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A.W. BECKWITH,1 S.S. MOSKALIUK21Physis Department, Chongqing University½College of Physis, Chongqing University Huxi Campus,( No. 44 Daxuehen Nanlu, Shapinba Distrit, Chongqing 401331, People's Republi of China;e-mail: abekwith�uh.edu)2Bogolyubov Institute for Theoretial Physis,Nat. Aad. of Si. of Ukraine(14-b, Metrolohihna str., Kiev, 03680, Ukraine; e-mail: mss�bitp.kiev.ua)GENERALIZED HEISENBERG UNCERTAINTYPRINCIPLE in QUANTUM GEOMETRODYNAMICS andGENERAL RELATIVITYPACS 98.80.Q, 98.80.Cq,95.35.+d, 95.36.+x In this paper we fous on energy �ows in Universe as a simple quantum system and are on-entrating on the nonlinear Hamilton-Jaobi equation, whih appears in the standard quantumformalism based on Shr�odingier equation. The ases of the domination of radiation, barotropi�uid, and the quantum matter-energy are onsidered too. As a result, there is formulated thegeneralized Heisenberg unertainty priniple (GHUP) for a metri tensor. We also use theKuzmihevs Geometrodynamis as a way to quantify an inter relationship between the GHUPfor a metri tensor and onditions postulated as to a barotropi �uid, i.e. dust for the earlyUniverse onditions.K e y w o r d s: Generalized Heisenberg unertainty priniple, general relativity, universe, os-mology, quantum geometrodynamis1. IntrodutionThe answer to the question brought up in the ti-tle of this paper an be provided after omparativedesriptions of the Universe by lassial and quan-tum theories. As is well known, the Universe is sub-jet to lassial theories on large spae-time saleswhereas on small spae-time sales, omparable withPlank sales and length, it should be desribed froma Quantum-theoretial perspetive.The �rst goal of our researh will be to introduea framework about the speed of gravitons in �heavygravity�, and this is important eventually, as illus-trated by C. Will [1, 2℄, as it ould possibly be ob-served. Seondly, it also will involve an upper boundto the rest mass of a graviton. The third aspet of theinquiry of our manusript will be to ome up with a© A.W. BECKWITH, S.S. MOSKALIUK, 2013

variant of the HUP, involving a metri tensor, as wellas the Stress energy tensor, whih will in time allowus to establish a lower bound to the mass of a gravi-ton, preferably at the start of osmologial evolution.The artile onludes as answering a statement byMukhanov, in Marel Grossman 14 as to his inter-pretation as to the importane of Causal barriers, inplae in terms of prior to present universe transitionsin osmology. In the Mukhanov view, Causal barri-ers reate an averaging e�et of ontributions fromprior universe onditions to the present universe ini-tial onditions. In fat, this means, that e�etively,in the ase of a multiverse, that the existene of prioruniverse ontributions from a multiverse, would bee�etively a single universe repeating itself. I.e. ourview is instead very similar to an Ergodi mixing pro-tool. Even in the ase of multiverse ontributions toa present universe. This is the basis of muh of our



