4,

3,

f b

f b


 

 

 

5,

4,

f b

f b


 

0b   0 6.75 3.89 3.9 3.74 

1b   9.51 3.78 2.90 <4; <3; 

 <2? 

<4; <3; 

 <2? 

2b   6.53 4.52 2.38 <4; <3; 

 <2? 

<4?; <3?;  

<2?; <1? 

3b   5.54 <5?;  

 <4? 

<5?;  

 <4? 

<4?; <3?;  

<2?; <1? 

 

4b   <5?;  

 <4? 

<5?;  

 <4? 

<4?; <3?;  

<2?; <1? 

  

5b   <5?;  

 <4? 

<4?; <3?;  

<2?; <1? 
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Table D-2B. The differences between consecutive (known) elements from the 

columns of  
 ,f a b

ME  ( a  is the index of a column of 
 ,f a b

ME  AND b  is the index of 

a line of 
 ,f a b

ME ) 

 

 

, 1

,

f a b

f a b

 
 

0a   1a   2a   3a   4a   5a   

   ,1 ,0f a f a  0 9.51 6.53 5.54 <6?;  

<5?;  <4? 

<6?;  

<5?;  <4? 

   ,2 ,1f a f a  6.75 3.78 4.52 <6;  

<5?;  <4? 

<6?;  

<5?;  <4? 

<6?;  

<5?;  <4? 

   ,3 ,2f a f a  3.89 2.90 <5;  

<4?;  <3? 

<6;  

<5?;  <4? 

<6?;  

<5?;  <4? 

<6?;  

<5?;  <4? 

   ,4 ,3f a f a  3.9 <4; <3; 

 <2? 

<5;  

<4?;  <3? 

<6;  

<5?;  <4? 

<6?;  

<5?;  <4? 

 

   ,5 ,4f a f a  3.74 <4; <3;  

<2? 

<4; <3; 

<2? 

<6;  

<5?;  <4? 
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z. Furthermore, this symmetrical function (with the property    , ,fx a b fx b a ) 

 

 

   

     

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)( 2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a ab a b a

a b a b a b

for a b

fx a b for a b AND a

for a b AND a OR b

   

    

      

  



  


     

 

generates positive integer values that are relatively close BUT strictly larger than the 

values of  ,f a b  for  0,5a  and  0,5b , with also a half-dome-like graph, so 

that the author proposes a variant of inductive VBGC (iVBGC) stating that:  

“Every even positive integer  ,2 2 fx a bm   , with 

 

 

   

     

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)( 2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a ab a b a

a b a b a b

for a b

fx a b for a b AND a

for a b AND a OR b

   

    

      

  



  


     

,  can 

be written as the sum of at least one pair of distinct i-primeths x y
a bP P , with the 

positive integers pair  , , 0a b witha b   defining the (recursive) orders of each of 

those i-primeths AND the pair of distinct positive integers  , , 1x y with x y   

defining the indexes of each of those i-primeths.” 

aa. The function 

 

 

   

     

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)( 2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a ab a b a

a b a b a b

for a b

fx a b for a b AND a

for a b AND a OR b

   

    

      

  



  


     

 has its 

values in the matrix 

 

           

           

           

           

           

           

,

... ...

... ... ...

... ... ... ...

... ... ... ... ...

... ... ... ... ...

fx a b
M



 
 
 
 
 
 
 
 
 
 
 
 

5 8 11

5 8 13

8 8

5 13

8

11

4 128 4 096 5.2×10 2.7 ×10 5.5×10

128 5.2×10 5.4×10 7 ×10

4 096 5.4×10 7.6×10

5.2×10 7 ×10

2.7 ×10

5.5×10

 in which each element is strictly larger than its correspondent element from 
 ,f a b

M   

 

           

           

           

           

           

           

,

? ?

