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Abstract

This paper provides a potential pathway to a formal simple proof of Fermat’s
Last Theorem. The geometrical formulations of n-dimensional hypergeometri-
cal models in relation to Fermat’s Last Theorem are presented. By imposing
geometrical constraints pertaining to the spatial allowance of these hypersphere
configurations, it can be shown that a violation of the constraints confirms the
theorem for n equal to infinity to be true.

Résumé
Cet article fournit une voie potentielle à une preuve formelle simple du dernier
théorème de Fermat. Les formulations géométriques des modèles d’hypersphère
dimensionnels en relation avec le dernier théorème de Fermat sont présentées.
En imposant des contraintes géométriques relatives à l’allocation spatiale de ces
configurations d’hypersphère, on peut montrer qu’une violation des contraintes
confirme que le théorème de n égal à l’infini est vrai.
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1. Introduction

For almost three hundred years, mathematicians have attempted to prove
Fermat’s Last Theorem. First proposed by Pierre de Fermat, the beauty of
this theorem lies in its short expression of a seemingly simple equation. The
statement of Fermat’s Last Theorem is a simple mathematical proposition. It5

was first posed by the French mathematician Pierre de Fermat back in the
seventeenth century as follows.
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Theorem 1.1. Given that x, y, z and n represent positive integers Z+

@ (x, y, z, n) ∈ Z+ : xn + yn = zn for n > 2. (1.1)

Simply, the theorem states that when n is a whole number greater than 2, no
number scaled to the power of n can be expressed as the sum of two smaller10

numbers scaled to the power of n.
Mathematicians began to prove specific exponents using Fermat’s technique

of infinite descent based on its original form [1, 2]. Leonard Euler was credited
as the first to prove the case n = 3 using this method [3, 4]. The first proof
for n = 4 is by Fermat using the infinite descent method. Subsequent proofs15

for this dimension have been developed by a number of mathematicians, such
as de Bessy [5] and Euler [6]. Then, proof for n = 6 by Kausler [7], proof for
n = 7 by Lebesgue [8], proof for n = 10 by Kapferer [7], and proof for n = 14 by
Dirichlet [9] appeared over time. However, specific exponents became difficult
to prove as n increased.20

The main challenge was to develop a general theorem for all cases of n.
Sophie Germain was credited as the first to contribute significant work on the
general theorem [10]. Her approach required two cases of Fermat’s Last Theorem
to be proven; however, this was ultimately unsuccessful. For the first case, she
was able to apply her approach to every odd prime exponent less than 100 and25

this became known as Sophie Germain’s theorem [11]. In 1997, the first case
was proved true for all even n by Guy Terjanian [12] and in 1985, the first case
was proved true for infinitely many odd primes n by Leonard Adleman, Roger
Heath-Brown and Etienne Fouvry [13].

In 1847, Gabriel Lame attempted to prove Fermat’s last theorem using the30

cyclotomic field [14]. However, his proof was unsuccessful as it involved an in-
correct assumption that complex numbers can be factorised uniquely into prime
numbers [15]. Building upon Lame’s approach, Ernst Kummer was successful
in developing a proof of Fermat’s Last theorem for all regular prime numbers
[16, 17]. However, he was unable to prove the theorem for irregular primes.35

Computational methods were developed by the 20th century to extend Kum-
mer’s method to irregular prime numbers. By 1993, the theorem for all prime
numbers where n < 4× 106 was solved computationally. [18].

However, all of the previous works do not qualify for a general proof based
on all possible n up to infinity. There was a need to start looking at solving the40

theorem based on the form of descent on elliptic curves. In 1995, Andrew Wiles
became the first mathematician to develop a general proof of Fermat’s Last
Theorem using the modularity theorem, which states that elliptic curves over
the field of rational numbers are related to modular forms [19]. Prior to this,
the relationship between the Fermat’s Last theorem and the modularity theorem45

(formerly known as the Taniyama-Shimura conjecture) had been proven by Ken
Ribet [20].

