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Abstract

We revisit the construction of diffeomorphic but not isometric metric solutions
to the Schwarzschild metric. These solutions require the introduction of non-trivial
areal-radial functions and are characterized by the key property that the radial
horizon’s location is displaced continuously towards the singularity (r = 0). In the
limiting case scenario the location of the singularity and horizon merges and any in-
falling observer hits a null singularity at the very moment he/she crosses the horizon.
This fact may have important consequences for the resolution of the fire wall prob-
lem and the complementarity controversy in black holes. This construction allows
to borrow the results over the past two decades pertaining the study of the Renor-
malization Group (RG) improvement of Einstein’s equations which was based on
the possibility that Quantum Einstein Gravity might be non-perturbatively renor-
malizable and asymptotically safe due to the presence of interacting (non-Gaussian)
ultraviolet fixed points. The particular areal-radial function that eliminates the in-
terior of a black hole, and furnishes a truly static metric solution everywhere, is used
to establish the desired energy-scale relation k = k(r) which is obtained from the &
(energy) dependent modifications to the running Newtonian coupling G(k), cosmo-
logical constant A(k) and spacetime metric g;; 1) (). (Anti) de Sitter-Schwarzschild
metrics are also explored as examples. We conclude with a discussion of the role that
Asymptotic Safety might have in the geometry of phase spaces (cotangent bundles
of spacetime); i.e. namely, in establishing a quantum spacetime geometry /classical
phase geometry correspondence g;; 1) (%) <> gij(@, E).
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1 Introduction : Diffeomorphic but Not Isometric
Solutions to the Schwarzschild Metric

In this introduction we review the key points in [3] which are essential to follow the
next sections. The static spherically symmetric (SSS) vacuum solution of Einstein’s field
equations [1] that we learned from the text books is actually the Hilbert form of the
original Schwarzschild [2] solution
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(ds)> = (1——=) (dt)* — (1——=)""(dr)* — r* (dQ)>. (1.1)
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There are an infinite number of metrics which are diffeomorphic but not isometric to
the Hilbert form of the Schwarzschild [2] solution. A particular class of metrics are given
by a family of metrics parametrized by a family of areal radial functions py(r) (in ¢ = 1
units), in terms of a real parameter 0 < X\ < 1, as follows
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where (dpy)? = (dpx(r)/dr)*(dr)* and the solid angle infinitesimal element is (dQ)? =
(do)? + sin*(¢)(dh)*. The surface area at each point r is now given by 4 (px(r))? so that
pa(r) plays the role of an effective radius and hence the name of “areal-radial” function
for py(r).

It is clear that the metric (1.2) is diffeomorphic but not isometric to the Hilbert form
(1.1) of the Schwarzschild [2] solution because the area elements r* (d2)? # p3(r) (d2)?
are not equal, except in the trivial case when p,(r) = r. The diffeomorphisms are simply
established by the mappings r — py(r). Therefore, despite that the metric (1.2) has the
same exact appearance as the Schwarzschild solution, it is very dif ferent. We have not
relabeled the radial variable r by giving it another “name” and calling it “p,”, because
pa(r) is itself a function of r. Furthermore, one has not performed a naive change of
variables by writing » = 7(r’) because p(r) # r = r(r’). The metric (1.2) leads to
modifications of the Newtonian potential at short distances. One recovers the Newtonian
potential in the asymptotic regime when py(r) ~ 7.

In the Appendix we show explicitly that the metric (1.2) is a solution to Einstein’s
vacuum field equations. This expression for the family of metrics is given in terms of the
family of areal radial functions py(r) which does not violate Birkhoff’s theorem since the
metric (1.2) expressed in terms of the areal radial functions p,(r) has exactly the same
functional form as that required by Birkoft’s theorem. It is well known to the experts
that the extended Schwarzschild metric solution for r < 0 with M > 0, corresponds to a
solution in the region » > 0 with M < 0. Negative masses are associated with repulsive
gravity. For this reason, the domain of values of r will be chosen to span the whole real
axis —oo < r < o0.

The boundary conditions obeyed by the areal radial function p,(r) must be at the
origin py(r = 0) = 0, and asymptotically p)(r — o0) ~ r — oo. The Hilbert textbook

) (dt)* — (1-



(black hole) solution [5] when p(r) = r obeys the boundary conditions but the Abrams-
Brillouin [4] choice p(r) = r +2GM does not. The original solution of 1916 found by
Schwarzschild for p(r) did not obey the boundary condition p(r = 0) = 0 as well. The
condition p(r = 0) = 2GM has a serious flaw and is : how is it possible for a point-mass
at 7 = 0 to have a non-zero area 47(2GM)? and a zero volume simultaneously ?; so it
seems that one is forced to choose the Hilbert areal radial function p(r) = r. It is known
that fractals have unusual properties related to their lengths, areas, volumes, dimensions
but we are not focusing on fractal spacetimes at the moment. For instance, one could have
a fractal horizon surface of infinite area but zero volume (space-filling fractal surface).
The finite area of 47(2GM)? could then be seen as a regularized value of the infinite area
of a “fractal horizon”.