? ? ?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

f a b
M

 
 
 
 

  
 
 
 
  

3 3 2564 125 771 6 204 163 260 535 479

3 40 306 1 765 126 32 050 272

2564 1 765 126 161 352 166

125 771 32 050 272

6 204 163

260 535 479
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bb. Additionally, the function 

 

 

   

     

2

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)(

2

2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a b a b a

a b a b a

a

b

for a b

fx a b for a b AND a

for a b AND a OR b

   

    

      

  



  


     

 has 

strictly larger but even more closer values to the values of  
 ,f a b

M , BUT predicts 

distorted inequalities between some terms (when compared to the inequalities 

between some elements of 
 ,f a b

M ). 

 

           

           

           

           

           

           

2 ,

... ...

... ... ...

... ... ... ...

... ... ... ... ...

... ... ... ... ...

fx a b
M



 
 
 
 
 
 
 
 
 
 
 
 

5 8 11

8 13

8

5 13

8

11

5

8

4 128 4 096 5.2×10 2.7 ×10 5.5×10

128 5.4×10 7 ×10

4 096 5.4×10

5.2×10 7 ×10

2.7 ×10

5.5×10

2.6×10

1.8×10

 

VBGC – secondary statements (also part of VBGC): 

1. for    , 1,0a b   AND 28m  ,  it will always exist at least one pair of  finite distinct positive 

integers  , , 1x y with x y   AND 1 0 2x yP P m   AND x (or y) in the double-open interval 

    ln 2 ,2 / ln 2m m m . 

a. Important note: VBGC is much “stronger” and general than BGC and proposes a much 

more rapid and efficient (at-least-one-GIP)-sieve than the GKRC. The GM of GIPs generated 

by VBGC has a smaller nof. lines than the GM of GIPs generated by GKRC. VBGC is a 

useful optimized sieve to push forward the limit 4∙10
18

 to which BGC was verified to hold 

[53]. When verifying BGC for a very large number N , one can use the VBGC(a,b) with a 

minimal positive value for the difference  ,N f a b   . 

2. Important note: VBGC essentially (and alternatively) states that there is an infinite number of 

conjectures indexable as VBGC(a,b), all stronger than BGC, EACH of if associated with a pair 

 , , 0a b witha b   AND a finite positive integer  ,
,

a b
n f a b . 

a. VBGC(0,0) is in fact ntBGC. 

3. The different special cases of VBGC can be named after the pair (a,b) [VBGC(a,b)] AND: 

a. VBGC(0,0) is in fact ntBGC (defined in the Part B of this article) 

b. VBGC(1,0)
[1]

 is a GLC stronger and more elegant than ntBGC, as it acts on a limit 

 2 1,0 6f   identical to ntBGC inferior limit (which is  2 0,0 6f  ) BUT the associated  

 1,0G m  (which counts the number of pairs of possible GIPs for any even integer 3m  ) has 

significantly smaller values than the function  0,0G m of ntBGC [which is VBGC(0,0)] 
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c. VBGC(2,0) is obviously a stronger GLC than VBGC(1,0) is AND ALSO  2,0G m  has 

smaller non-0 values than  1,1G m  for   2,0 ,m f   

d. VBGC(1,1) (anticipated by my discovery of VBGC(1,0) from 2007 and officially 

registered in 2012 at OSIM
 [1]

) is an obviously stronger GLC than VBGC(1,0 ) and is 

equivalent to Bayless-Klyve-Oliveira e Silva Goldbach-like Conjecture (BKOS-GLC) 

published in Oct. 2013 [54] alias “Conjecture 9.1” (rephrased) (tested by these authors up to 
92 10m  ): all even integers   2 2 40306 2 1,1m f      can be expressed as the sum of at 

least one pair of prime-indexed primes [PIPs] (1-primeths 1
xP  and 1

yP  ). This article of 

Bayless. Klyve and Oliveira (2012, 2013) was based on a previous article by Barnett and 

Broughan (published in 2009)
 
[55], but BKOS-GLC was an additional result to this 2009 

article. Mr. George Anescu (a friend and collaborator) have also helped me to retest 

VBGC(1,1) up to 102 10m 
,
 but also helped me verifying all VBGC(a,b) for all pairs 

            , 1,0 , 1,1 , 2,0 , 2,1 , 2,2a b 
[6]

. 