This paper presents a pathway towards a greatly simplified proof of the
theorem for n using a contradiction of geometry within the modelling of an
n dimensional space, based on the concept of a hypersphere and its volume50
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equivalent hyperspherical shell (hereby denoted as a hypershell). The xn +
yn = zn equation can be constructed using hypersphere geometries with some
predefined structural conditions in a multi-dimensional space.

2. Definition of Hypersphere and Hypershell

The general expression of a hypersphere can build a general model of Theo-55

rem 1.1 for any value of n. The formulation for the volume of an n-dimensional
hypersphere can be generalized [21]. Here, let Vn denote the mass (i.e., n-
dimensional volume) of an n-hypersphere of radius r0 and Sn be the hyper-
surface area of an n-sphere of unit radius, and Vs denote the volume of a hyper-
shell of radius rs and shell width w. It is to be noted that the surface area of60

a sphere has infinitesimal thickness, whereas the volume of a hypershell has a
finite width. Therefore, the equations for both geometrical entities are not the
same. However, if w → 0, then Vs = Sn. The model configuration is shown by
Figure 1.

Figure 1: Model of hypersphere and hypershell in 3 dimensions based on geometrical param-
eters r0, rs, and w.

Definition 2.1. The surface area Sn and volume Vn of a hypersphere of general65

dimension n cf. [21, 22] are defined below as:
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Sn =

{
2(n+1)/2π(n−1)/2

(n−2)!! for n ∈ O+

2ππ/2
1
2 (n−1)!

for n ∈ E+
,

and

Vn =
Snr

n
h

n
.

where O+ and E+ denote the set of positive odd and even integers respectively.

It should be noted that the double factorial !! involved in the equation for
odd-dimensional volumes has been defined for odd integers (2k+1) as (2k+1)!! =
1× 3× 5× ...× (2k− 1)× (2k+ 1). Based on Definition 2.1, the equations for a70

hypersphere and a hypershell will be able to be generated in Proposition 2.1 as
follows. These equations are used in relation to Fermat’s Last Theorem as stated
in Theorem 1.1 to generate hypergeometrical models in relation to xn+yn = zn.

Proposition 2.1. Let Vs denote the volume of a hypershell with radius rs and
thickness ws. Then,75

Vs =
Sn
n

n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
rn−(2k+1)
s

)(w
2

)2k+1

,

where

α =

{
0 for n ∈ O+

1 for n ∈ E+
.

Proof of Proposition 2.1. To compute the volume of a hypershell, formed be-
tween an external sphere Ve and inner sphere cavity Vi, subtract the volume of
the inner cavity from that of its external structure, which is given as

Vs = Ve − Vi,
where

Ve =
Sn
n

(
rs +

w

2

)n
,

Vi =
Sn
n

(
rs −

w

2

)n
.

Case of odd n. The surface area and volume of a hypersphere is given by

Sn =
2(n+1)/2π(n−1)/2

(n− 2)!!
, Vn =

2(n+1)/2π(n−1)/2rn0
n(n− 2)!!

,

which results in the volume of the hypershell as80
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Vs =
Sn
n

[(
rs +

w

2

)n
−
(
rs −

w

2

)n]
=
Sn
n

 ((n1) (rn−1s

) (
w
2

)1
+
(
n
2

) (
rn−2s

) (
w
2

)2
+ ...+

(
n
n−1
) (
r1s
) (

w
2

)n−1
+
(
n
n

) (
r0s
) (

w
2

)n)
−
((
n
1

) (
rn−1s

) (
w
2

)1 − (n2) (rn−2s

) (
w
2

)2
+ ...+

(
n
n−1
) (
r1s
) (

w
2

)n−1 − (nn) (r0s) (w2 )n)


=
Sn
n

(
2
(
n
1

) (
rn−1s

) (
w
2

)1
+ 2
(
n
3

) (
rn−3s

) (
w
2

)3
+

...+ 2
(
n
n−2
) (
r2s
) (

w
2

)n−2
+ 2
(
n
n

) (
r0s
) (

w
2

)n
)
. (2.1)