The Hilbert choice for the areal radial function p(r) = r is ultimately linked to the
actual form of the Newtonian potential Vy = —(Gmymy/r). In the last few decades cor-
rections to Newton’s law of gravitation and constraints on them have become the subject
of considerable study, see the monograph [6]. Yukawa-type corrections to Newton’s grav-
itational law from two recent measurements of the Casimir interaction between metallic
surfaces was studied by [7]. A Yukawa-like correction to the Newtonian potential could
be chosen to be

Gm1m2
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where A and r, = 2GM are the strength and interaction range of the Yukawa-type correc-
tion. One may notice that the potential (1.3a) can be rewritten in terms of an areal-radial
function p(r) as

Gmyims r
- e = # 1 1.
o(r) p(r) 1 — \ o—r/2GM> A (1.3b)
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One has the correct boundary conditions for the areal radial function when A # 1
p(r=0) = 0; pa(r —o00) =71, plr=ry) = 2GM; 0<r, <2GM (1.3¢)

so that the location of the horizon radius r;, has been shifted towards the singularity.
In the asymptotic regime one has as expected p(r — oo) — 7, so that the areal-radial
function tends to r (as in the Hilbert choice) and the expression for the potential is
asymptotic to the Newtonian one. At the end of this section we shall discuss the case
when A = 1.

Instead of the Yukawa-type areal radial function (1.3b), one could have had a different
one-parameter family of areal-radial functions py(r) '. In particular, the metric solutions
(1.2) are invariant under the transformations r — —r; M — —M for our particular
choice of the areal radial functions py(r) given in eq-(1.3b) and due to the condition
pa(—r,—M) = —px(r, M). This allows us to extended the solutions to the r < 0 region.
For a recent analysis of the properties of the maximal extensions ( in regions r < 0 ) of
the Kerr and Kerr-Newman spacetimes with negative mass, see [8].

'We thank Matej Pavsic for a discussion on other choices for the radial functions



It is also important to emphasize that the Newtonian potential is recovered in general
in the regime when r >> 2G'M, so that V(r) = Gm1m2 ~ Gm;"‘?. For example, in
the case of the sun its Schwarzschild radius 2G M is of the order of 3 Kms which is much
smaller than the solar radius and the scale of the planetary orbits. Consequently, in
the regime when r >> 2G M, all the metric solutions in eq-(1.2) reduce to the standard
textbook Hilbert solution in eq-(1.1), and the Newtonian potential is always recovered
from an infinity of modified potentials.

Conversely, rather than starting from the Hilbert metric solution (1.1), and followed
by the active diffeomorphisms r — p(r) in order to obtain the metric solutions in eq-
(1.2), one could have started instead with the most general metric solutions in eq-(1.2),
and afterwards choose the Hilbert gauge p(r) = r leading to the textbook metric solution
(1.1) which is associated with the Newtonian potential. In this respect, one could assign
a special status to the Hilbert gauge p(r) = r since it is the one which leads to the
Newtonian potential.

However this does not imply that we have to exclude other possible choices (gauges)
for the areal radial function p(r). In particular, if one has an equivalence class of metrics
[g], such that g, ¢’ belong to the same class, then g ~ ¢ iff ¢ is diffeomorphic to ¢’. Why
then should we exclude ¢’ from the picture and just retain ¢ 7 why not exclude ¢ and
retain ¢’ instead ?. Therefore, all these mathematically distinct solutions obtained via the
active diffeomorphisms r — p(r) are not physically distinguishable, but they represent
one and the same physical solution of the field equations. For a historical account of the
role of active and passive diffeomorphisms within the context of the “hole argument” that
much troubled Einstein we refer to [10].

Consequently, there are two routes one could embark on. (i) One could single out from
the beginning the Hilbert metric (1.1) associated to the Newtonian potential. (ii) Or one
could choose the metric in eq-(1.2) for any given expression of the areal radial function
p(r) compatible with the boundary conditions, like the ones displayed in eq-(1.3b), and
corresponding to the modified Newtonian potentials (1.3a). The use of the metric in eq-
(1.1) or in eq-(1.2) would be just a matter of taste since both are physically equivalent.
In all these cases the metric solutions will no longer be static inside the interior regions
r < 2GM (p < 2GM). Below we shall explain how to obtain a truly static metric
everywhere when the horizon merges with the singularity by choosing the areal radial
function given in eq-(1.5).

The Penrose diagrams associated with the solutions described in (1.2) are the same as
the diagrams corresponding to the extended Schwarzchild solutions with the only differ-
ence that we must replace the radial variable r for p. The horizons at the radial locations
ré all correspond to the unique value of the areal radial function p(ré ) = 2GM and
t = £o0o. The spatial singularity is located at py(r = 0) = 0. The Fronsdal-Kruskal-
Szekeres change of coordinates that permit an analytical extension into the interior region
of the black hole has the same functional form as before after replacing r for p. In the
exterior region p(r) > 2GM one has
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The change of coordinates in the interior region p(r) < 2GM is
U= (1= LU et gty oy g 2 P s et o b
2GM A4GM " 2GM 4G(]¥4b)

In the overlap p(r) = 2GM region, one has straight lines U = £V of +7/4 slope when
t =400, and U =V =0 for finite t.
The coordinate transformations lead to a well behaved metric (except at p(r = 0) = 0)
, _ 4@2GM)? —p(U,V)/2GM 2 2 2 2
ds® = AU V) e (dV au=) p(U, V)7 (dQ)*. (1.4c)
When p(r = Thorizon) = 2GM and d2 = 0, the above interval displacement ds? = 0 is
null along the lines U = £V = dU = £dV . The interval is singular ds®> = —oo at
p(r = 0) = 0; i.e. the singularity r = 0 corresponds to the spacelike lines V? — U? =
1 = dV? —dU? = —dU?/(U? + 1) < 0. A salient feature of the metric (1.4c) is that is
no longer static in the U,V coordinates. This is a reflection of the fact that the roles of
r and t are interchanged inside the horizon due to the signature flip when r < 2GM in
eq-(1.1), and py < 2GM in eq-(1.2).