2analysis. Where Mukhanov implied stating that in-stead of an Ergodi mixing of prior ontributions froma multiverse, that ausal struture would ALWAYSrestrit our analysis of information from a prior en-semble to be the same as a repeating single universemodel for yli universes. We regard the Mukhanovinterpretation as indefensible. And state why in thelast hapter of this artile.We referene what was done by Will in his livingreviews of relativity artile as to the `Confrontationbetween GR and experiment�. Spei�ally we makeuse of his experimentally based formula of [1, 2℄, with
vgravitonthe speed of a graviton, andmgravitonthe restmass of a graviton, and Egravitonin the inertial restframe given as:
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(1)Our take away from Formulae 1 is that if a gravitonis massive, that the speed of travel of graviton dropsbelow the value of c, the speed of light, with masslessgravitons traveling at the speed of light. This in ad-dition puts restritions upon the energy of a gravitonand argues against simple approximations like. Henewe follow [2℄ in terms of the following ideas as givenin Formula 2, next:
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. (2)Here, ∆ta is the di�erene in arrival time, and ∆teis the di�erene in emission time in the ase of theearly Universe, i.e. near the big bang, then if in thebeginning of time, one has, if we assume that there isan average Egraviton ≈ ~ · ωgraviton, and
∆ta ∼ 4.3× 1017 sec, ∆te ∼ 10−33 sec, z ∼ 1050.(3)Then, (
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And if one sets the mass of a graviton [3℄ into Eq.(1), then we have in the present era, that if we lookat primordial time generated gravitons, that if oneuses the
∆ta ∼ 4.3× 1017 sec, ∆te ∼ 10−33 sec, z ∼ 1055.(5)Note that the above given frequeny for the gravitonis for the present era, but it starts assuming an initialgenesis from an (initial) in�ationary starring pointwhih is not a spae-time singularity.Note this omes from a sale fator, if z ∼ 1055 ⇔
ascale−factor ∼ 10−55, i.e. 55 orders of magnitudesmaller than what would normally onsider, but herenote that the sale fator is not zero, so we do nothave a spae � time singularity.We will next disuss the impliations of this pointin the next setion, of a non zero smallest sale fa-tor. Seondly the fat we are working with a massivegraviton, as given will be given some redene as towhen we obtain a lower bound, as will ome up in ourderivation of modi�ation of the values [3℄
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(6)The reasons for saying this set of values for the varia-tion of the non gttmetri will be in the 3rd setion andit is due to the smallness of the square of the salefator in the viinity of Plank time interval.Leading to nonzero initial entropy as stated in Ap-pendix A, we also examine a Rii salar valueat the boundary between Pre Plankian to Plank-ian regime of spae-time, setting the magnitude ofRii Salar k as approahing �at spae onditionsright after the Plank regime. Furthermore, we havean approximation as to initial entropy prodution
Sinitial(graviton) ∼ 1037. Then we get an initial ver-sion of the osmologial �onstant� as it is shown inthe Appendix D whih is linked to initial value ofa graviton mass. Appendix E is written for theRiemannian- Penrose inequality, whih is either anonzero NLED sale fator or quantum boune as ofLQG. Finally, Appendix F gives onditions so thata pre Plankian kineti energy (in�aton) value greater



3than Potential energy ours, whih is foundationalto the lower bound to Graviton mass. We will inthe future add more struture to this alulation soas to on�rm via a preise alulation that the lowerbound to the graviton mass, is about 10−70 grams.Our lower bound is a dimensional approximation sofar. We will make it exat.2. The �ow of energy in a quantum proessFollowing [4℄, we start with a quantum system de-sribed by a wave funtion, ψ(x, t), the time evolutionof whih is given by the Shr�odinger equation. TheBorn probability rule is then used to alulate theprobability P (x′, t′) of �nding the system at x′ at alater time t′. Thus P (x′, t′) = |ψ(x′, t′)|2 = R2(x′, t)where R(x′, t) is the amplitude of the �eld. So our�nal result depends only on one of the pair of realnumbers in ψ(x, t) = R(x, t)eiS(x,t)/~. The informa-tion as to how the phase evolves in time is, as it were,`hidden' in the evolution of the omplex wave fun-tion ψ(x, t). It would perhaps be revealing to have apair of equations showing expliitly the evolution ofthe two real �elds R(x, t) and S(x, t).The simplest way to arrive at the equations on-taining R and S is to substitute ψ = ReiS/~ into theShr�odinger equation and separate the resulting equa-tion into its real and imaginary parts. The imaginarypart an be written in the form
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= 0, (7)where we have written ψ(x, t) = R(x, t)eiS(x,t)/~ with
R2 = ρ.Sine, at this stage, we are simply analysing theShr�odinger equation, equation (7) provides an ex-pression for the onservation of probability P (x, t).The real part takes the form1
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+ V = 0. (8)We will all this the quantum Hamilton-Jaobi equa-tion [QHJ℄ for reasons that we will bring out as wego along.These two equations must have the same ontentas the Shr�odinger equation and it would surely be1 We are well aware that we here in this segment are treating
S as a Torsor. For a physial treatment of S, see page 95 ofMakey [5℄.

