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ABsTrACT. This paper introduces proofs to several open problems in number
theory, particularly the Goldbach Conjecture and the Twin Prime Conjecture.
These two conjectures are proven by using a greedy elimination algorithm,
and incorporating Mertens’ third theorem and the twin prime constant. The
argument is extended to Germain primes, Cousin Primes, and other prime
related conjectures. A generalization is provided for all algorithms that result

in an Euler product like[] (1 — %)

1. INTRODUCTION

In 1742, at age 52, Christian Goldbach wrote to Leonard Euler formulating his
conjecture, proposing that all numbers can be stated as the sum of three primes. In
more modern terms, it can be restated as whether all even numbers can be expressed
as the sum of two primes. As of April 2012, Tomas Oliveira e Silva had verified
Goldbach’s conjecture by “brute force” up to 4 x 10'® and had double checked up
to 2 x 1017 [1][2]. In 2014, Harald Helfgott proved the ternary Goldbach conjecture
using ideas from Hardy, Littlewood and Vinogradov [3][4].

In 1825, 83 years after Goldbach’s conjecture, Sophie Germain used the now
called “Germain primes” in an attempt to prove a weaker version of Fermat’s Last
Theorem, that there are no solutions to the equation z™ + y™ = 2" for n > 4.
The Germain prime pairs are such that both p and 2p + 1 are primes, for example
{2,5}, {3,7}, and {5,11}. RSA encryption protocol relies on certain properties of
Germain primes that make encryption keys hard to factorize using heuristics like
Pollard rho.

Although the existence of twin primes may have been known since 300 BC,
(Euclid), in 1849 de Polignac proposed a more general conjecture that there are
infinitely many primes p such that p+ 2 - k is also prime (where k=1 would be the
twin prime conjecture). A more extensive historic review of twin primes can be
found in [5].

In 2013, Yitang Zhang published a paper where, for the first time, the prime
gap is bounded[6]. Although it was not the purpose of his paper to minimize the
gap, it is the first “official prime gap” to be estimated, at 70 million. Subsequently,
Terrence Tao launched the Polymath Project[7], an online collaborative effort to
optimize Zhang’s bound. In order to prove the Twin Prime conjecture, the bound
would need to be brought down to 2, which according to Tao[8] is not likely using
Zhang’s method.

In 1874, Franciszek Mertens proposes multiple theorems approximating products
and sums related to primes. One of them specifically, Mertens’ third theorem on
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the approximation to the product of (1— %), will play a critical role in the resolution
of several open prime problems.

As late as 1912, during the Mathematical Congress in Cambridge, UK, Edmund
Landau proposes what are now known as “Landau’s problems”. These were the
twin prime conjecture, Golbach conjecture, Legendre conjecture, and the infinity
of primes p = n? + 1.

This paper presents proofs to these problems using a greedy elimination algo-
rithm and Mertens’ approximation to [] (1 - % . Results are extended to other

open problems such as cousin primes and sexy primes.

2. PROOF OF GOLDBACH’S CONJECTURE

The Goldbach Conjecture states that every even number can be expressed as
the sum of 2 prime numbers. An extended version of this is the weak Goldbach
Conjecture which states that any odd number can be expressed as the sum of 3
primes. Proving the strong Goldbach conjecture immediately implies the weak
version by noting that Nogq = 3 + Neyen = 3 + pi + p;.

2.1. Elimination algorithm. We present a greedy elimination algorithm, and
prove that such algorithm returns all possible Goldbach pairs for a given n.

The algorithm is a greedy elimination algorithm that works as two parallel Er-
atosthenes sieves[9]. Once the algorithm reaches a critical prime (approximately
V/n, defined below), the algorithm will guarantee the nonexistence of composites in

the elimination array. The width of the array decreases as a function of O (ﬁ)

First, we introduce the main parameters of the algorithm.

| Symbol | Parameter |
n Number being tested for Goldbach pairs.
Sp Ordered sequence of primes. S = 2,3,5,7,11,13, ...
P Prime in sequence S, testing for compositeness of

elements in array F.
E(n x2) Elimination array. E(i,1) =¢,E(i,2) = n — i.
So E(i,1) + E(i,2) = n.