In the extreme limiting case A\ — 1 any infalling observer reaches a horizon 7",({\) whose
location approaches arbitrarily close to the singularity » = 0. To model the scenario
when the horizon merges precisely with the singularity one needs an area radial function
defined as follows

r
,0(7":0):0, p(?") = m, r>0 (15)

Under r — —r; M — —M one has that p(r) — —p(r) so one can ensure the invariance of
the metric (1.2) under these transformations and extend the solutions to the r < 0 region.

Hence, we have in eq-(1.5) that p(r = 0"; M) = 2GM, and p(r =07; —M) = —2GM,
but p(r = 0) = 0 since a point mass must have zero area and zero volume. The horizon
is located at r, = 07 and the singularity at » = 0. There is a discontinuity of p(r) at
r = 0. The right » = 07, and left » = 0~ limits of p(r) give respectively +2GM, while
p(r = 0) = 0 which is the arithmetic mean of 2GM and —2G M.

In the Appendix it is shown that the areal-radial function p(r) given by eq-(1.5) (along
with an infinite number of C'* differentiable functions) solves the vacuum field equations.
The finite discontinuity of p(r) occurs at one single point r = 0 (the origin), whereas
(dp/dr) = oo at r = 0*. Hence, the derivatives of p(r) are continuous while p(r) is
discontinuous at r = 0. A typical example of this behavior is the tangent function tan(6).
At 6 = 7/2, the tangent exhibits a discontinuity as it goes from oo to —oo, whereas
the derivative remains the same and equal to co. Fractal curves on the other hand are
continuous everywhere but nowhere differentiable. Concluding, the derivatives of p(r)



are continuous, and the metric (1.2) whose areal-radial function p(r) is given by eq-(1.5)
solves the vacuum field equations as shown in the Appendix.

Because a point mass is an infinitely compact source of infinite density, there is nothing
wrong with the possibility of having a discontinuity of the metric at the location of the
singularity 7 = 0. Due to the boundary condition p(r = 0) = 0, there is a curvature
tensor singularity and the Kretschmann invariant Ry, ,, R**° ~ (2GM)?/p(r)® diverges
at p(r = 0) = 0. In this extreme case, when the the location of the horizon merges with the
singularity, there is a null-line singularity at » = 0 and a null-surface at » = 0*. This may
sound quite paradoxical but it is a consequence of the metric discontinuity at r = 0, the
location of the point mass (singularity). This key fact may have important consequences
for the resolution of the fire wall problem and the complementarity controversy in black
holes [13], [16].

The discontinuity of the metric due to the behavior of the areal-radial function
p(r = 07, M) = 2GM, p(r = 0) = 0, can effectively be interpreted as saying that
the “point” mass has a finite area but zero volume [11]. It is generally believed that any
quantum theory of gravity should have a generic feature, a quantum of length, which can
be taken to coincide with the Planck scale. If the appropriately defined effective dimen-
sion, Dy, decreases continuously from D.sy = D at very large distances compared to
the Planck scale, down to D.yy = 2 at the Planck scale, this suggests that the physical
spacetime becomes essentially 2-dimensional near Planck scale. For a detailed study of
this phenomenon we refer to [11].

When the areal-radial function p(r) has the actual form in eq-(1.5) there is no interior
region beyond the horizon r = 07, so that the metric (1.2) is truly static everywhere. The
Fronsdal-Kruskal-Szekeres analytical continuation of the metric (1.4c) inside the horizon
is not static. 't Hooft [14] has most recently argued how black hole unitarity demands
the existence of transformations that can remove firewalls at the standard horizon radius
2G'M. A continuity condition is imposed with an antipodal identification as an inevitable
consequence. 't Hooft argued that it is necessary to revise the boundary conditions (and
topology) for Nature’s degrees of freedom at the horizon of a black hole. The boundary
condition is characterized as an antipodal identification and what it means is that the
region of space-time inside the horizon is removed completely, as if by surgery, after
which the edges are glued together by identifying the antipodes.

Klinkhamer [15] provided earlier on a regularization of the standard Schwarzschild
solution with a curvature singularity at the center by removing the interior region of a ball
and identifying the antipodal points on the boundary. The resulting four-dim manifold
has now the topology R X My where M; is a nonsimply-connected manifold, which up
to a point (the center), is homeomorphic to the 3-dim real projective space RP3. In our
case, the interior region which has been removed by surgery can be interpreted in terms of
the discontinuity p(r = 0) = 0; p(r = 07) = 2GM of the areal-radal function, and which
amounts to a sort of “point-splitting” creating a void (hole) in spacetime, isolating and
expunging the curvature singularity at the center from the remaining region of spacetime.
After this introductory review one may proceed.



2 Renormalization Group Improved Einstein’s Equa-
tions

One of the main points of this work is that quantum effects introduce corrections to the
Newtonian potential, and whose modifications can be incorporated into the expression
for the areal radial function p(r). The Renormalization Group (RG) improvement of Ein-
stein’s equations is based on the possibility that Quantum Einstein Gravity might be non-
perturbatively renormalizable and asymptotically safe due to the presence of interacting
ultraviolet fixed points [17]. In this program one has k (energy) dependent modifications
to the Newtonian coupling G(k), the cosmological constant A(k) and energy-dependent
spacetime metrics g;j k) ().

Quantum gravitational effects in spherically symmetric black hole spacetimes were
studied by [18]. The effective quantum spacetime felt by a point-like test mass was
constructed by “Renormalization Group improving” the Schwarzschild metric. The key
ingredient is the running Newton constant which is obtained from the exact evolution
equation for the effective average action. As a consequence of the quantum effects, the
classical singularity at » = 0 was either removed completely or was at least much milder
than classically. The Asymptotic safety program has also found important applications
in Fractals and Cosmology [19] hinting at the possibility that a fractal spacetime arises
at Planck scales, this picture was also envisioned by Nottale long ago in his formulation
of Scale Relativity Theory.