4. When ,a b and m   ,   ,
, 1 1

a b
G f a b


   and the “comets” of VBGC(a,b) tend to 

narrow progressively for each pair of positive integers  2 2 2 1 2 1, ,a b witha a and b b  . 

5. All VBGC(a>0,b≥0) can be used to produce more rapid algorithms for the experimental verification 

of ntBGC for very large positive integers 

a. For VBGC(1,0), the average number of attempts (ANA) to find the first pair (x,y) for each 

integer m, in the interval [3,2m] tends asymptotically to   ln  = ln(n)/2n  when searching 

just the 1-primeths subset in descending manner, starting from the largest 1-primeth ≤2m-1 

and verifying if  12 xm P  is a 0- primeth) 

Conclusions on VBGC: 

1. VBGC(a,b) is essentially an extension and generalization of BGC as applied on (the extended and 

generalized concept of) all  subsets of i-primeths. 

2. VBGC can be considered a "meta-conjecture", as it states an infinite number of BGC-like conjectures 

(stronger than BGC) which are generically named as VBGC(a,b), with ,a b  and with 

VBGC(0,0) being equivalent to the non-trivial variant of BGC (ntBGC). 

a. VBGC has an inductive variant and an analytical variant, which both apply to any super-

prime family (of any iteration order i, generically named "i-primeths" by the author of 

VBGC) 

3. VBGC (especially siVBGC) can be used to optimize (by speeding up) the algorithms used to verify 

BGC on very large numbers. BGC was tested until present up to 182 4 10m   [56]. A first 

experiment would be to re-test BGC up to that limit 182 4 10m    alternatively using siVBGC and to 

compare the global times of computing. 

4. VBGC distinguishes as a very important (unified) conjecture of primes and a very special self-similar 

property of the primes as the rarefied 
i P  is self-similar to the more dense 

 1i
P


 in respect to the 

ntBGC. In other words, each of the i-primeths sets behaves as a “summary of” the 0-primeths set in 

                                                
[6]  The code-source (written by Mr. George Anescu in Microsoft Studio 2015 - Visual C++ language/environment using parallel 

processing) that was used to test BKOS-GLC up to n=1010 (using a laptop PC with an IntelR CoreTM processor i7-3630 QM CPU 

at 2.4 GHz with 4 processors (8 hyper-threads), can be found at this URL (the old variant can be found at this URL-old) 

http://stackoverflow.com/questions/32003203/install-visual-studio-2015-community-edition-on-windows-7
https://drive.google.com/open?id=0Bws5l5MW9z0pY0lpbWJRZmNaMGc
http://dragoii.com/test_primes.rar
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respect to the ntBGC: this is a (quasi)fractal-like BGC-related behavior of the infinite number of the 

i-primeths sets. Essentially, VBGC conjectures that ntBGC is a common property of all the i-

primeths sets (for any positive integer order i), differing just by the inferior limit of each 

VBGC(a,b) defined by the function  ,f a b ). I have called VBGC as “vertical” motivated by 

the fact that VBGC is a “vertical” (recursive) generalization of the ntBGC on the infinite 

super-set of i-primeths sets. 

a. The set of  values of  ,f a b  is a set of critical density thresholds/points of each i-primeths 

set in respect to the set VBGC(a,b) conjectures.  

b. Batchko R.G. has also reported other quasi-fractal/quasi-self-similar structure in the 

distribution of the prime-indexed primes [57]: Batchko also used a similar general definition 

for primes with (recursive) prime indexes (PIPs), briefly named in my article as “i-primeths”. 

c. Carlo Cattani and Armando Ciancio also reported a quasi-fractal distribution of primes 

(including i-primeths) similar to a Cantor set (Cantor dust) by mapping primes and i-primeths 

into a binary image which visualizes the distribution of i-primeths [58]. VBGC may be an 

intrinsic property of all sets of i-primeths that can also explain OR be explained by this 

Cantor dust-like distribution of these i-primeths. 