of interest to see if they an give a di�erent insightinto the evolution of quantum systems. Note we arenot departing from the usual interpretation yet, weare merely drawing attention to an alternative formof the mathematial struture. Already one sees thatthere is a disadvantage of using these two equationsas they are no longer linear and therefore more dif-�ult to analyse. Nevertheless as we will show, wean obtain new information about energy �ow usingequation (8), in spite of Bohr's insistene that youan talk either about an evolution in spae-time orabout a ausal (i.e. momentum-energy) evolution,never both together.Although the splitting of an equation into its realand imaginary parts is a standard mathematial pra-tie, we will re-derive these two equations again,starting from Heisenberg's expression [5℄ for the La-grangian of the Shr�odinger �eld [5℄ and applying thestandard Euler-Lagrange equations, treating R(x, t)and S(x, t) as independent �elds. This proedurewill enable us to �nd the omponents of the energy-momentum tensor, thus allowing us to investigate theenergy and momentum �ows involved in the quantumproess. In this way we are able show that equation(8) is an expression for the loal onservation of en-ergy in this evolving quantum proess.This result should not be too surprising sine, as iswell known, the Shr�odinger equation must desribethe evolution of the energy involved in the proess.Why? Beause the expression of the lassial dynam-ial energy, the Hamiltonian, albeit written in oper-ator form, is at the heart of the equation. Howeverby foussing on the omplex form of the wave fun-tion, we do not expliitly see how this energy �owsin the evolving proess. The wave funtion then ap-pears, as it were, `disembodied' from the energy, sothat it then seems to take on, physially, the air ofsome ghostly shadow of the evolving system, allowingonly probability outomes to be disussed.We then �nd that the wave funtion, with its de-terministi equation, an be treated as an entity in itsown right giving the probability of �nding a partiu-lar result. Its role in aounting for the energy �owis then forgotten. In onsequene we feel free to addwave funtions and to ollapse wave funtions withno onern as to the energy involved, hoping that itwill be taken are of by the Shr�odinger equation.However a realisation that both the addition ofwave funtions and the ollapse of wave funtions o-



4ur outside of the Shr�odinger equation, should bea ause for onern sine, unless are is taken withsuh addition and ollapse, any suh move ould on-tradit the onservation of energy2. The purpose ofthis paper is �nd a way to disuss the �ow of energyin a quantum proess rather than relying only on the
ψ(x, t) and the Shr�odinger equation.3. Kuzmihevs quantum onstraint equationsIn this setion we follow Kuzmihevs paper [157℄and onsider the homogeneous, isotropi and spa-tially losed quantum osmologial system (universe).The geometry of suh a universe is desribed by theRobertson-Walker metri. This metri has a max-imally symmetri three-dimensional subspae of afour-dimensional spae-time. Sine we onsider thespatially losed Universe, then the geometry of thespae-time depends on a single osmologial parame-ter, namely the osmi sale fator a whih desribesthe overall expansion or ontration of the Universe[158℄. The sale fator is a �eld variable whih deter-mines gravity in the formalism under onsideration.We assume that from the beginning the Universe is�lled with matter in the form of the uniform salar�eld φ, the state of whih is given by some HermitianHamiltonian, Hφ = H†

φ. This Hamiltonian is de�nedin a urved spae-time, and therefore, in the generalase, it depends on a sale fator a as a parameter,
Hφ = Hφ(a). In addition, it will be aepted that theUniverse is �lled with a perfet �uid in the form ofrelativisti matter (further referred as radiation) withthe proper energy Mγ = E

2a in the omoving volume
1
2a

3, where E is a real onstant proportional to thenumber of partiles of the perfet �uid. The perfet�uid de�nes a material referene frame [159, 160℄.The restritions in the form of the �rst-lass on-straint equations are imposed on the state vetor ofthe quantum Universe Ψ = 〈a, φ|Ψ(T )〉, where T is atime parameter. These onstraints an be redued totwo equations [160�162℄,
(
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)

Ψ = 0, (9)
(

−∂2a + a2 − 2aHφ − E
)

Ψ = 0, (10)2 We are talking about energy non-onservation outside thelimits imposed by the energy-time unertainty priniple.

where Eq. (9) desribes the time evolution of Ψ, whenthe number of partiles of the perfet �uid onserves,while Eq. (10) determines the quantum states of theUniverse at some �xed instant of time T = T0, T0 isan arbitrary onstant taken as a time referene point.The oe�ient 2
3 in Eq. (9) is aused by the hoie ofthe parameter T as the time variable. This time vari-able is onneted with the proper time τ by the dif-ferential equation dτ = adT . Following the ADM for-malism [163, 164℄, one an extrat the so-alled lapsefuntion N , that spei�es the time referene sale,from the total di�erential dT : dT = Ndη, where η isthe �ar time� [165, 166℄.The quantum onstraints (9) and (10) anbe rewritten in the form of the time-dependentShr�odinger-type equation
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H = −∂2a + a2 − 2aHφ. (12)The minus sign before the partial derivative ∂T isstipulated by the spei� harater of the osmolog-ial problem, namely that the lassial momentumonjugate to the variable a is de�ned with the minussign [167, 168℄.The partial solution of Eqs. (9) and (10) has a form
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Ψ, (15)where D[a, φ] is the measure of integration with re-spet to the �elds a and φ hosen in an appropriateway, it follows that the operator (12) is Hermitian:
H = H†.