In D = 4 there is a nontrivial interacting (non-Gaussian) ultraviolet fixed point
G, = G(k)k* # 0. The fixed point G, by definition is dimensionless and the running
gravitational coupling has the form [18], [17]

1
1+ [GNE?/GL]

The Renormalization Group (RG) improvement of the Schwarzschild metric components
are defined to be [18]

G(k) = Gy (2.1)

W, Grri(r,B) = — (1— ) (2.2)
r r

however if one assigns an energy-scale k <> r correspondence by introducing a nontrivial

functional relation of the form k = k(r), and substitutes back its expression into the

scale-dependent metric components (2.2) one will no longer satisfy the vacuum Einstein

field equations (which led to the Schwarzschild solutions in the first place)

Gook(r) = 1—

1
Rp,u - 5 Guv R =0 (23)

consequently, one will be forced to modify Einstein’s equations. For example, via the
introduction of f(R,VR) Lagrangians into the modified gravitational action involving
polynomials in the curvature tensor and its covariant derivatives, or more complicated

functions f(R,VR).



For this reason, it is far simpler to exploit the more general solutions (1.2) to the
vacuum field equations which are diffeomorphic but not isometric to the Schwarzschild
solution (1.1). Therefore, one may define the k <> r correspondence by absorbing the
energy dependent (running) gravitational coupling G(k) into the definition of the areal-
radial function p(r) introduced in the metric (1.2). This is achieved by writing eq-(2.2)
(for r > 0) in the form

| 2GREIM | 2GNM
r p(r)
G(k(r)) _ G 1 _ o
r T O TEeRme - ey 770 @Y

and in this fashion one recasts the two metric components (2.2) as two pieces of the most
general solutions displayed by eq-(1.2) involving the areal-radial function p(r) given by
eq-(1.5).2 Hence, from eq-(2.4) and eq-(1.5) one can read-off directly the sought-after
k <> r correspondence

G* e*T/ZGNM

2
k(r) = Gn 1 /20wt

(2.5)
the most salient feature of the energy-scale relation eq-(2.5) is that it does not have the
same functional dependence as obtained in [18] and given by k ~ 1/d(r) where d(r) is

the proper radial distance between two points [, \/|gr|dr. It was emphasized earlier that
metrics of the type

2GRNM ) e (26 )M

r r

(ds)? = (1— )7L (dr)? — r? (dQ)2 (2.6)
do not solve the vacuum Einstein field equations.

Before proceeding let us mention that one could try to remedy this problem by adding
matter sources, corresponding to the stress energy tensor T} = (o, —p,, —ps, —Ps), to the
right hand side of Einstein equations, and associated to a mass source distribution of the
form M(r) = [5 o(r') 4" dr’. The expression for M(r) is obtained from the identifi-
cation G(k(r))M = GyM(r). The conservation of the stress energy tensor V,T# = 0
imposes additional relations among the components in (o, —p,, —pp, —ps). We refer to
the review work by [12] where, in particular, a self gravitating droplet with anisotropic
pressure was taken as the source. It is based on smearing a point mass delta function
distribution by introducing a Gaussian mass density o(r) of finite width and which deter-
mined the functional form of M (r) in terms of an incomplete Euler gamma function. We
shall not pursue this route, just fix M to a constant and focus on the vacuum solutions
only.

Given p(r = 0%) = 2G Ny M, the above expression for k%(r) in eq-(2.5) has the following
properties :

20ne must exclude r = 0 in eq-(2.4) due to the requirement p(r = 0) = 0, and p(r = 07) = 2GN M
resulting from the discontinuity of the metric at r =0



(i) when r — 0%, k& — oo, one recovers the expected ultraviolet limit at infinitesimally
small distances approaching zero. i.e. it will take an infinite energy to probe r = 07.

(ii) when r — oo, k — 0, one recovers the expect infrared limit at infinite large distances.

(iii) when 3570 <<1 = k* ~ (2G.M/r); i.e. when r is much smaller than the standard
black hole horizon radius 2G M, one arrives at an energy-scale dependence of the form

k ~ r~/2_ This behavior should be compared with the “naive” dependence k ~ 1/r.

(iv) At Planck scales r ~ Lp, the condition (iii) implies M >> mp, which in turn leads
to k? ~ Mmp >> m3, so the energy k ~ /Mmp required to explore the Planck scale
size regions would be much higher than the Planck mass.

(v) Had one chosen an areal radial function of the form py(r) = r(1— e /268 M)=1 )\ £ 1,
the value of k? as r — 0, is GNG(’ii Y # oo and would no longer be infinite. This is not
compatible with the ultraviolet completion program of asymptotic safety.

(vi) The choice k = 1/r is associated to an areal-radial function p(r) which is derived

from the equality

1 1 T
G =G = Gy — 2.7
M1 [Gak2(r)/G.] M1+ Gn/Gar?] Noo(r) 27)
and leading to
p(r) = r + g:\; (2.8)

the above expression for p(r) has the correct behavior at large distances p(r) ~ r but
it blows up at r = 0. Consequently, it does not have the correct boundary condition
p(r = 0) = 0. The functional form (2.8) is reminiscent of the minimal length modified
stringy uncertainty relations since p(r) defined by eq-(2.8) has a minimum value of p,,;, =
2,/(GN/G,) at 1o = /(GN/Gy).

