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Abstract 

Determining the mass of hadrons was a predicament in Quantum Chromodynamics, suggestions 

and attempts of using a theory of lattice QCD for such determination has not provided satisfying 

results. This paper will suggest a new method that offers 99% accuracy therefore much higher 

than lattice QCD, as well as simplicity. The methodology provided in this paper is relatively 

simple which makes it easier to do the calculus without unnecessarily losing time on extremely 

complex equations that serve not practical purpose since the accuracy of lattice QCD in 

determining hadrionic mass is approximately 10% which is underwhelming. The aforementioned 

new method will be applied for protons, neutrons and pions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

In the method for theoretically determining the mass of hadrons we will use two dimensionless 

constants: the electromagnetic constant α, also known as the fine structure constant [1], which 

has a value of α = 0.00729735256 [2] and the strong nuclear constant αS. The value of αS 

varies with distance, on the scale of 1 fm it has been determined to be αS ≈ 1.  

The constant alpha can be determined through various methods, from the anomalous magnetic 

dipole moment 
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Where, for electrons we have: 

δF1(q2) → δF1(q2) − δF1(0) 

Where F1(0) = 1 and δF1 is the first order correction to F1. We define for electrons: 

F1(q2) = 1 +
α
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After the calculus the equation is reduced to 
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Therefore: 
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The anomalous magnetic dipole moment is: 

𝑎𝑒 =
α

2π
= 0.001161409695 

which is the one loop result. Knowing the g factor of the electron, see [2], allows for a simple 

equation. 
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Using the electron g factor, we can calculate the anomalous magnetic dipole moment: 

 

𝑎𝑒 ≡
ge − 2

2
 

This method is often used to measure the anomalous magnetic moments of electrons, muons, 

taus etc. 

It should also be mentioned that on low q2 due to large MW the constant αS ≈ 0.2 on the scale 

0.002 fm when the weak nuclear dimensionless constant is αW ≈ 0.03.  

Proton QED Number 

 The method for theoretical determination of the proton mass is: 

E0
p

=
hc

λp
 

Where E0
p
 is the rest energy of the proton. Using this we postulate that: 

λp = ∑ λq ∙ 10−И 

Where ∑ λq is the sum of quark wavelengths and И is the proton QED number. We define that: 

 

∑ λq =
hc

∑ E0
q 

Where ∑ E0
q
 is the sum of quark rest energies. Since protons consist of two up quarks and one 

down quark ∑ E0
q = 9.4 MeV. The proton QED number is: 

И = (nq − 1) −
α

nqπ
= 2 −

α

3π
 

Where nq is the number of quarks, in this case 3. The number И has a value 1.999225726845727 

and is clearly dimensionless. Finally we constitute the equation: 

 

E0
p

=
hc

hc
∑ E0

q ∙ 10−И
= ∑ E0

q
∙ 10И ≈ 938.3 MeV 

Which agrees with experimental results that mp is approximately 938.3 MeV/c2 [3]. The 

accuracy of this methodology depends on how accurate the values of quark masses are [4], which 

is known to a satisfactory level for up quarks and down quarks.  
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Neutron QCD Number 

Neutron mass is calculated in a similar way to that of a proton. We also have: 

 

E0
n =

hc

λn
 

and similarly: 

λn = ∑ λq ∙ 10−Ш 

Where Ш is the neutron QCD number and the equation 10 also applies for neutrons with the 

difference that neutrons consist of two down quarks and one up quark.  

The equation for the neutron QCD number is: 

 

Ш = (nq − 1) −
αS

nqπ
= 2 −

αS

3π
 

Where αS is the strong interaction constant and on the scale of 1 fm we define that it equals αS =

0.9669 which means that Ш = 1.8974087236829643.  

Finally we form the equation: 

 

E0
n =

hc

hc
∑ E0

q ∙ 10−Ш
= ∑ E0

q
∙ 10Ш ≈ 939.6 MeV 

Which agrees with the experiments that mn is approximately 939.6 MeV/c2 [5]. Same as with 

the proton QED number, the neutron QCD number depends on the accuracy of measuring quark 

energies which are ∑ E0
q = 11.9 MeV for two down quarks and one up quark that form a neutron. 

