
The Hypothesis of Perpendicular Time 

Abstract 

The entirety of this document assumes the existence of a maximum speed with which any 

entity in the universe can travel from a set of points in space to any other set of points in 

space. The consequences on the motion of the constituents of a typical system of particles, 

when the system is travelling at a speed which is close to the speed limit of the universe, 

are initially subjected to a qualitative analysis, the conclusions of which hint at a 

mechanical definition of time. A quantitative analysis of the same reveals the Lorentz 

Transformation Factor. The fact that the Lorentz transformation factor is derived on 

applying the definition of time, which was hinted from the qualitative analysis, supports 

that definition. The quantitative analysis, however, also revealed a different value 

(transformation factor*). Both the transformation factors are combined to form one 

transformation factor, which, given that n (the number of spatial dimensions in the 

universe through which any moving object traverses) is large enough, approximately 

equates to the Lorentz Transformation Factor. Thus, using the results derived here, the 

value of n might be revealed. 

 

 

Distinctions of this document from Special Relativity: 

 One of the postulates of special relativity is that the speed of light remains constant for any 

observer. This document, however, does not use that postulate, and thus, unlike special 

relativity, does not make direct use of any of the conclusions of the Michelson-Morley 

experiment. 

 A definition of time is proposed, on the application of which, the transformation factors are 

obtained. 

 Apart from the Lorentz Transformation Factor, a new transformation factor is obtained, which, 

on combining with the Lorentz Transformation Factor, yields a value which approximately 

equates to the Lorentz Transformation Factor, given that n (revealed later in the document) is 

large enough. 

Notations and Terminologies: 

 Transformation Factor*- refers to the ratio of the velocity of the concerned particle relative to 

the concerned system, as measured by an observer moving relative to the system, to the 

velocity of the concerned particle relative to the concerned system, as measured by an 

observer, stationary relative to the system. 

 O - the observer 

 S - a system of particles   

 𝒍 -  the speed limit of the universe 

 

 



1) Introduction 

Considering a system of particles ‘S’, which, for 

the sake of simplicity, is isolated from its 

surroundings. Any change in the system must, 

therefore, occur exclusively because of internal 

processes, all of which must require some sort 

of motion, and the motion must be that of the 

system’s constituents relative to one another. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The illustrations are of S in two different 

configurations, where A is its initial 

configuration, and B is its final configuration, 

which S attains from A after the rearrangement 

of the hexagons (its constituent particles). If 

referred to a clock placed outside of the system, 

a quantity ‘t’ can be assigned to the time taken 

for the system to attain B from A. 

Hypothetically, if a system S’ is considered, 

which is identical to the system S in its initial 

configuration (A), such that it attains a final 

configuration (B), which is identical to that of S, 

but dampen the relative motion of the 

hexagons, right from its initial configuration, the 

time taken by S’ to reach its final configuration 

from its initial configuration must be more than 

t. 

If two identical clocks are taken and one of 

them is placed in S, and the other one is placed 

in S’, but the relative motion of the constituents 

of the clock in S’ are damped in a manner which 

is similar to that applied on the hexagons of S’, 

then it must measure the time elapsed between 

the initial and final configurations of S’ to be the 

same as that measured for S by the clock placed 

in S, because the functioning of the clock also 

depends on the relative motion of its 

constituent particles. (a more comprehensive 

explanation is provided later in this document) 

A simultaneous observation of both the systems 

from the point of view of an observer situated 

outside of both the systems must reveal that 

‘time has slowed down’ for S’. Naturally, this 

situation hints at a definition of time: 

Time for a system is the motion of its 

constituents relative to one another. 

Considering an observer ‘O’ observing the 

system of particles ‘S’ from outside of it: Owing 

to the existence of a universal speed limit 𝑙, 

anything moving relative to O, as measured by 

O, cannot exceed 𝑙 in terms of its speed.  

Obviously, the same applies for the motion of S 

and its constituent particles. If S travels at a 

speed 𝑣𝑆 relative to O, as measured by O, the 

speed of any of the hexagons relative to S, but 

measured by O must be such that they do not 

exceed 𝑙 relative to O, as measured by O. Thus, 

relative to O, as measured by O, for 𝑣𝑆 (the 

constant, non-zero velocity of S) being 

infinitesimally close to 𝑙, the velocities of the 

hexagons relative to S, and measured by O, 

must also be infinitesimally small such that they 

don’t exceed 𝑙, as measured by O.  