Case of even n. The surface area of volume of a hypersphere is given by

Sn =
2πn/2(
1
2n− 1

)
!
, Vn =

2πn/2rn0
n
(
1
2n− 1

)
!
,

which results in the volume of the hypershell as

Vs =
Sn
n

[(
rs +

w

2

)n
−
(
rs −

w

2

)n]
=
Sn
n

 ((n1) (rn−1s

) (
w
2

)1
+
(
n
2

) (
rn−2s

) (
w
2

)2
+ ...+

(
n
n−1
) (
r1s
) (

w
2

)n−1
+
(
n
n

) (
r0s
) (

w
2

)n)
−
((
n
1

) (
rn−1s

) (
w
2

)1 − (n2) (rn−2s

) (
w
2

)2
+ ...−

(
n
n−1
) (
r1s
) (

w
2

)n−1
+
(
n
n

) (
r0s
) (

w
2

)n)


=
Sn
n

(
2
(
n
1

) (
rn−1s

) (
w
2

)1
+ 2
(
n
3

) (
rn−3s

) (
w
2

)3
+ 2
(
n
5

) (
rn−5s

) (
w
2

)5
+

...+ 2
(
n
n−3
) (
r3s
) (

w
2

)n−3
+ 2
(
n
n−1
) (
r1s
) (

w
2

)n−1
)
.

(2.2)

Case of general n. Combining the solutions for odd n and even n,

Vs =
Sn
n

n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
rn−(2k+1)
s

)(w
2

)2k+1

,

where

α =

{
0 for n ∈ O+

1 for n ∈ E+
.

This completes the proof of Proposition 2.1.

3. Modelling Hypersphere in Relation to Theorem85

In this section, a hyper-sphere model related to Theorem 1.1 is presented.
This model relies solely on the re-expression of a hypersphere into a volume
equivalent hypershell. Before creating the generalized multi-dimensional model,
it can be demonstrated that the representation of Theorem 1.1 for n is based
on n-dimensional hyperspheres.90

The main result provided for is as follows.

5



Theorem 3.1. There do not exist x, y and z in xn + yn = zn for n → ∞,
where (x, y, z) ∈ Z+.

The expression of the governing equation for (x, y, z) in Theorem 3.1 into
an equivalent equation for a single parameter λ is introduced. A new concept95

based on examining the range of λ for the different n values is presented. This
may be achieved by volume equivalence of a hypersphere and a hypershell in an
n-dimensional space described in Lemma 3.1.

Lemma 3.1. Consider an n-dimensional hypersphere of radius r0 and a hyper-
shell of radius rs and thickness w. Here, w is expressed as the product of λ and100

rs. Then,

(
r0
rs

)n
=

n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
λ

2

)2k+1

, (3.1)

where

α =

{
0 for n ∈ O+

1 for n ∈ E+
,

and
w = λrs. (3.2)

The constant λ is defined as the parameter for a feasible geometry. Taking
this further, the representation of their geometrical volumes as xn, yn, and zn

appearing in Theorem 1.1 is based on

x = r0,

y =

(
1− λ

2

)
rs,

z =

(
1 +

λ

2

)
rs. (3.3)

Based on Eq. 3.2 and Eq. 3.3, (λ, rs) ∈ Q, whereby Q denotes rational105

numbers, such that the numerator of λ, and the denominator of rs, each has a
value of 2.

Note that the following geometrical constraints must be satisfied:

rs − r0 ≥ 0, (3.4)

where r0, w ∈ O+.

Proof. To deduce this result, volume equivalence for a hypersphere and a hy-110

pershell of radii r0 and rs are applied respectively. Based on Proposition 2.1,
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Sn =

{
2(n+1)/2π(n−1)/2

(n−2)!! for n ∈ O+

2ππ/2
1
2 (n−1)!

for n ∈ E+
,

Vn =
Snr

n
0

n
, (3.5)

Vs =
Sn
n

n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
rn−(2k+1)
s

)(w
2

)2k+1

. (3.6)

The formulation of volume equivalence using Eq. 3.5 and Eq. 3.6 is performed
as follows.