However, unlike the proton QED number, the neutron QCD number also depends on the 

accuracy of the dimensionless constant. The dimensionless constant for strong nuclear 

interactions changes drastically on different scales and it has not been very accurately measured, 

unlike the accuracy of measures taken on the fine structure constant which is one of the best 

achievements in experimental and theoretical physics today.  

Pion QCD number 

Pions, unlike protons and neutrons, have two different methods on two different scales for 

determining their mass. This paper will only form methods for π+ and π− pions, the neutral π0 

pion will not be included in either of the two methods.  
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For π± we form a similar equation:  

 

E0
π±

=
hc

λπ±
 

and the equation: 

 

λπ± = ∑ λq ∙ 10−Љ 

has similarity with proton and neutron equations.  Finally, we have: 

 

E0
π±

=
hc

hc

∑ E0
q ∙ 10−Љ

= ∑ E0
q

∙ 10Љ ≈ 139.6 MeV 

which is in agreement with mπ± ≈ 139.6 MeV/c2 [6]. 

There are two different methods on two different scales to determine the pion QCD number Љ. 

1)  The smaller scale method 

On the scale of 0.002 fm  

Љ = exp (αS) 

where αs = 0.2573795(9) meaning that the pion QCD number Љ = 1.293536. 

2) The larger scale method 

On the scale of 1 fm we have: 

Љ = (nq − 1) +
2αS

nqπ
= 1 +

2αS

2π
 

where αs = 0.9221705(1) where the running of the constant is clearly observable and the value 

of Љ is the same as in the former method. 

Since a π+ consists of an up quark and an anti-down quark and π− consists of a down quark and 

an anti-up quark, the result for ∑ E0
q ≈ 7.1 MeV. 

Conclusions 

The mass of pions was previously calculated with a version of the Gell-Mann-Oakes-Renner 

mass formula [7] which would be reduced to: 
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where [8] the integral ρ = 〈qq̅〉 is the condensate parameter, for Nc = 3 we have: 

 

ρ = Nctr(G(x = 0)) = 12 ∫
d4q

(2π)4
σs(q2) 

where f𝜋 is the pion decay constant.  

It is evident that this method is more complex and harder for one to apply while not offering high 

accuracy. The new method presented in this paper is simple and elegant, relatively easy to apply 

which makes our jobs a little bit easier.  

Running of the fundamental constants has to be taken into account when the scale is changed or 

higher energy levels are applied, however this should not present a problem on scales used in this 

paper. Without the necessity of using super computers for calculations, this methodology is 

vastly superior in accuracy and more cost effective to the previous ones. Calculating masses for 

such hadrons as protons and neutrons with the methodology presented in the paper is especially 

simple and very accurate and requires no software or supercomputers.  

References 

[1] Bouchendira, Rym; Cladé, Pierre; Guellati-Khélifa, Saïda; Nez, François; Biraben, François 

2010. New determination of the fine-structure constant and test of the Quantum 

Electrodynamics.Physical Review Letters. 106. 

[2] Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. 2012. Tenth-Order QED Contribution to 

the Electron g−2 and an Improved Value of the Fine Structure Constant. Physical Review 

Letters. 109. 

[3] A. Solders et al 2008. Determination of the proton mass from a measurement of the cyclotron 

frequencies of D+ and H2
+ in a Penning trap. Phys. Rev. A 78. 

[4] Cho, Adrian 2010. Mass of the Common Quark Finally Nailed Down. Science Mag. 

[5] G. Rainovski et al 2010. Experimental studies of proton-neutron mixedsymmetry states in the 

mass A ≈ 130 region. J. Phys.: Conf. Ser. 205 012039. 

[6] R. T. Cahill and S. M. Gunner, Mod. Phys. Lett. A 10(1995)3051. 

[7] M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 175(1968)2195. 

[8] M. R. Frank and C. D. Roberts, Phys. Rev. C 53(1996)390. 

(22) 

(23) 

http://news.sciencemag.org/physics/2010/04/mass-common-quark-finally-nailed-down