The construction presented here can also be extended to metrics which are are diffeo-
morphic but not isometric to the (Anti) de Sitter-Schwarzschild metrics

p(r) 37

2GnyM Ao 9 9 2GNM Ao 9 - 2
07 ) = (120 2]ty -

(p(r))? (d2)? (2.9)
Ag > 0 for de Sitter space and Ag < 0 for Anti de Sitter. By writing (for r > 0)

@s? = (1-

2G N M Ay )
1-— — =1—-— — — 0 2.10
" 3 r o(r) 3 p(r)s, r> ( )

and establishing a k <> r correspondence one can incorporate the Renormalization Group
flow of the coupling G(k(r)) and the running cosmological constant A(k(r)) into the areal-
radial function p(r) in the right hand side of (2.10). The scale dependence of A(k) i the
de Sitter case was found to be [18]



b G(k)
4
where b is positive numerical constant. In D = 4, the dimensionless gravitational coupling
has a nontrivial fixed point G = G(k)k? — G, in the k — oo limit, and the dimensionless
variable A = A(k)k™? has also a nontrivial ultraviolet fixed point A, # 0 [18]. The
infrared limits are A(k — 0) = Ag > 0, G(k — 0) = Gy. Whereas the ultraviolet limit is

A(k = 00) = 00; G(k = 00) = 0.

Upon substituting the expressions for G(k), A(k) (2.1,2.11) into the left hand side of
eq-(2.10), it furnishes a new energy-scale relation k(r) in terms of the given areal-radial
function p(r) of eq-(1.5) appearing in the right hand side of eq-(2.12). The functional
relation is now given by the solutions of a quadratic equation

—-B + VB? -4AC
2A

where we chose the plus sign in front of the square root to ensure k*(r) > 0. The
expressions for A, B, C' are respectively

Ak) = Ag + E*, Ao >0 (2.11)

E(r) = (2.12a)

Alr) = bf2Nr2 > 0, B(r) = Cé]: (go(p(r)z—r?) + 2%;”) > 0
C(r) = 2GyM (p(lr)—:,) + /;0 (p(r)* = %) (2.120)

Due to the more complicated functional expression for k%(r) in eq-(2.12a) one has to
ensure that k*(r) > 0 for r > 0. Since Ay > 0, and the areal radial function p(r) =
r(1 — e "/2ENM)=1 > 4 the values of C(r) in eq-(2.12b) will cease to be negative in the
crossover region determined by the value of r = r, such that C(r.) = 0. Consequently,
in the region r > 7., C(r) > 0, the values of k?(r) < 0 will become negative which are
unphysical. k?(r) becomes 0 at r = 7. and r = oo.

Before deriving the value of the crossover point 7., a careful inspection of eqs-(2.12a,
2.12b) based on the graph of the areal-radial function in the region r > 0, p(r) = r(1 —
e T/2ENMY =L > e reveals that k2(r — 0o) — 0, and k%(r — 0%) — oo as expected.

When r — 07 = 4AC — 0, and one can perform the binomial expansion in

k2:_B + VB2 = 4AC _ —-B + B \/1—-4AC/B?

24 24 -
—-B + B (1-2AC/B? —C
(2 - /B _ = (2.13)
Hence, in the limit » — 07, given that p(r = 07) = 2Gy M, eq-(2.13) yields
2 + ; —C
E°(r = 07) — lim,_o+ 5 —
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(2GNM/7) _ limo 8 G.M
(Gn/G.) (1+ (Ao/3) 2GyM)2) — 7"

therefore, from eq-(2.14) one can infer that the ultraviolet scaling is of the form

lim,_o+ — 00 (2.14)

2
L+ (Ao/3) (2GNM)?’

In the infrared limit 7 — oo, A — oo, B — 0, C'— 0, p(r) ~ r, one has trivially k% — 0.

It was not necessary to solve for k*(r) in eq-(2.10) in order to glean the infrared
and ultraviolet behavior. One can infer from the ultraviolet scaling behavior, given by
k*r ~ BG.M, (B # 2) when r — 07, k — oo, that the products k?r; k%r? remain finite so
the left and right hand sides of eq-(2.10) coincide (p(r = 0%) = 2GyM). Conversely, the
infrared scaling behavior is k%72 — 0, when r — 00,k — 0, p(r) ~ r, such that eq-(2.10)
holds given that G(k =0) = Gy, A(k = 0) = A,.

Lets determine the value of the crossover point 7. that forces k*(r > r.) < 0 to be
negative. It is determined from the solution to the transcendental equation

Er ~ B (G.M), B = Ay >0 (2.15)

A() (2 — €7Tc/2GNM) 9 2GNM

3 (1 — e re/2GNM)2 Te T

=0 (2.16)

The transcendental equation (2.16) is greatly simplified when r. >> 2GyM. Given
% = - (Ry= Hubble radius), eq-(2.16) leads to
H

3

2A0 2GNM _1 1 AO 1
so that a simple solution r. given by (2.17a) is found in the regime when
2GNM << r. << Ry (2.17b)

To sum up, the use of the areal-radial function p(r) of eq-(1.5) in eq-(2.10), for r > 0,
does not lead to a fully satisfactory energy-scale k(r) functional relation due to the fact
that k%(r) < 0 when r > r., despite that k*(r — 07) — oo, and k*(r — oo) — 0. What
this entails is that one cannot accommodate two running couplings G(k(r)), A(k(r)), for
all values of r > 0, within one single function : the areal-radial function p(r). The analysis
of this section can be generalized to higher dimensions.