Vn = Vs,

Sn
n
rn0 =

Sn
n

(
rs +

w

2

)n
− Sn

n

(
rs −

w

2

)n
, (3.7)

rno +
(
rs −

w

2

)n
=
(
rs +

w

2

)n
. (3.8)

This essentially converts Eq. 3.7 and Eq. 3.8 into:

rno =

n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
rn−(2k+1)
s

)(w
2

)2k+1

, (3.9)

where115

α =

{
0 for n ∈ O+

1 for n ∈ E+
.

Now, substituting Eq. 3.2 into Eq. 3.9,

rno =

n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
λ

2

)2k+1

rns ,

where

α =

{
0 for n ∈ O+

1 for n ∈ E+
,

which then leads to Eq. 3.1.
This corresponds to Eq. 3.8 to give

(
rs +

λ

2
rs

)n
=

n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
λ

2

)2k+1

rns +

(
rs −

λ

2
rs

)n
. (3.10)
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where120

α =

{
0 for n ∈ O+

1 for n ∈ E+
.

Note that Eq. 3.10 follows on from Eq. 3.8. Since each term in Eq. 3.8 and
Eq. 3.10 gives an integer,

[
r0,
(
rs − w

2

)
,
(
rs + w

2

)]
or
[
r0,
(
rs − λ

2

)
rs,
(
rs + λ

2

)
rs
]

can be represented as [x, y, z] appearing in Theorem 1.1.
This completes the proof of Lemma 3.1.

To complete the volume equivalence model, and to continue with determining125

the range of allowable λ values mentioned in Lemma 3.1, it is a necessity to
establish the nature of numbers assigned to radius rs and width w of a hypershell
and to prove why it is so in Proposition 3.1.

Proposition 3.1. Given that w ∈ O+, then for
(
rs − w

2

)
and

(
rs + w

2

)
in

Eq. 3.7 to be integers, rs ∈ Q, where Q denotes a set of rational numbers that130

has a denominator of 2.

Proof of Proposition 3.1. It follows that based on Eq. 3.2 where w = λrs, rs
being rational with a denominator of 2 requires that λ is rational with a nu-
merator of 2. Define rs = βp

2 , λ = 2
p , which implies that p ∈ O+, and β ∈ N

and represents a constant (which is used as a factor to size the hypershell at135

discrete steps). Following Eq. 3.2, w = β. If w ∈ O+, then β ∈ O+, for which
results rs and λ to be rational. If w ∈ E+, then β ∈ E+, whereby E+ denotes
even integers. This will result in rs ∈ N, which contradicts Proposition 3.1.

This completes the proof of Proposition 3.1.

The last stage of our model construction is to establish that the determining140

constant for a feasible geometry becomes infinitesimal for an infinite number of
dimensions.

Lemma 3.2. Given that (x, y, z, n) ∈ Z+, it can be demonstrated that when
λ → 0 as n → ∞, the hypergeometrical model results in diminishing values of
the x, y, and z towards zero.145

Proof of Lemma 3.2. The range of λ is determined here, and then with the n
exponent set to infinity.

Given our original constraint, rs − r0 ≥ 0 and Lemma 3.1,
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rs − rs
n

√√√√√n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
λ

2

)2k+1

≥ 0,

rs

1−
n

√√√√√n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
λ

2

)2k+1

 ≥ 0,

n−(α+1)
2∑

k=0

2

(
n

2k + 1

)(
λ

2

)2k+1
− 1 ≤ 0, (3.12)

where

α =

{
0 for n ∈ O+

1 for n ∈ E+
.

Here, as n increases, the value of λ decreases. As n→∞, λ→ 0. A solution150

fails to exist for Eq. 3.9 since substituting λ = 0 into
[
r0,
(
rs − λ

2

)
rs,
(
rs + λ

2

)
rs
]

generates (x, y, z) = (0, 0, 0) in the expression

x∞λ→0 + y∞λ→0 = z∞λ→0.