54. Non zero sale fator, initially and whatthis is telling us physially. Starting with aon�guration from UnruhBegin with the starting point of [112℄
∆l ·∆p ≥ ~

2
(16)We will be using the approximation given by Unruh[112℄, of a generalization we will write as

(∆l)ij =
δgij
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· l
2 , (∆p)ij = ∆Tij · δt ·∆A. (17)If we use the following, from the Roberson-Walkermetri [140℄.

gtt = 1, grr =
−a2(t)
1−k·r2 , gθθ = −a2(t) · r2,

gφφ = −a2(t) · sin2 θ · dφ2.
(18)Following Unruh [112℄, write then, an unertainty ofmetri tensor as, with the following inputs

a2(t) ∼ 10−110, r ≡ lP ∼ 10−35meters. (19)Then, the surviving version of Eq. (16) and Eq. (17)is, then, if ∆Ttt ∼ ∆ρ

V (4) = δt ·∆A · r,
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(20)This Eq. (20) is suh that we an extrat, up to apoint the HUP priniple for unertainty in time andenergy, with one very large aveat added, namely ifwe use the �uid approximation of spae-time [140℄

Tii = diag(ρ,−p,−p,−p). (21)Then
∆Ttt ∼ ∆ρ ∼ ∆E

V (3).
(22)Then, Eq.(20) and Eq. (21) and Eq. (22) togetheryield

δt∆E ≥ ~
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2 , Unless δgtt ∼ O(1). (23)How likely is δgtt ∼ O(1)? Not going to happen.Why? The homogeneity of the early Universe willkeep
δgtt 6= gtt = 1. (24)

In fat, we have that from Giovannini [140℄, that if φis a salar funtion, and a2(t) ∼ 10−110, then if
δgtt ∼ a2(t) · φ << 1. (25)Then, there is no way that Eq. (23) is going to omelose to δt∆E ≥ ~

2 . Hene, the Mukhanov suggestionas will be disussed toward the end of this artile, isnot feasible. Finally, we will disuss a lower bound tothe mass of the graviton.5. How we an justifying writing very small
δgrr ∼ δgθθ ∼ δgφφ ∼ 0+ valuesTo begin this proess, we will break it down into thefollowing oordinates:In the rr, θθ, and φφ oordinates, we will use the Fluidapproximation, Tii = diag(ρ,−p,−p,−p) [170℄ with
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(26)If as an example, we have negative pressure, with Trr,
Tθθ, and Tφφ < 0, and p = −ρ, then the only hoiewe have, then is to set δgrr ∼ δgθθ ∼ δgφφ ∼ 0+,sine there is no way that p = −ρ is zero valued.Having said this, the value of δgtt being non zero, willbe part of how we will be looking at a lower boundto the graviton mass whih is not zero.In our analysis of Pre Plankian spae-time aord-ing to the HUP whih is written in this paper in termsof a redution of ontributions of all but the timeomponent of the metri tensor, we fae the problemof arguing how �utuations drop o�, unless they arediretly onneted to the time omponent. Whihmakes sense, sine if there is a nonsingular start tothe universe, as given by [150,171℄, the Pre plankianspae-time regime is part and parel of an emergentspae-time whih would plae a premium upon nonspatial metri tensor �utuations. Hene, we will de-lineate reasons for why the metri tensor �utuationsare restrited to the time omponents only.6. Lower bound to the graviton mass usingBarbour's emergent timeIn order to start this approximation, we will be usingBarbour's value of emergent time [115,116℄ restrited



6to the Plank spatial interval and massive gravitons,with a massive graviton [117℄
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2
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∑
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. (27)Initially, as postulated by Babour [115, 116℄, this setof masses, given in the emergent time struture ouldbe for say the planetary masses of eah ontributionof the solar system. Our identi�ation is to have aninitial mass value, at the start of reation, for an in-dividual graviton.If (δt)2emergent = δt2 in Eq.(20), using Eq.(20) andEq. (27) we an arrive at the identi�ation of
mgraviton ≥ 2~2
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2
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tt

. (28)Key to Eq. (28) will be identi�ation of the kinetienergy whih is written as E − V . This identi�a-tion will be the key point raised in this manusript.Note that it raises the distint possibility of an initialstate, just before the `big bang' of a kineti energydominated `pre in�ationary' universe. I.e. in termsof an in�aton φ̇2 >> (P.E ∼ V ) [170℄. The key �nd-ing whih is in [118℄ is, that, if the kineti energy isdominated by the `in�aton' that
K.E. ∼ (E − V ) ∼ φ̇2 ∝ a−6. (29)This is done with the proviso that w < −1, where
w= pressure /density [172℄. I.e., the onvention re-ferred to is of avoiding density= - pressure, whih isused frequently. In e�et, what we are saying is thatduring the period of the `Plankian regime' we anseriously onsider an initial density proportional toKineti energy, and all this K.E. as proportional to[170℄
ρw ∝ a−3(1−w). (30)If we are where we are in a very small Plankianregime of spae-time, we ould, then say write Eq.(30) as proportional to g∗T 4 [170℄, with g∗ initial de-grees of freedom, and T the initial temperature aslow just before the onset of in�ation. The questionto ask, then is, what is the value of the initial degreesof freedom, and what is the temperature, T , at thestart of expansion? For what it is worth, the startingsupposition, is that there would then be a likelihoodfor an initial low temperature regime.