To finalize this section we should mention that it was pointed out by Donoghue [14]
that the standard perturbative quantization of Einstein gravity leads to a well-defined, fi-
nite prediction for the leading large distance correction to Newton’s gravitational potential
energy, after restoring i and ¢, given by

(2.18a)

2c2r 32 - 157

Mm (1 _ Gy(M +m) aG’Nh> N 118

the first correction proportional to (MEm) g g purely kinematic effect of classical general

relativity, while the second correction proportional to 1/7? is a quantum effect.
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The modified potential energy (2.14) can also be rewritten in terms of another areal
function p(r) differing from eq-(1.5), as

Mm r
= — —, P = 2.18b
Vir) Gy p(r (r) 1 — GN(M +m)/2¢2r — aGyh/cr? (2.180)

the new areal-radial function does obey the required boundary conditions described in
section 1. p(r = 0) = 0; and asymptotically p(r) ~ r. Furthermore, when r — —r, and
(M,m) — (=M, —m) we have p(r) — —p(r) so that a metric of the form (1.2) remains
invariant and can be extended to the region r < 0.

3 Asymptotic Safety and the Geometry of Phase
Space

The Lagrange-Finsler geometry of the tangent bundle (Hamilton-Cartan geometry of the
cotangent bundle) of spacetimes has been the subject of intensive study in recent years
[21], [22]. Tt is better understood now that the Planck-scale modifications of the particle
dispersion relations can be encoded in the nontrivial geometrical properties of momentum
space [23]. When both spacetime curvature and Planck-scale deformations of momentum
space are present, it is expected that the nontrivial geometry of momentum space and
spacetime get intertwined. The interplay between spacetime curvature and non-trivial
momentum space effects was essential in the notion of “relative locality” and in the
deepening of the relativity principle [23].

The authors [24], [25] have described the Hamilton geometry of the phase space of
particles whose motion is characterized by general dispersion relations. Explicit exam-
ples of two models for Planck-scale modified dispersion relations, inspired from the g-de
Sitter and k-Poincare quantum groups, were considered. In the first case they found the
expressions for the momentum and position dependent curvature of spacetime and mo-
mentum space, while for the second case the manifold is flat and only the momentum
space possesses a nonzero, momentum dependent curvature.

Starting with the geometry of the cotangent bundle (phase space), it was shown in [26]
that the maximal proper force condition, in the case of a uniformly accelerated observer of
mass m along the z axis, leads to a minimum value of x lying inside the Rindler wedge and
given by the black hole horizon radius 2Gm. Whereas in the uniform circular motion case,
the maximal proper force condition implied that the radius of the circle cannot exceed
the value of the horizon radius 2Gm. A correspondence was found between the black
hole horizon radius and a singularity in the curvature of momentum space. In this final
section we argue how the Asymptotic Safety program in gravity [17], [18], combined with
the phase space geometry seem to be a proper arena for a space-time-matter unification.

The 8D cotangent space/phase-space associated to a 4D spacetime has for coordinates
X, p and the infinitesimal interval in phase space is
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(do)* = gij(x,p) da’ da? + ha(x,p) (dp* — Nf(x,p) dz') (dp* — N}(x,p) dz’) (3.1)

where the N-coefficients define a nonlinear connection, an N-connection structure. For
rigorous details we refer to [21], [22]. In a very particular case one recovers the ordinary
linear connection if N%(x, p) = ', (x)p".

The vacuum field equations were given by [22]

Rij — s (R+S) gy =0, 4,j=1,2,3,4 (3.2)

1
2
1
Sab - 5 (R+8) hab = 07 aab:1727374‘ (33)

where R;;, R and Sy, S are the Ricci and scalar curvatures of spacetime and the internal
momentum space, respectively. The geometry of the cotangent bundle is very intricate
and it involves six distinguished curvature tensors, five distinguished torsion tensors and
the nonlinear connections components [21], [22]. Hence, to find exact solutions to the
very intricate set of eqs-(3.2,3.3) is highly nontrivial [22], [27].

The additional momentum-dependent behavior of the field equations (3.2,3.3) (beside
the x-dependence) could cast more light into the study of the Renormalization Group
(RG) improvement of Einstein’s equations which was based on the possibility that Quan-
tum Einstein Gravity might be non-perturbatively renormalizable and asymptotically safe
due to the presence of interacting ultraviolet fixed points [17]. As seen in the prior sec-
tion, one has k (energy) dependent modifications to the Newtonian coupling G(k), the
cosmological constant A(k) and energy dependent spacetime metrics g;; k) (). Namely,
what one is aiming for is in establishing a quantum spacetime geometry /classical phase
geometry correspondence g;; x)(z) <+ gij(x, E).

Let us insert directly the energy dependence of G(k) of eq-(2.1) into the components
associated to the Schwarzschild metric, by setting £ = k and without imposing any
energy-distance relationship k = k(r) as done previously. The components of the space-
time metric are now given directly in terms of r and E (there is no E(r) relation)

2G(E)M

r

gu(r, E) = 1 — o gr(nE) = = (gu(r E))7 (3-4)

The angular part can be chosen to be r?(d€2)? as usual. The task now is to find the expres-
sions (if possible) for the internal momentum space metric hq(x, p), and the nonlinear
connection N(x,p) components, such that the above vacuum field equations (3.2,3.3) are
satisfied when the spacetime metric components g;;(x, p) are given by eq-(3.4). There is
no guarantee a priori that exact solutions of eqs-(3.2,3.3) of this type exist, nevertheless
it is worthy of exploration.