W Width of elimination array at iteration k
(wg=0 = n/2)
|E|,(z) Number of primes in E when p = x.
|E|.(x) Number of composites in E when p = «.

The last three parameters are related to each other

:wk

as:
|Elp(pr)+1Ele (pr)
2

See “Algorithm 17 for pseudocode!. Lines 1-4 populate the elimination array.
The second part of the algorithm (lines 5-12) go through the ordered sequence of
primes S, and test each of the individual cells in the array E for compositeness. If
one of the values in a column is divisible by the prime p;, then the column pair is
eliminated from E.

Definition 1. Critical prime: We define a critical prime p, as the prime in the
sequence S, that guarantees that no composite numbers are left in the array. That

N Python implementation of the algorithm is provided in the appendix.
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Algorithm 1 Goldbach Greedy Elimination Algorithm

1: for x =1 ton/2 do
2: E(.’lﬁ, 1) =T
3: E(xz,2)=n—=x
4: end for
5. while p; < /n do
6: for z =1 ton/2 do
7: if p;|E(x,1) or p;|E(z,2) then
8: Remove E(x) column
9: end if
10: end for
11: Di < Dit+1 € Sp
12: end while
prime width array
2 53 1 2 3 4 5 6 7 8 ONEEE 110EEE 13NN 15N 17N 10BEEE 21 SN 23BN 25 .. 46 47 48 49 50 51| 52 53
105/ 104 103/ 102 101/ 100 99, 98 97/ 96 95/ 94 93] 82 91 90 89 88 387 86 85 84 33 82 381 .. 60! S9SE& 57 S6I 5584 53
prime width array
3 26 3 5 7 B 11 13NN 17 19EER 23 250NN 29 31EER 35 37 41 43R 47 49N 53
103 101N 97 OSSN 91 30NN 35 S3EN 79 77EEN 73 71 67 GOSN 61 SO 55 53
prime width  array
5 10 3 5 11 17 23 298885| 41 47 53
103 101885 89 83 77 7188 59 53
prime width array
7 i 3 5| 17| 23| 29| 47| 53
103 101 89 83 77 59 53
prime width array
END 6 3 5 17| 23| 47| 53

103 101 89 83 59 53

F1GURE 2.1. Example of algorithm implementation for n=106.

is, |E|c(p«) = 0 . The critical prime is a prime smaller than the square root of the
maximum value in the array.

Theorem 2. For algorithm 1, there is a critical p, ~ v/n such that |E|.(p.) = 0.

Proof. Proof is done by contradiction. Let’s assume that there is a column x; that
is not eliminated and contains an invalid Goldbach pair combination, i.e., one of
the numbers is composite. Without loss of generality, let’s say that E(x;,1) =p-q.
Since the cell was not eliminated, it means that 2 of its prime factors must be larger
than the critical prime. But, if p > v/n and ¢ > /n then p-q > n, which results in
a contradiction. O

Theorem 3. The number of Goldbach candidate pairs left in the array E after
iteration k is:

(2.1) wkzg.ﬁ<1_1).ﬁ<1_2)

Dk Pk
pln pin

Proof. This is obtained from the following iteration:

(2.2) wy = {wk,l . (1 — %) ifpjn, wg_1 - (1 — %) if pin
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That is, on every iteration, a factor of (1 — %) columns is removed if p divides n,
or (1 — 2) if p does not divide n. O

Corollary. The lower bound for the width wy, is given by:

(23) wk>2-ﬁ(l—2)

p>2 p

In order to approximate the Fuler product, we use Mertens’ third theorem and
the Twin Prime constant definition.

Theorem 4. Mertens’ third theorem

1 1 -
(2.4) STI(--) = &
2 D Inx

where v is the Euler-Mascheroni constant.

Proof. Proof can be obtained in [10][11]. O

By squaring and rearranging, we have:

T 2 —
1 2
(2.5) H(l—) RN
52 D (Inz)
Definition 5. The Twin Prime constant, 7o, is defined as®:
o (1_2
(26) Ty = Hopc>2 ( 19:)2
Hp>2 (1 - ;)

Rearranging, we can state that the following two products converge as:

) (210 1) -

Replacing in Mertens’ third theorem, we have:

(2.8) f[ (1 - 2) 4Ty (f_%

2
50 p nz)

Theorem 6. The lower bound of Goldbach pairs is given by:

4-n-m9-e"2Y

(2.9) wy > (lnn)2

2Although the definition is sometimes presented as [] f;’:fg , it can be easily converted to the

version above by dividing numerator and denominator by p2.
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Proof. Replacing the product in 2.3, and evaluating at the critical prime /n we
have:

—2v 4-m-mg-e" 2
(2.10) wk>ﬁ~4-7r2~ c :%
(Inn)

z=vn

Theorem 7. Goldbach Conjecture: All even numbers are the sum of 2 primes.