5. All sets 
 0i

P


 are subsets of 0 *P   and come in an infinite number: this family of subsets is 

governed/defined by the Prime number theorem. There is a potential infinite number of 

rules/criterions/theorems to extract an infinite number of subsets from 0P  (grouped in a family of 

subsets defined by that specific rule/criterion/theorem), like the Dirichlet's theorem on arithmetic 

progressions for example
[URL2]

 OR other prime formulas
[URL2, URL3]

 that generate infinite subsets of 

primes. It would be an interesting research subfield of BGC to test what are those families (of subsets 

of primes) that respect ntBGC and generate functions with finite values similar to 

  , ,
,

a b b a
f a b n n  . This potential future research subfield may also help in optimizing the 

algorithms used in the present for ntBGC verification on large numbers. However, one special 

property of the family 
 0i

P


  is that each subset of this family is a commutative monoid[
URL2]

.  

6. It is an interesting fact per se that all 
 0i

P


 subsets have very low densities (when compared to 
0 P and * )  BUT NOT sufficiently low densities to NOT generate a function  ,f a b  with finite 

values for any pair of finites  ,a b . 

 

Future challenges for VBGC (to be also approached in the next versions of this article): 

1. To calculate the values of the function   , ,
,

a b b a
f a b n n   and test/verify VBGC(a,b) for large 

positive integers pairs  2, 2a b   (a,b), but also for the pairs  ,a b with large  a b  

differences. 

 

Potential applications of VBGC (to also be created in the next versions of this article): 

1. VBGC can offer a potential infinite set of Goldbach Comets
[URL2, URL3a, URL3b]

,  one for each 

conjecture VBGC(a,b) applied on each order of i-primeths. The number of possible 

decompositions of any even integer 2m>2 in two primes/0-primeths is the string A045917
[URL2]

 

in OEIS. 

2. VBGC can be used to optimize the algorithms of finding/verifying very large primes (i-

primeths)/potential primes (i-primeths) 

https://en.wikipedia.org/wiki/Cantor_set
https://en.wikipedia.org/wiki/Prime_number_theorem
https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions
http://mathworld.wolfram.com/DirichletsTheorem.html
https://en.wikipedia.org/wiki/Formula_for_primes
http://mathworld.wolfram.com/PrimeFormulas.html
https://en.wikipedia.org/wiki/Generating_primes
https://en.wikipedia.org/wiki/Monoid#Commutative_monoid
https://www.reddit.com/r/math/comments/20sjul/nested_series_within_the_primes/
https://en.wikipedia.org/wiki/Goldbach%27s_comet
https://en.wikipedia.org/wiki/Goldbach's_conjecture#Heuristic_justification
https://oeis.org/A045917
https://oeis.org/A045917/graph
https://oeis.org/A045917
https://oeis.org/A045917/graph
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3. As TGC/TGT is considered a consequence of BGC, VBGC can be used as a model to also 

formulate a Vertical (generalization) of the Ternary Goldbach Conjecture/Theorem (VTGC) as 

an analogous consequence of VBGC (with a corresponding meta-sequence f_VTGC[a,b]) 

4. VBGC can be theoretically used to optimize the algorithms of prime/integer 

factorization
[URL2,URL3]

 (the main tool of cryptography) 

5. VBGC can offer a rule of decomposition of Euclidean
[URL2,URL3,URL4]

/non-Euclidean
[URL2]

 

spaces/volumes with a finite 2N (positive) integer number of dimensions into pair of spaces, 

both with a (positive) i-primeth number of dimensions. According to VBGC, an Euclidian/non-

Euclidean (hyper)space/(hyper)volume with 2N  dimensions 
2N

V  (with N>2) can always be 

decomposed such as: 

 
 

2
,

PP

P P

ba yx
a bx y

N
V k V V k r r with k volume specific constant

 
 
 

 
 
 

   
            

  

 

6. VBGC can be used in M-Theory to simulate decompositions of 2N-branes (with a finite 2N 

[positive] integer number of dimensions) into pair of branes both with a (positive) i-primeth 

number of dimensions: VBGC can be also used to predict possible symmetries/asymmetries in 

crystallography, as based on i-primeths. 