To conclude, related to establishing a quantum geometry/classical phase correspon-
dence g;j ) (x) <+ gi;(x, E), we should recall that in the Deformation Quantization pro-
gram there is a one-to-one correspondence between operators in a Hilbert space and func-
tions in a classical phase space A(z,p) subject to a noncommutative (Moyal, Fedosov,
Kontsevich, ....) star product A(z,p)* B(x,p). Noncommutative and Nonassociative star
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products were constructed by studying non-geometric string (M-theory) backgrounds with
fluxes. These novel star products and their implications to Nonassociative Gravity are
currently under intense investigation. In particular, they might provide important clues
in order to solve the membrane quantization problem, see [28] and references therein.
It is warranted to explore the connection between the asymptotic safety program asso-
ciated to the path integral quantization procedure in quantum gravity and deformation
quantization via the geometry of the cotangent bundle (phase space) of spacetime.

APPENDIX A : Schwarzschild-like solutions in D > 3

In this Appendix we follow closely the calculations of the static spherically symmetric
vacuum solutions to Einstein’s equations in any dimension D > 3. Let us start with the
line element with signature (—, 4+, +, +, ...., +)

ds® = =" (dt)* + " (dr)? + R*(r)gy;dg g’ . (4.1)

where the areal radial function p(r) is now denoted by R(r) and which must not be
con fused with the scalar curvature R. Here, the metric g;; corresponds to a homogeneous
space and 4,5 = 3,4,...,D — 2 and the temporal and radial indices are denoted by 1,2
respectively. In our text we denoted the temporal index by 0. The only non-vanishing
Christoffel symbols are given in terms of the following partial derivatives with respect to
the r variable and denoted with a prime

[y = %Mla %, = %Vla I3 = %Nleu_yy
. (A.2)
F%j = —€_VRR/§ij, Flzj = %5;, zk = F;k,
and the only nonvanishing Riemann tensor are
R%l? — _%lu// _ iu& + iylulj Rzllj _ _%N/Q_VRngijy
Riy = o (3’ + 1 = W), Ry =e“(WRR — RR")jy,  (A3)
R;‘kl = R;‘kl — R?e™" (04951 — 01 Gjx)-
The vacuum field equations are
Ry —erv(ipr e Ly (P22 B (A4)
H 2" T4 4 2 R ’ ‘
1 1 1 1 , R R
Row— — = — 22 2+ (D—2 (- _ 2y Ab
and
e_V 1 / !/ / /! 12\ ~ k ~
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where k = £1, depending if g;; refers to positive or negative curvature. From the combi-
nation e “t"Ry; + Rap = 0 we get

2R/I
w4 = 7 (A7)
The solution of this equation is
p+v = InR? + C, (A.8)

where C' is an integration constant that one sets to zero if one wishes to recover the flat
Minkowski spacetime metric in spherical coordinates in the asymptotic region r — oo.
Substituting (A.7) into the equation (A.6) we find

e’ (VRR —2RR"— (D -3)R?) = — k(D -3) (A.9)
or
YRR +2yRR" + (D — 3)yR"? = k(D — 3), (A.10)
where
y=e". (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension )
corresponding to a D — 2-dim sphere for the homogeneous space can be written as

167G p M R _,

= 1 —_ _
=0y () T
v 167TGDM 1 dR 2
g =€"=(1 (D= 20, R0 (E) : (A.12)

where (2p_5 is the appropriate solid angle in D —2-dim and Gp is the D-dim gravitational

constant whose units are (length)?=2. Thus GpM has units of (length)”~3 as it should.

When D = 4 as a result that the 2-dim solid angle is €23 = 47 one recovers from eq-(A.12)

the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law

and Poisson’s equation in D — 1 spatial dimensions obtained in the Newtonian limit.
For the most general case of the D — 2-dim homogeneous space we should write

BpGpM

—V:h'l(k— W

)~ 20 R (A.13)

fp is a constant equal to 167 /(D — 2)Q2p_o, where p_5 is the solid angle in the D — 2
transverse dimensions to 7,¢ and is given by 27(P~V/2/T[(D —1)/2].
Thus, according to (A.8) we get

_ BpGpM
RD-3
we can set the constant to zero, and this means the line element (A.1) can be written as

pw=In(k ) + constant. (A.14)
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it = = EED @+ T @+ R aicas =
RD-3
GpM e
(= PR 4 g IR+ R0 (A1)
RD-3

One can verify, that the equations (A.4)-(A.6),leading to eqs-(A.9)-(A.10), do not deter-
mine the form R(r). It is also interesting to observe that the only effect of the homoge-
neous metric g;; is reflected in the k = 1 parameter, associated with a positive (negative)
constant scalar curvature of the homogeneous D — 2-dim space. k = 0 corresponds to a
spatially flat D —2-dim section. The metric solution in eq-(1.2) is associated to a different
signature than the one chosen in this Appendix, and corresponds to D =4 and k = 1.

Acknowledgments

We are indebted to M. Bowers for assistance.

References

1]
2]

3]

A. Einstein, Sitzungsber Preuss Akad Berlin IT, 831 (1915).

K. Schwarzschild, Sitzungsber Preuss Akad Berlin 1,189 (1916); English translation
by S. Antoci and A. Loinger can be found in physics/9905030.

C. Castro, “Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and
Gravitational Entropy” Foundations of Physics 46 (2016) 14.

M. Brillouin, Jour. Phys. Rad 23, 43 (1923); English translation by S. Antoci can
be found at physics/0002009.

D. Hilbert, Nachr. Ges. Wiss Gottingen Math. Phys K1, 53 (1917); H. Weyl, Ann.
Physik (Leipzig) 54, 117 (1917); J. Droste, Proc. Ned. Akad. West Ser. A 19, 197
(1917).