The concern is with the speed of the hexagons 

relative to S, but measured by O, because of the 
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following reason- Our perception of time:    

Time is what a clock measures. As far as an 

ordinary clock is concerned, be it moving or 

stationary, our interpretation of time, based on 

our observation of the clock, depends on the 

motion of the ‘hands’ of the clock relative to the 

frame of the clock, as measured by us. In the 

instance of the simultaneous observation of the 

systems S and S’ (as explained above), and the 

identical clocks placed inside of each of them, 

by an observer situated outside of both of those 

systems, the perception of the observer of the 

slowing down of time for S’ is a result of the 

observer’s measurement of the motion of the 

constituents of S’ relative to S’, as measured by 

himself. Therefore, as observed by O, the 

speeds of the hexagons relative to S, but as 

measured by O must be such that the speed 

limit 𝑙 does not get violated relative to him, as 

per his observation. This would mean that O 

would observe the motion of the hexagons 

relative to S to be damped in contrast to the 

situation where S would have been stationary 

relative to him. Thus, to O, for S travelling at a 

speed which is close to 𝑙, ‘time for S would 

seem to have slowed down.’ 

 

2) A quantitative analysis of the 

phenomenon characterized by the 

damped motion of the constituents 

of S: 

So far, it is clear that the observation of the 

damped motion of the hexagons of a ‘speedy’ S 

is a consequence of the existence of a cosmic 

speed limit 𝑙, but the extent to which the 

motion gets damped is still not apparent. 

Acknowledging one of the possibilities, 𝑙 might 

be compared to a ‘concrete barrier’ (as 

illustrated) which may be attained by any 

entity, but must be impossible to exceed. 

 

 

 

 

 

 

 

 

 

 

For instance, if the system S 

travels at a constant velocity 𝑣𝑆 

relative to O, as measured by O, 

and if the velocity vectors of all 

the hexagons point in the same 

direction as S’s direction of 

motion, the maximum magnitude 

of velocity of any of the hexagons 

relative to S, but as measured by 

O must be 𝑙 − 𝑣𝑆. In a situation, 

wherein the system starts 

accelerating such that 𝑣𝑆 tends to 

𝑙, and the minimum magnitude of 

velocity of any of the hexagons 

relative to S is 𝑣 as measured by O, then for the 

instant where 𝑣 = 𝑙 − 𝑣𝑆 , the magnitude of the 

velocities of all the hexagons must become 

precisely the same. This implies that at a certain 

value of 𝑣𝑆, the rate of all the processes of S 

must become equivalent to the rate of the 

slowest process inside of S. This is absurd! Thus, 

𝑙 cannot be compared to a concrete barrier. 

Let’s examine the second possibility of the 

nature of the function which is responsible for 

the damped motion of a system’s constituents 

when the system is travelling at high velocities. 

If the maximum attainable velocity in any given 

direction, as measured by O but relative to S is 

denoted by 𝑥; for S being stationary relative to 

O, 𝑥 = 𝑙, but for S not being stationary relative 

to O, and moving at a constant, non-zero 

v 

The barrier- It exists 

everywhere (its 

length being 

perpendicular to any 

hexagon’s velocity 

vector) in space, and 

travels at a speed of 

l relative to the 

concerned observer, 

such that no 

hexagon can exceed 

l relative to the 

observer. 



velocity relative to O, 𝑥 = 𝑙′. (the values of 𝑙′ 

have been obtained on the following page) 

The speed reservoir- Considering an object 𝑝, 

initially at rest relative to O, which, when acted 

upon by an impulse 𝑗, attains a velocity 𝑢 

relative to O, as measured by O. Obviously, 𝑢 

remains constant for constant values of 𝑝 and 𝑗. 

Thus, it is not wrong to assert that the ratio 
𝑢

𝑙
 

must also remain constant for those given 

values, where 𝑙 is the speed limit of the 

universe.  

If 𝑥 is compared to a reservoir (as illustrated) 

such that any object 𝑝, when acted upon by an 

impulse 𝑗, always utilizes a constant fraction of 

that reservoir: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It follows that 
𝑢

𝑙
=

𝑢′

𝑙′  

Where 𝑢′ is the velocity of p, attained relative 

to S, but measured by a non-stationary O, 

initially moving at a constant velocity relative to 

p. Or, 𝑢′ is the velocity of 𝑝 upon being acted 

upon by 𝑗, when its initial velocity was constant 

and non-zero relative to O.  

S: A system (S) of particles is considered, which, 

at random intervals of time, ejects constituent 

particles in random directions. The mass of the 

ejected particle is negligible as compared to the 

mass of the rest of the system. An essential 

property of the system is that the velocity of 

the ejected particle relative to the system, as 

measured by an observer on the system is 

always the same, regardless of the time and the 

direction of ejection. 
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𝑥, for a given direction, refers to the maximum 

attainable velocity of the particle 𝑝 ejected by S, 

relative to S, and measured by O. In the 

situation when S is stationary relative to O, 

obviously, 𝑥 = 𝑙, and in the situation when S is 

moving at a constant velocity 𝑣𝑆 relative to O, 

𝑥 = 𝑙′. 𝑙′ is distinct for different (parallel or 

perpendicular) directional components relative 

to S’s direction of motion.  