7. Metri unertainty priniple as interrelationship of general relativity andquantum geomerodynamisWe will be using, the inputs from Setion 3 exten-sively as a way to intertwine the preditions as to aHUP onneted with the metri tensor of spae-timeand the resulting initial onditions for spae-time a-ording to Geometrodynamis. The end result will bethat we are supplying initial onditions whih annotbe obtained, by other means. We also will quantifyvia a version of dust dynamis, how this a�ets an-didate DM and possibly DE ontributions to initialosmologial onditions. To do this, we will reviewthe onepts used in both the Heisenberg Unertaintypriniple, for metri tensors, and the Geometrody-namis equations used. The onlusion of what weare talking about is use of the HUP, for metri ten-sors to form bounds on the Getrodynamis equationsin the pre Plankian spae-time era.7.1. Appliation of the HUP to metritensorsWe will be examining a Friedmann equation for theevolution of the sale fa tor, using expliitly two ases,one ase being when the aeleration of expansion ofthe sale fator is kept in, another when it is out,and the intermediate ases of when the aelerationfator, and the sale fator is important but not dom-inant. In doing so we will be tying it in our disussionwith the earlier work done on the HUP but from theontext of how the aeleration term will a�et theHUP, and making sense of why our generalized un-ertainty priniple, as given in the beginning of Eq.(31) is from [3,112,150℄ leading to a restrition of themetri tensor �utuation to being the time ompo-nent only, in the denominator of the modi�ed HUPexpression. [3℄ gives us the initial generalized HUP,and [112, 150℄ express the �utuation restrited to
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7Namely we will be working with
δt∆E = ~

δgtt
≡ ~

a2(t)·φ ≪ ~ (32)
⇔ Sinitial(with[δgtt]) = (δgtt)

−3Sinitial(without[δgtt])

≫ Sinitial(without[δgtt])i.e. the �utuation δgtt ≪ 1 dramatially boost initialentropy. Not what it would be if δgtt ≈ 1. The nextquestion to ask would be how ould one atually have
δgtt ∼ a2(t) · φ −−−−−−→

V ery Large 1 (33)Furthermore, we have that Eq. (31) has an expliitrestrition of the modi�ed HUP: to be in�uened byonly the time �utuation of the metri tensor, whihis given by , and this in the denominator of the modi-�ed HUP is ≪ 1. Eq. (32) is highlighted by the term
≪ 1 in the denominator of the modi�ed HUP lead-ing to spei� entropy generation. As is expeted, inthe Pre Plankian to Plankian transition, referredto in Eq. (32), seond line, delineates if ≪ 1 thatthe entropy generation is very di�erent, than whenapproahes 1, whih is after the Pre Plankian toPlankian emergent physis regime. In addition, Eq.(33) spei�ally alludes to if approahes 1, markingthe transition to the Plankian regime and beyond,and this is due to the in�aton growing extremelylarge.In short, we would require an enormous �in�aton�style φ valued salar funtion, and a2(t) ∼ 10−110.How ould φ be initially quite large? Within Planktime the following for mass holds, as a lower bound
mgravitation ≥ 2~2
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∆T 2
tt

. (34)Here, we are using the following approximation as toKineti energy in the beginning of the expansion ofthe Universe.
K.E. ∼ (E − V ) ∼ φ̇2∞a−6. (35)Then, up to �rst order, we ould approximate, withH.O.T. being higher order terms
φ̇ ∼ a−3 ⇔ φ ≈ t · a−3 +H.O.T . (36)This Eq.(36) will be onsiderably re�ned in the sub-sequent doument.