E. Fischbach and C. L. Talmadge, The Search for Non-Newtonian Gravity (Springer,
New York, 1999).

G. L. Klimchitskaya, U. Mohideen and V. M. Mostepanenko, “Constraints on correc-
tions to Newtonian gravity from two recent measurements of the Casimir interaction
between metallic surfaces”, arXiv : 1306.4979.

V. Manko, “On the Properties of Exact Solutions Endowed with Negative Mass”,
arXiv : 1303.4337.

C. Fronsdal, Phys. Rev 116, 778 (1959); M. Kruskal, Phys. Rev 119, 1743 (1960);
G. Szekers, Publ. Mat. Debreca 7, 285 (1960).

16



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Stachel, “The Hole argument and some physical and philosophical implications”
Living. Rev. Relativity 17 (2014) 1.

“Hole Argument” https://en.wikipedia.org/wiki/Hole_argument

T. Padmanabhan, S, Chakraborty, and D. Kothawala, “Spacetime with zero point
length is two-dimensional at the Planck scale”, Gen. Rel. Grav. 48 (2016) 55.

T. Padmanabhan, “The Atoms Of Space, Gravity and the Cosmological Constant”,
Int. Jour. Mod. Phys. D 25 (2016) 1630020.

E. Spallucci and A. Smailagic, “Regular Black Holes from semi-classical down to
Planck size”, arXiv : 1701.04592.

A. Almbheiri, D. Marolf, J. Polchinski, and J. Sully, “Black Holes: Complementarity
or Firewalls?”, arXiv : 1207.3123.

G. 7 t Hooft, “The firewall transformation for black holes and some of its implica-
tions” arXiv : 1612.08640.

G. ’t Hooft, 7On the quantum structure of a black hole”. Nuclear Physics B 256
(1993) 727.

F. Klinkhammer, “A new type of nonsingular black-hole solution in general relativ-
ity” Mod. Phys, Lett. A 29 (2014) 1430018.

L. Susskind, L. Thorlacius, J. Uglum, The Stretched Horizon and Black Hole Com-
plementarity”. Phys. Rev. D48 (1993) 3743; arXiv:hep-th/9306069 [hep-th].

S. Weinberg, “Ultraviolet divergences in quantum theories of gravitation” General
Relativity : An FEinstein centenary survey, Eds. S. Hawking and W. Israel, Cam-
bridge University Press (1979) p. 790.

M. Reuter and F. Saueressig, “Quantum Einstein Gravity” arXiv: 1202.2274

R. Percacci, “A short introduction to Asymptotic Safety” arXiv: 1110.63809.

D. Litim, “Renormalization group and the Planck scale” arXiv: 1102.4624.

S. Nagy, “Lectures on Renormalization and Asymptotic Safety”, arXiv : 1211.4151.
M. Niedermaier, “The Asymptotic Safety Scenario in Quantum Gravity-An Intro-
duction” | gr-qc/0610018.

A. Bonano and Reuter. “Renormalization group improved black hole spacetimes”
Phys. Rev. D62 (2000) 043008.

M. Reuter and F. Saueressig, “Asymptotic Safety, Fractals and Cosmology”, arXiv:
1205.5431.

J.F.Donoghue, Phys. Rev. Lett. 72, 2996, (1994); Phys. Rev. D50, 3874, (1994).

17



[21]

[22]

23]

[24]

[25]

[27]

28]

R. Miron, D. Hrimiuc, H. Shimada and S. Sabau, The Geometry of Hamilton and
Lagrange Spaces ( Kluwer Academic Publishers, Dordrecht, Boston, 2001 ).

R. Miron, Lagrangian and Hamiltonian geometries. Applications to Analytical Me-
chanics, arXiv: 1203.4101 [math.DG].

S. Vacaru, “Finsler-Lagrange Geometries and Standard Theories in Physics: New
Methods in Einstein and String Gravity” [arXiv : hep-th/0707.1524].

S. Vacaru, P. Stavrinos, E. Gaburov, and D. Gonta, ”Clifford and Riemann-Finsler
Structures in Geometric Mechanics and Gravity” (Geometry Balkan Press, 693
pages).

G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, “The princi-
ple of relative locality”, Phys. Rev. D84 (2011) 084010.

G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, “Relative
locality: A deepening of the relativity principle”, Gen. Rel. Grav. 43 (2011) 2547.

L. Barcaroli, L. Brunkhorst , G. Gubitosi, N. Loret and C. Pfeifer, “Hamilton geom-
etry: Phase space geometry from modified dispersion relations” arXiv : 1507.00922.

M. Letizia and S. Liberati, “Deformed relativity symmetries and the local structure
of spacetime” arXiv: 1612.03065.

L. Barcaroli, L. Brunkhorst, G. Gubitosi, N. Loret and C. Pfeifer, “Planck-scale-
modified dispersion relations in homogeneous and isotropic spacetimes” arXiv :
1612.01390.

I. Lobo, N. Loret and F. Nettel, “Investigation on Finsler geometry as a generaliza-
tion to curved spacetime of Planck-scale-deformed relativity in the de Sitter case”
arXiv : 1611. 04995.

C. Castro, “On Maximal Proper Force, Black Hole Horizons and Matter as Curva-
ture in Momentum Space” submitted to the [JGMMP, Jan. 2017.

C. Castro, “On Dual Phase Space Relativity, the Machian Principle and Modified
Newtonian Dynamics” Progress in Physics 1 (April 2005) 20.

C. Castro, “Solutions to the Gravitational Field Equations in Curved Phase-Spaces”
to appear in the EJTP, 2017.

V. Kupriyanov and R. Szabo, “Gs structures and quantization of non-geometric
M-theory backgrounds” arXiv: 1701.02574.

18