Proof. Theorem 2 guarantees that there are no composites left in the array once the
algorithm reaches the critical prime p, = y/n. Theorem 6 gives a lower bound on

the with of the array of O(ﬁ) at the critical prime. Then all columns remaining

in the array, when the algorithm reaches the critical prime, are valid Goldbach pairs
for n. O

It is important to note that the actual number of Goldbach pairs depends on the
prime factors of n. When p|n, the adjusting factor for the array’s width is (1 — %),

instead of (1 — % . In order to obtain a more accurate count of Goldbach pairs,

the lower bound wj must be multiplied by the product:

)-11(+5%)

pln

=

1—
(2.11) 11 (1 —

pln

BN

Also, Mertens’ theorem is an approximation to the Eulerian product. For smaller
numbers, the error is large, so the product should be evaluated explicitly instead
of using Mertens’ approximation. The critical primes up to 290 would be given by:

| Upton [p*| Factor |

6 2 z
24 3 2
48 5 5
120 7 i
168 11 T
290 13 =
pn+12 —1|pn %H (1 - %)

For example, if n = 20, then wy = 10. And the factor would be given by
$(1 — 2) = . Then, the lower bound for Goldbach pairs would be w; > 1 > 1.
The Goldbach pairs for 20 are (3,17), and (7,13).

3. ProoF oF THE TwIN PRIME CONJECTURE

For the Twin Prime conjecture, the only change needed in the algorithm is the
way the elimination array is populated.®> Row 1 of the array contains all natural
numbers up to a number n and row 2, contains n + 2.

Theorem 8. For algorithm 2, there is a critical p, = v/n + 2 such that |E|. = 0.

3A Python implementation of the algorithm is provided in the appendix.
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Algorithm 2 Twin Primes Greedy Elimination Algorithm

1: for x =1ton do

2 E(z,1)==x

3 E(z,2)=x+2

4: end for

5. while p; <+/n +2 do

6 for z =1ton do

7 if p;|E(z,1) or p;|E(z,2) then
8 Remove E(x) column

9

end if
10: end for
11: Pi < Di+1

12: end while

Proof. The proof is the same as for Goldbach’s algorithm. Let’s assume that there
is a column x; such that F(z;,2) is composite after the algorithm reaches p,. That
is, E(x;,2) = p- q. Since the number was not eliminated by the algorithm, both of
its prime factors must be larger than v/n 4+ 2. But, if p > v/n 4+ 2 and ¢ > v/n + 2,
then p - ¢ > n 4+ 2, which is a contradiction. O

Theorem 9. The lower bound of Twin prime pairs is given by:
8mae™2Y
(In(n 4+ 2))?

Proof. This comes from the width estimate at the critical prime, given by:

(3.1) W ="Mn -

1V 2
(3.2) o =wo = [ <1_>
2 p>2 p
Using equation 2.8, we have:
1 4mpe=27

Evaluating at the critical p. = v/n + 2, and using wg = n, it results in:

8mee™2Y
A4 . A
(3.4) k=T n(n + 2))2

0

Theorem 10. Twin prime conjecture. There are infinite pairs of primes such that
Pit1 =Dpi +2.