7. This type of vertical generalization (generating a meta-conjecture) may be the start of a new 

research sub-field in which other conjectures may be hypothesized to also have vertical 

generalizations applied on i-primeths. For example, a hypothetical vertical Polignac's 

conjecture (a “minus” version of BGC) may speed up the searching algorithms to find very 

large primes (larger than a given limit m). 

 

 

https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Integer_factorization
http://mathworld.wolfram.com/PrimeFactorization.html
https://en.wikipedia.org/wiki/Prime_factor
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Euclidean_group
https://en.wikipedia.org/wiki/Euclidean_geometry
http://mathworld.wolfram.com/EuclidsPostulates.html
http://mathworld.wolfram.com/EuclideanGeometry.html
https://en.wikipedia.org/wiki/Non-Euclidean_geometry
http://mathworld.wolfram.com/Non-EuclideanGeometry.html
https://en.wikipedia.org/wiki/M-theory
https://en.wikipedia.org/wiki/Crystallography
https://en.wikipedia.org/wiki/Polignac's_conjecture
https://en.wikipedia.org/wiki/Polignac's_conjecture
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Addendum 

 

Method for verifying VBGC. We have used Microsoft Visual C++.  First, we have created (and 

stored on hard-disk) a set of “.bin” files containing all these primes in the double-open interval  101,10 :  

(1) standard primes (alias 0-primeths) (a non-archived “p1_10000000000.bin” bin file of 

~3.55GigaBytes) 

(2) super-primes (alias 1-primeths) (a non-archived “p2_10000000000.bin” file of ~188MegaBytes, 

containing 24,106,415 1-primeths) 

(3) 2-super-primes (2-primeths) (a non-archived “p3_10000000000.bin” file of ~12MegaBytes, 

containing 1,513,371 2-primeths) 

(4) 3-super-primes (3-primeths) (a non-archived “p4_10000000000.bin” file of ~900KiloBytes, 

containing 115,127 3-primeths) 

(5) 4-super-primes (4-primeths) (a non-archived “p5_10000000000.bin” file of ~86KiloBytes, 

containing 10,883 4-primeths) 

(7) 5-super-primes (5-primeths) (a non-archived “p6_10000000000.bin” file of ~11KiloBytes, 

containing 1,323 5-primeths) 

(8) 6-super-primes (6-primeths) (a non-archived “p7_10000000000.bin” file of ~2KiloBytes, 

containing 216 6-primeths) 

(9) 7-super-primes (7-primeths) (a non-archived “p8_10000000000.bin” file of ~1KiloBytes, 

containing 47 7-primeths) 

 

 

For every  ,a b  pair with a b ,  we have verified each  a b
x xP P  from the (less) dense subset of  

aP   superposing the double-open interval  2,2 6m   (starting from that x
aP  which was the closest to 

2 1m  in descending order): we have then verified if  the difference  2 x
am P  is an element in the (more) 

dense set 
bP  by using binary section method.  

We have then computed each value of  ,f a b  (with the additional condition 
a b

x yP P    

a b
x yP P  in at least one Goldbach partition for any  ,m f a b , with 2a b

x yP P m  ). The computing 

                                                
[7] The CV of Professor Albu T. is also available online (URL)  

[8] The CV of Professor Strătilă Ş-V. is also available online (URL)  

http://gta.math.unibuc.ro/pages/talbu.html
http://www.humboldt-club.infim.ro/public_html/MEMBERS/PAGES/stratila.htm


30 

time for determining and verifying      2,1 1,22,1 1,2 1 765 126f f n n     and 

   2,22,2 161 352 166f n   was about 30 hours. The computing time for determining and verifying 

     3,0 0,33,0 0,3f f n n    125 771 ,      4,0 0,44,0 0,4f f n n    6 204 163   and 

     5,0 0,55,0 0,5f f n n    260 535 479  was also about 30 hours. 

     3,1 1,31,3f n n   f 3,1 32 050 472(?)  is still in a verification process, which started in the 

second week of February 2017. No exceptions found until present between  2 2m   f 3,1  and 

 62 2 49.1 10m     so that  f 3,1  may be a veritable last exception of VBGC[3,1] or just the start of a 

large gap until the next possible exception (which may be found in the future). 

 

 

*** 
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