Parallel to S’s direction of motion: 

𝑙′ = 𝑙 − 𝑣𝑆 

Perpendicular to S’s direction of motion: 

𝑙′ = √𝑙2 − 𝑣𝑆
2 

 

 

 

 

 

 

 

 

 

Since                             
𝑢

𝑙
=

𝑢′

𝑙′
  

𝑢′ = (
𝑢

𝑙
) 𝑙′ 

Thus, for the directional component 

perpendicular to the system’s direction of 

motion- 

𝑢′ = (
𝑢

𝑙
)√𝑙2 − 𝑣𝑆

2 

𝑢

𝑢′
=

𝑢

𝑢
𝑙

√𝑙2 − 𝑣𝑆
2

 

=)                            
𝑢

𝑢′
=

1

√1−
𝑣𝑠

2

𝑙2

          (1) 

Note that this is the Lorentz Transformation factor. 

And, for the directional component parallel to 

the system’s direction of motion- 

𝑢′ = (
𝑢

𝑙
) (𝑙 − 𝑣𝑆) 

𝑢

𝑢′
=

𝑢

(
𝑢
𝑙

) (𝑙 − 𝑣𝑆)
 

=)                      
𝑢

𝑢′
=

𝑙

𝑙−𝑣𝑆
          (2) 

It is important to note that all the observations 

except that of 𝑙 are made relative to S, but are 

measured by O. 𝑙 as a measurement is defined 

relative to O, as perceived by O. Also, 𝑢 and 𝑢′ 

are the final velocities attained by 𝑝, which is 

ejected by S, on being acted upon by the same 

mechanism, and therefore, the same amount of 

impulse. 

The situation wherein O observes S travelling at 

a constant velocity 𝑣𝑆 relative to himself, he 

measures the velocity 𝑢′ of the ejected particle 

relative to S, which turns out to be slower than 

it would have been in the situation where S 

were stationary relative to him. Since, time for a 

system is the motion of its constituent particles 

relative to one another, the observation of S 

made by O should reveal that the passage of 

time has slowed down for the inertial frame of 
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𝑙′ 

 

𝑙 

 

The maximum attainable 

velocity of the ejected 

particle perpendicular to 

S’s direction of motion. 

The maximum attainable 

velocity of the ejected 

particle parallel to S’s 

direction of motion. 



S, and that the ratio of the speed of the ejected 

particle relative to S, but measured by O when S 

is moving at a constant non-zero velocity 𝑣𝑆 

relative to him, to the speed of the ejected 

particle relative to S, but measured by O, when 

S is stationary relative to him, must act as a 

viable measurement of the ratio of the passage 

of time in both inertial frames. Therefore, it is 

unsurprising that (1) turned out to be ‘precisely’ 

the Lorentz transformation factor. 

Since 𝑢 and 𝑢′ are the final velocities of the 

same particle being acted upon by the same 

amount of impulse- 

                              𝑚𝑢 = 𝑚′𝑢′  

=)                          𝑚′ = 𝑚(
𝑢

𝑢′)       (3) 

Where 𝑚 is the mass of the particle when it is 

stationary and 𝑚′ is its mass when it is not 

stationary. This implies that the mass of a 

particle transforms as a function of its motion in 

accordance with (1) and (2). 

3) An analysis of the movement of S 

and its constituents in 𝒏 dimensions. 

Considering the motion of S and its constituents 

with reference to a two-dimensional coordinate 

system, it can be easily deduced that the 

velocity of the ejected particle can be resolved 

into two components- one of them parallel to 

S’s direction of motion, and the other 

component perpendicular to S’s direction of 

motion. 

With reference to a three-dimensional 

coordinate system, the velocity of the ejected 

particle can be resolved into three components- 

one of them parallel to S’s direction of motion, 

and the other two components perpendicular 

to S’s direction of motion. 

Generalizing this distribution of velocity 

components with reference to an 𝑛-

dimensional coordinate system, the velocity of 

the ejected particle can be resolved into 𝑛 

components- one of them parallel to S’s 

direction of motion and 𝑛 − 1 components 

perpendicular to S’s direction of motion. 

Therefore, if 𝑛 ≫ 1, the number of 

perpendicular components will be far greater 

than the number of parallel components, in 

which case, the effects of (2) can be neglected, 

and only (1) might be accounted for, which, 

given the correctness of Einstein’s Theory of 

Special Relativity, seems to be the case. 