Proof. From theorem 8, we have that there are no composite numbers left in the
array when the algorithm reaches the critical prime. But we have a lower bound
wy, of O (ﬁ) Then, all the pairs left in the array at the critical prime are valid
twin prime pairs. [
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4. A GENERALIZATION

7

For any greedy composite elimination algorithm, the lower bound of prime ele-
ments in the array can be stated as:

(11) (-2
4.1 wE = wq - <1 — >
{pcA} b
| Parameter | Description \ Examples | ]
D Critical prime
as defined in definition 1
h Height of the For Goldbach, h=2;
elimination array twin primes h=2;
prime triplets, h=3;
arithmetic progressions,
h=number of terms in
progression.
A Group of primes applied For Goldbach, Twin, triplets,
in the elimination algorithm A=all primes;
For p=n? +1,
A=p=1 mod4

The product can then be approximated by using the following:

(4.2)

10-5) (i)

See [12] for proof. Here, L is a constant that “absorbs” the product of those

primes not belonging to A.
Recalling the critical prime p, as a power function of the original size of the
array that guarantees |E|.(p.) = 0, it can reformulated more generically as:

(4.3)

1

Dx = (fm(x)) “

Then, the lower bound for the array size is as follows:

(4.4)

wk:wo-H<1—Z>~w0~L

peEA

This resolves the following conjectures, affirmatively on all counts. Using the
generalized formula, and a greedy elimination algorithm, we can guarantee that
there are no composite numbers in the array once the algorithm reaches the critical

prime p,.
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] Problem \ Critical prime (p) \ Aes, \ wo \ U \ h \ Result \
Goldbach NZD All primes % | 2|2 Infinite
conjecture

Twin primes Vn +2 All primes n | 2| 2| Infinite
Cousin primes vn+4 All primes n | 2| 2| Infinite
Sexy primes Vn+6 All primes n | 2|2 Infinite
Prime pairs Van +b All primes n | 2| 2| Infinite
(n, an +b)
De Polignac vVn+2-k All primes n | 22| Infinite
(p,p+2-k)
Prime triplets Vn+6 All primes n | 2| 3| Infinite
(n, n+2, n+6)
Prime quadruples Vn+10 All primes n | 2|4 Infinite
Sophie Germain V2n+1 All primes n | 2|2 Infinite
primes
Primes n” + 1 VnZ+1~n {p=1 mod4} | n | 2|2 | Infinite
k-tuples v/max(ng, ) All primes n | 2| k| Infinite

5. CONCLUSION

This paper introduces a greedy elimination algorithm to prove various open
conjectures related to primes. Then, it is proven that such algorithm guarantees
that no composites remain in the array once the critical prime is reached. The
width of the array is estimated using Mertens’ third theorem and the twin prime

constant.

By generalizing, multiple open conjectures related to primes are proven affirma-

tively.
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APPENDIX A. PYTHON CODE

This section contains the python code for the algorithm. Code can also be
downloaded from goo.gl/v8t27m.

Code can be run locally, or in an online python compiler, e.g. https://www.
tutorialspoint.com/execute_python_online.php

import numpy as np
import sympy as sm

def get pairs(n):

# Assignments below could be done with a loop, but the lambda
function below suffices.

# arr 4s the array containing the pairs for the chosen problem.

# nmaz 15 the mazimum limit that the p*xx2 needs to be checked to
exclude any composite numbers.

# Default code is for Goldbach pairs. Comment/uncomment lines
below to choose specific problem. Problem description is at
end of each line.

arr , nmax = np.fromfunction(lambda i, j: (1 — i) % j + i %= (n — j)
, (2, int(n / 2)), dtype=int) , n # Goldbach pairs

# arr, nmar = np.fromfunction (lambda i, j: (1 — i) *x j + i * (j+2)
, (2, n), dtype=int), n + 2 # Twin primes

# arr, nmazx = np.fromfunction (lambda i, j: (1 — i) * j + i x (j+4)
, (2, n), dtype=int), n + 4 # Cousin primes

# arr, nmax = np.fromfunction (lambda i, j: (1 — i) *x j + i * (j+6)
, (2, n), dtype=int) , n + 6 # Sexy primes

# arr, nmaz = np.fromfunction (lambda i, j: (1 — i) % j + 1 x (2xj
+ 1), (2, n), dtype=int), 2xn+1 # Sophie Germain primes

p =2

i=0

while p *% 2 < nmax:
while i < arr.shape[1]:



10 JUAN GUILLERMO OROZCO

if (arr[0, i] % p =0 and arr[0, i] != p) or (arr[l, i] %
p=—0 and arr[l, i] != p):
arr = np.delete(arr, i, 1)
else:
i4=1
i=0

p = sm.nextprime(p)

arr=np.transpose(arr)

print arr

print "Found {} pairs".format(arr.shape[0])
get pairs(440)
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