However, x, y, z are defined as positive integers, hence demonstrating that
this is not a valid solution.

This completes the proof of Lemma 3.2.155

The validity of the hypergeometrical model can be tested for number of
dimensions equal to two, as shown in Remark 3.1.

Remark 3.1. Given that (x, y, z, n) ∈ Z+, where the set (x, y, z) is piecewise
coprime, xn + yn = zn is true for n = 2. Based on Lemma 3.1 for the case of
n = 2,160

r0 =
√

2rsw =
√

2λrs,(
x2, y2, z2

)
=

[
r20,
(
rs −

w

2

)2
,
(
rs +

w

2

)2]
.

Given our original constraint, rs − r0 ≥ 0, the range of acceptable λ values
can obtained based on Eq. 3.12:

0 < λ ≤ 1

2
.

For the case of n = 2, assign w = λrs = 1 to give λ = 2
9 , and rs = 9

2 . Then,
since r0 = 2

3 rs = 3, (x, y, z) = (3, 4, 5), which gives
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32 + 42 = 52.

Another set of possible solution is λ = 2
25 , and rs = 25

2 , r0 = 2
5 rs = 5, which165

leads to (x, y, z) = (5, 12, 13) to give

52 + 122 = 132.

Assigning w = 3 leads to λ = 2
9 and rs = 27

2 , r0 = 2
3 rs = 9, and (x, y, z) =

(9, 12, 15) to give

92 + 122 = 152.

Another possible set based on w = 9 is λ = 2
9 and rs = 81

2 , r0 = 2
3 rs = 27,

and (x, y, z) = (27, 36, 45) to give170

272 + 362 = 452.

Then, consider a series of shell thickness, such that w ∈ O+, leading to an
infinite number of solutions for (x, y, z) and hence proving xn + yn = zn to be
true for n = 2.

Next, the model is tested for other values of dimension numbers as in Remark
3.2.175

Remark 3.2. For n > 2 dimensions, if and only if λ adopts an integer value of 2
can feasible solutions be obtained for Eq. 3.12, i.e. λ = 2 can give r0 = 2rs, and
w = 2rs, but this leads to an original hypersphere that is twice larger than its
volume equivalent hypershell that has a thickness that is twice the shell radius.
This presents a shell that is warped into the original hypersphere being smaller180

than itself, which violates our required geometrical constraints (i.e. r0 < rs ,
and w < rs). Then, (x, y, z) =

[
r0,
(
1− λ

2

)
rs,
(
1 + λ

2

)
rs
]

= (r0, 0, 0). In this
case, (y, z) = 0, and conflicts with the requirement that x, y and z are positive
integers. To achieve a feasible geometry, the allowable range of λ in Figure 2
has to be adopted, and λ has to be a rational number. If r0

rs
in Eq. 3.1 is not a185

rational number, the failed geometry leads to w, r0, and rs being non-discrete,
which implies that r0,

(
rs − w

2

)
, and

(
rs + w

2

)
from Eq. 3.8, which represents

x, y, and z in (1.1), are irrational values.

Proof of Theorem 3.1. Based on Lemma 3.2, as number of dimensions, n→∞,
then the governing parameter for the size of the hypersphere and hypershell,190

λ → 0. This is verified by the graph of λ versus n (Figure 2, generated by
program listed in Appendix A).
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Figure 2: Graph of geometrical tolerance λ versus dimension n.

Then, w and r0 assumes the value of 0 based on Eq. 3.1 and Eq. 3.2. Since
for a feasible geometry to exist, w > 0 and r0 > 0, therefore, no solution exists
if n→∞. On the contrary, the range of λ is infinite for n = 1 when the number195

of dimension is reduced until the sphere is a dot in space.
This completes the proof of Theorem 3.1.