7.2. Metri unertainty priniple and itsappliations in GeometrodynamisFrom Eq. (10) we have
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2+α

)

−→
α−2

√
2λ2 · (k + 1/2) =M2(a). (37)Here, we an also assign a density funtional andthen a hange of energy as given by ∆E = 2 · 10−γ ·

l3pM2(a)/a
3. So then, that one will have

ρm = 2M2(a)/a
3 =

√

23 · λ2 · a3 · (k + 1/2) ,

∆E = 2 · 10−γ · l3pM2(a)/a
3 =

= 10−γ · l3p ·
√

23 · λ2 · a−3 · (k + 1/2). (38)Here the subsript k, as in Eq. (38) is a �partileount� and we will refer to this heavily in the rest ofthis paper. If we have Eq. (38) we will, if we have anemergent �eld referene using a hange in energy, inthe Pre Plankian domain as
δgtt ≈

~

δt∆E
= (39)

= (δt)−1 · ~

10−γ · l3p ·
√
23 · λ2 · a−3 · (k + 1/2)

.Or, if the inequality is stritly adhered to
δgtt ≥

~

δt∆E
= (40)

= (δt)−1 · ~

10−γ · l3p ·
√
23 · λ2 · a−3 · (k + 1/2)

.The smallness of the initial sale fator would be ofthe order of a−3 ∼ 10165, and we have that k ∼ 1020,initially, and that l3p ∼ 10−105, and we pik ~ = 1dimensionally, so then if δt ∼ 10−44, we have if weuse Eq. (39) as an estimator, that the following hasto be done to insure in pre Plankian spae time, for



8the following to hold:
λ2 ≤ 10−74+2γ ⇔ δgtt ≤ 1

⇔ δt∆E ≥ 1

& λ > 10−74+2γ ⇔ δgtt > 1

⇔ δtδE < 1. (41)I.e. the violation of an unertainty priniple for om-menes for any situation whih implies restraints on
λ2 ≤ 10−74+2γ ⇔ δgtt ≤ 1 ⇔ δt∆E ≥ 1 when
λ2 > 10−74+2γ ⇔ δgtt > 1

⇔ δt∆E < 1. (42)For the problem represented by Eq. (42) to hold itwould mean that the following Pre-Plankian Poten-tial energy would be then small when the followingPotential energy as given in Eq. (43) is muh smallerthan the Kineti energy given in Eq. (32)
V (φ) = λαφ

α = λ2φ
2. (43)From inspetion, for Eq. (43) to hold, for our phys-ial system we would want Eq. (41) to hold whihwould mean an extremely small Potential energy, asopposed to the large value of the Kineti energy givenin Eq. (34). Hene the role of Geometrodynamisgiven in Eqs. (37) and (38), will in the ase of a quar-ti potential imply that Eq. (43) as Potential energyis muh smaller than the kineti energy as representedfor Pre Plankian spae-time physis.8. Disussion and onlusionsA way to rewrite the approah given here in termsof the early Universe theory is to refer to Einsteinspaes [121℄ as well as to make ertain of the termsand omponents of the stress energy tensor [122℄ aswe an write it as a modi�ed Einstein �eld equation.With, then N as a onstant.

Rij = Ngij (44)Here, the term in the Left hand side of the metritensor is a onstant, so then if we write, with R alsoa onstant [122℄
Tij = − 2√−g

δS

δgij
= − 1

8π
· [N−R+ Λ] · gij (45)

The terms, if we use the �uid approximation given byEq. (21) as well as the metri given in Eq. (18) willthen tend to a onstant energy term on the RHS ofEq. (45) as well as restriting i, and j, to, orrespod-ingly, t and t.So as to reover, via the Einstein spaes, the seem-ingly heuristi argument given above. Furthermorewhen we refer to the Kineti energy spae as an in�a-ton φ̇2 >> (P.E ∼ V ) [170℄, we an also then utilizethe following operator equation for the generation ofan `in�aton �eld' given by the following set of equa-tions
φ (t, ·) = cos(t

√
K)f + sin(t

√
K)√

K
g

f(x) = φ(0, x)

g(x) = ∂φ(0,x)
∂t

−∂2φ
∂t2 = Kφ

(46)In the ase of the general ellipti operator K if weare using the Fulling referene [123℄ in the ase of theabove Roberson-Walker metri, with the results thatthe ellipti operator, in this ase beome,
K = −∇2 + (m2 + ξR)

= −∑

i,j

∂i

(

gij
√

|det g|∂j

)

√
|det g|

+ (m2 + ξR)

−−−−→
i,j→t,t

− ∂2

∂t2 + (m2 + ξR)

(47)Then, aording to [123℄, if R above, in Eq. (47)is initially a onstant, we will see then, if m is thein�ation mass, that
φ (t, ·) = cos(t

√
K)f

− ∂2

∂t2 → ω2

⇔ φ (t, ·) = cos(t
√

ω2 + (m2 + ξR))