However, using Special Relativity, given that the 

experimental value of the Lorentz 

transformation factor for any given velocity of a 

moving inertial frame is determined within a 

reasonable range of accuracy allowed by the 

apparatus and the relevant surrounding 

conditions, a small discrepancy between that 

value, and its theoretical value might hint at the 

number of dimensions that any moving object 

in our universe traverses through.   

Combining expressions (1) and (2), and 

obtaining an equivalent transformation factor 

for 𝑛 dimensions, which, on inputting the value 

of 𝑛 must approximately yield the Lorentz 

Transformation Factor- 

A system of particles is considered, which shall 

not be depicted. The system, at any instant of 

time, ejects 𝑛 constituent particles in each of 

the 𝑛 mutually perpendicular directions, such 

that all those particles have the same 

magnitude of velocity 𝑘 when observed by an 

observer stationary relative to the system which 

they were ejected from and one of those 

ejections is in the same direction as the 

system’s direction of motion (if it is moving 

relative to the observer) (The motion must not 

be accelerated.) 

𝑛 is the number of dimensions in the universe, which 

any moving object traverses through. 

Let 𝑘′ be the speed of the ejected particle 

across any of the 𝑛 perpendiculars, as measured 



by an observer moving at a constant, non-zero 

velocity 𝑣𝑆 relative to the system.  

Then for the ejection that is in the system’s 

direction of motion, using (2): 

𝑘′ = (
𝑘

𝑙
)(𝑙 − 𝑣𝑆) 

And, for any of the 𝑛 − 1 ejections that are 

perpendicular to the system’s direction of 

motion, using (1): 

𝑘′ = (
𝑘

𝑙
)√𝑙2 − 𝑣𝑆

2 

For the observation of the ejections by a 

stationary observer, the magnitude of the 

vector sum of the velocities of all the ejected 

particles- 

𝑚 = √𝑛𝑘 

Similarly, in the case of a non-stationary 

observation, when the observer is moving at a 

velocity 𝑣𝑆 relative to the system, and because, 

relative to the direction of 𝑣𝑆, there is 1 parallel 

ejection and 𝑛 − 1 perpendicular ejections, the 

magnitude of the sum of the velocities of all the 

ejected particles-  

𝑚′ = √(
𝑘

𝑙
)

2
{(𝑙 − 𝑣𝑆)2 + (𝑛 − 1)2(𝑙2 − 𝑣𝑆

2)}   

=) 𝑚

𝑚′
= 𝑘√

𝑛

(
𝑘

𝑙
)

2
{(𝑙−𝑣𝑆)2+(𝑛−1)2(𝑙2−𝑣𝑆

2)}
 

γ′ = √
𝑛

[(1−
𝑣𝑆
𝑙

)
2

+(𝑛−1){1−(
𝑣𝑆
𝑙

)
2

}]
               (4) 

(
𝑚

𝑚′ = γ′) 

which is the required expression 

(Transformation Factor). 

If γ′ is the experimental value of the Lorentz 

transformation factor, and γ is the theoretical 

value of the Lorentz transformation factor for a 

given velocity 𝑣𝑆 of the concerned moving 

inertial frame of reference, and - 

𝑎 =
γ′

γ
 

Then, 

𝑎𝛾 =
√

𝑛

[(1 −
𝑣𝑆
𝑙

)
2

+
(𝑛 − 1)1

𝛾2 ]
 

Where          
1

𝛾2 = 1 − (
𝑣𝑆

𝑙
)

2
 

=) 𝑎2𝛾2 =
𝑛

[(1 −
𝑣𝑆
𝑙

)
2

+
(𝑛 − 1)1

𝛾2 ]
 

=) 𝑛 = (
𝑎2

1−𝑎2) [𝛾2 {1 − (
𝑣𝑆

𝑙
)}

2
− 1]          (5) 

𝑛 is the number of dimensions in the universe 

through which any moving object traverses. 

4) Conclusion 

All the expressions derived in this paper are 

based on the definition of time proposed earlier 

in the paper, which might have other 

applications that have not been demonstrated 

in this paper. (1) is the Lorentz Transformation 

Factor, which is essentially a measure of the 

dampness of the motion of the constituents of 

any system, in perpendicular directions of the 

direction of motion of the system travelling at a 

given constant velocity relative to the observer 

in context. Since, with reference to any n-

dimensional coordinate system, for any moving 

system, the number of parallel components of 

the constituents’ velocities equals only one, and 

the rest of the components are perpendicular, 

given that the number of dimensions are high 

enough, (4) must approximately equate to the 

Lorentz Transformation Factor. 
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