Remark 3.3. The point of inflexion for λ versus n occurs at n = 10 as highlighted
by the triangle in Figure 2. This asymptotic result is verified by plotting a graph
of second derivative of λ with respect to n for n values up to 100. The curvature200

κ is computed as

κ =
| d

2λ
dn2 |(

1 +
(
dλ
dn

)2)3/2 .
Then from Figure 3, it can be seen that the gradient becomes 0 in the graph

of curvature versus geometrical tolerance at n = 10. This denotes the start of
change in κ for the variation of λ in a space when the 10th dimension is reached.
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Figure 3: Graph of curvature κ versus dimension n.

The results may mean that as the number of dimensions of the hypersphere is205

increased, geometrical tolerance for construction of the hypergeometrical model
begins to decrease rapidly until a point where it started to relax and give less
accelerating tolerance to accommodate the hypergeometrical modelling.

It is well established that the mass of a hypersphere of fixed radius into the
realm of high dimensional hypergeometry experience an inflexion point whereby210

its volume increment suddenly changed direction counterintuitively to become
a decrement (cf. [22]). The unique behaviour of volume changing with space
dimensions will affect the hypergeometrical modelling. The λ tolerance relax-
ation appears to be associated with this inflexion point but occurring at n = 10
instead. In this regard, the geometrical tolerance pertains to modelling of a215

hypersphere and its volume equivalent hypershell, and not a standard hyper-
sphere of fixed radius. One may perceive a hypershell as a hypersphere that has
a smaller hyperspherical core subtracted from within it.

Given that r is any positive integer, consider the case of hypersphere with an
arbitrary external radius of r units, and for hypershell of shell radius (r − 0.5)220

unit and width 1 unit. It is to be noted that that both structures have the
same external radius r units, but the hypershell possesses a hollow spherical
space having internal radius (r − 1) units extended from its core; despite the
structural difference, both their asymptotic points for volume variation coincide.

The asymptotes for volume V versus dimension n align at the same position225

for hypershell and non-hollow hypersphere such that their shapes of volume
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change are similar when both their external radii are the same. Figure 4 shows
volumes of arbitrary hypersphere and hypershell versus dimension based on
fixed radius r = 2 units, which illustrates that the different hypergeometries
give rise to asymptotic points of volume variation at the same dimension point,230

i.e. n = 24. However, this does not imply that the volumes of these two different
structures are equal.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

n

V

3.2373

 

 

24

Hypersphere

Hypershell

Figure 4: Graph of volume V versus dimension n for arbitrary hypersphere (with external
radius 2 units) and hypershell (with external radius 2 units, and internal radius 1 unit).

4. Conclusion

Geometrical concepts are introduced into Fermat’s Last Theorem by express-
ing volumetric equivalence of a hypersphere and a hypershell in n-dimensional235

space. Failing to define non-root values for the geometry of the hypersphere
confirms that it is impossible to solve for infinite number of dimensions n in the
theorem. Specifically, for n→∞, the margins for allowing the solution becomes
infinitesimal, and a legitimate geometry fails to exist. There also exists a point
of inflexion where the rate of decrease of this margin suddenly decelerates due to240

the counterintuitive decrease of volume for a hypersphere or hypershell entering
into its realm of high dimensional hypergeometry.
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[3] L. Euler, Vollständige anleitung zur algebra, Royal Acaemy of Sciences, St
Petersburg, 1770.

[4] J. J. Macys, On Euler’s hypothetical proof, Mathematical Notes 82 (2007)250

352–356.
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[9] P. Dirichlet, Démonstration du théorème de Fermat pour le cas des 14e260

puissances, J. Reine Angew. Math. 9 (1832) 390–393.

[10] A. D. Centina, Unpublished manuscripts of Sophie Germain and a reval-
uation of her work on Fermat’s Last Theorem, Arch. Hist. Exact Sci. 62
(2008) 349–392.

[11] A. Legendre, Recherches sur quelques objets d’analyse indéterminée et par-265
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Appendix A- Program source code to plot λ versus n

Matlab program graphical plot demonstrating that as dimension n (set to
be 1000 as a numerical approximation of an infinite n), then the parameter
governing a feasible hypersphere and hypershell geometry λ → 0 (note that λ295

is denoted as lambda in the source code). The original hypersphere shrinks to
becoming a void, and the hyperspherical shell thickness approaches zero.

n_range=2:1000;       % Choose the range of n 

for n=n_range 

    alpha = ~rem(n,2); 

    lower_limit = 0; 

    upper_limit = 0.5*(n-(alpha+1)); 

    syms x                 % Create a symbolic variable x 

    f=0; 

    %%%%%%%%%%%%%%% Determine the function based on n %%%%%%%%%%%%%%%%%% 

    for i=lower_limit+1:upper_limit+1 

        k=i-1; 

        A(i) = 2*nchoosek(n,2*k+1)*(0.5)^(2*k+1); 

        B(i) = (2*k+1); 

        f=eval(['f' '+' 'symfun(A(i)*x^B(i), [x])']); 

    end 

    f=eval(['f' '-' '1']); 

    fprintf('\n\nThe function is:'); disp(f); 

    %%%%%%%%%%%%%%% Calculate the root of the function %%%%%%%%%%%%%%%%%% 

    xRoot = 0.5;                           % Initial guess for the root 

    g = x-f/diff(f);                       % Create a Newton-Raphson approximation  

    xNew = double(subs(g,'x',xRoot));      % Refined guess 

    i=1; 

    while abs(xNew-xRoot) > 1e-10          % Loop while they differ by more than 1e-10 

        xRoot = xNew; 

        xNew = double(subs(g,'x',xRoot)); 

        i=i+1; 

    end 

    lambda(n-1) = xNew;                     % Start from index=1 of lambda 

    fprintf('Approximate Root is %.5f',lambda(n-1)); 

end 

    %%%%%%%%%%%%%%% Plot of lambda versus n %%%%%%%%%%%%%%%%%% 

figure, 

plot(n_range, lambda,'o-','LineWidth',2,'MarkerSize',10,'color','k'); 

h1 =xlabel('n'); 

h2 =ylabel('\lambda'); 

set(h1, 'FontName', 'Times New Roman', 'FontAngle', 'italic', 'FontSize', 30); 

set(h2, 'FontName', 'Times New Roman', 'FontAngle', 'italic', 'FontSize', 30); 

set(h2, 'Rotation', 0); 
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Supplementary Material:
hypergeometrical models for dimensions of n = [2, 5]

 
 

General steps Procedural steps n=4 n=5 
Constraints Define geometrical 

constraints. rs – r0 ≥ 0, where (r0, w) ∈ , and rs ∈ . 

Volume of 
hypersphere and 
hypershell 

Define volume 
equations (can be 
referenced in 
Definition 2.1). 
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Expansion of 
equation and 
reformatting 

Expand LHS and RHS 
of the power terms to 
summarize volume 
equivalence equation. 
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Expressing 
thickness of shell 
as a function of its 
radius 

Substitute srw l= , 

where (λ, rs)Î . 
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Determining 
range of λ 

Given our original 
constraint: 
rs – r0 ≥ 0, define the 
inequality equation 
governing l . 
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0143 £-+ ll . 

5 53
0 16

1
2
55 lll ++- srr ≥ 0, 

0168040 35 £-++ lll . 

For a viable geometry 
to exist, define the 
upper and lower 
bounds of l . 
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General steps Procedural steps n=2 n=3 

Constraints Define geometrical 
constraints. rs – r0 ≥ 0, where (r0, w) ∈ , and rs ∈ . 

Volume of 
hypersphere and 
hypershell 

Define volume 
equations (can be 
referenced in 
Definition 2.1). 
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Expansion of 
equation and 
reformatting 

Expand LHS and RHS 
of the power terms to 
summarize volume 
equivalence equation. 

2
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Expressing 
thickness of shell 
as a function of its 
radius 

Substitute srw l= , 

where (λ, rs)Î . 
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Determining 
range of λ 

Given our original 
constraint: 
rs – r0 ≥ 0, define the 
inequality equation 
governing l . 
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upper and lower 
bounds of l . 
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