(48)Then c1 as an unspei�ed, for now onstant will leadto a �rst approximation of a Kineti energy domi-nated initial on�guration, with details to be gleanedfrom [123�125℄ to give more details to the followingequation, R here is linked to urvature of spaetime,and m is an in�aton mass, onneted with the �eld
φ (t, ·) = cos(t

√
K)f with the result that

φ̇2 (t, ·) ≈
[

ω2 + (m2 + ξR)
]

· c1 >> V (φ) (49)If the frequeny, of say, Gravitons is of the order ofPlank frequeny, then this term, would likely dom-inate Eq.(49). More of the details of this will be



9worked out, and also andidates for the V (φ) willbe asertained, most likely, we will be looking theRindler Vauum as spei�ed in [126℄ as well as alsodetails of what is relevant to maintain loal ovarianein the initial spae-time �elds as given in [127℄.Why is a re�nement of Eq. (49) neessary?The details of the ellipti operator K will be leanedfrom [123�125℄ whereas the details of in�aton φ̇2 >>
(P.E ∼ V ) [170℄ are important to get a re�nementon the lower mass of the graviton. The mass, m, inEq.(47) for the in�aton, not the Graviton, so as tohave links to the beginning of the expansion of theUniverse. We look to what Corda did, in [128℄ forguidane as to piking values of m relevant to earlyuniverse onditions.Finally, as far as Eq. (49) is onerned, there is oneserious linkage issue to lassial and quantum me-hanis, whih should be the bridge between lassialand quantum regimes, as far as spae time applia-bility. Namely, from Wald (28), if we look at �rst ofall arbitrary operators, A and B
(∆A)

2 · (∆B)
2 ≥

(

1

2i
〈[A,B]〉

)

. (50)As we an antiipate, the Pre Plankian regime maythe plae to use lassial mehanis, and then tobridge that to the Plankian regime, whih would bequantum mehanial. Taking [126℄ again, this wouldlead to a sympleti struture via the following modi-�ation of the Hamilton equations of motion, namelywe will from (28) get the following rewrite,
dqµ
dt = ∂H

∂pµ
,

dpµ

dt = − ∂H
∂qµ

H = H(q1,......,qn; p1,......,pn)
y = (q1,......,qn; p1,......,pn)
Ωµν = 1, ifν = µ+ n
Ωµν = 0, otherwise
dyµ

dt =
∑n

ν=1 Ω
µν ∂H

∂yν

(51)
Then there exists a re formulation of the Poissonbrakets, as seen by
{f, g} = Ωµν∇µf∇νg. (52)

So, then the following, for lassial observables, f ,and g, we ould write, by [126℄
∧ : Θ → Θ̂
Θ = classical− observable

Θ̂ = quantum− observable
~ = 1
[

f̂ , ĝ
]

= i ·
∧

({f, g})

(53)Then, we ould write, say Eq. (50) and Eq.(53) as
[

f̂ , ĝ
]

= i ·
∧

({f, g})
f = classical− observable

f̂ = quantum− observable
(

∆f̂
)2

· (∆ĝ)2 ≥
(

1
2i

(〈[

f̂ , ĝ
]〉)

)

=

(

1
2

∧
(({f, g}))

)(54)If so, then we an set, in the interonnetion betweenthe Plank regime, and just before the Plank regime,say, by setting lassial variables, as given by
f = − [ℵ−R+Λ]·gtt

8π
g = δgtt

(55)Then by utilization of Eq.(54) we may be able to ef-fet more preision in our early Universe derivation,espeially making use of derivational work, in addi-tion as to what is given here, as to understand howto onstrut a very early universe partition funtion
Z based upon the inter relationship between Eq.(54)and Eq.(55) so as to write up an entropy based upon,as given in [126℄
S(entropy) = lnZ + βE. (56)If this program were a�eted, with a �rst prinipleonstrution of a partition funtion, we may be ableto answer if Entropy were zero in the Plank regime,or something else, whih would give us more moti-vation to examine the sort of partition funtions asstated in [129, 130℄. See appendix A as to possi-ble senarios. Here keep in mind that in the Plankregime we have non standard physis. Appendix Aindiates that due to the variation we have workedout in the Plankian regime of spae-time that theinitial entropy is not zero. The onsequenes of thisshow up in this paper's Appendix B, as to a spei�



10formulation of the Rii salar. The onsequenes ofAppendix A and Appendix B may be for a smallosmologial onstant, and large �Hubble expansion�that there would be an initially large magnitude ofosmologial pressure, even if negative, whih wouldgive redene to a non zero osmologial entropy, thatif large negative pressure, even in the Pre Plankianregime will lead to a large ∆Ttt terms whih wouldshow up in Eq. (1A), even if we used a partition fun-tion based upon Lattie Hamiltonians, as on page135 of [130℄ whih would usually in a lattie gaugearrangement would have onsiderably smaller ontri-butions than ∆Ttt. Note the onditions of �at spae,are that Eq.(B9) almost vanishes due to the behav-ior of the numerator, no matter how small a2initialis.The supposition is that the numerator beomes farsmaller than a2initial. The initiation of onditionsof �at spae, is also the regime in whih we thinkthat non zero entropy is started, and AppendixC gives an initial estimate of what we think En-tropy would be in the aftermath of the unertaintyrelationship we have outlined in this paper, i.e. to�rst order, Sinitial(graviton) ∼ 1037. We �nalize ourtreatment as of spae-time �utuations and geometryby onsidering the appliations of Appendix D tograviton mass, and Appendix E to the Riemann-Penrose inequality for onditions as to a minimumfrequeny, as a onsequene of osmologial evolu-tion, and what it portrays as onsequenes for Ele-tromagneti �elds. Appendix D and E give varyinginitial graviton masses as a starting point, with Ap-pendix D giving a higher initial graviton mass thanwhat is assumed as of today. Finally, Appendix Fstates a pre Plankian kineti energy so the in�aton
φ̇2 >> (P.E ∼ V ) [170℄. This last step, so importantto our development will be onsiderably re�ned in afuture paper.What we are doing now is on�rming the materialgiven in this paper as well as giving an explanationfor our future researh ativity. The quarti poten-tial, we used above, is the simplest version of thepotential systems in this paper and the ases of nonquarti potential should be examined fully, as partof a omprehensive study. This will be part of theresearh projet whih the authors will initiate in fu-ture publiations. We should keep this disussion andthe disussion of salar �elds separate from the ideasgiven in in�ation, namely of the �utuations not ne-

essarily having an upper bound of
˜̃
φ >

√

60

2π
Mp ≈ 3.1Mp ≡ 3.1. (57)Sine our modeling is not prediated upon the in-�ationary model of osmology but whih is address-ing the issue brought up in [147℄, whih is the on-tribution of Pre Plankian spae time to osmologi-al evolution we wish to adhere to non in�ationarytreatments as to Eq. (43) and Eq. (57) but will ad-here to the questions poised at the beginning of thisdoument. Furthermore we will adhere to, in futurepapers in delineating a departure from the standardtreatment of the evolution of the salar �eld, as givenin onventional in�ation osmology as the following

dφ

dt
= − V ′(φ)

3H(φ)
+
H3/2(φ)

2π
· ξ(t). (58)This has a quasi �quantum mehanial� e�etivewhite noise introdued term ξ(t), and is similar to ξ(t)in a �rst order di�erential equation being a �driving�term to a quasi haoti osillatory behavior to thesalar �eld. We argue that this Eq. (58) in [148℄ iswrong, albeit well motivated by onventional in�a-tionary osmology and part of our future disussionwill be in, for the Pre Plankian regime of spae timeas partly brought up in [149℄ disussing what we areputting in instead as a replaement. This Eq. (58)ontravenes our desription of Kineti energy as thedominant term in Pre Plankian spae-time physiswhih deserves future developments for establishingexperimental measurements.Appendix A. Senarios as to the value ofentropy in the beginning of spae-timenuleationWe will be looking at inputs from page 290 of [23℄ sothat if E ∼M ∼ ∆Ttt · δttime ·∆A · lP

S(entropy) = lnZ + (E∼∆Ttt·δt·∆A·lP )
kBTtemperature

(1A)And using Ng's in�nite quantum statistis, we haveto �rst approximation [131, 132℄
S(entropy) ∼ lnZ + ((E∼∆Ttt)·δt·∆A·lP )

kBTtemperature

∼ lnZ +
(

~

kBTtemperatureδgtt

)

−−−−−−−−−−−−−−−−−→
Ttemperature→#anything

[S(entropy) ∼ ncount] 6= 0(2A)This is due to a very small but non vanishing δgtt withthe partition funtions overed by [130℄, and also due



11to [131, 132℄ with ncounta non zero number of ini-tial `partile' or information states, about the Plankregime of spae-time, so that the initial entropy is nonzero.Appendix B. Calulation of the Rii Tensorfor a Roberson-Walker spae-time, with itse�et upon the measurement of if or not aspae time, is open, losed or �atWe begin with Kolb and Turner [170℄ disussion ofthe Roberson-Walker metri, say page 49 with, if Ris the Rii salar, and k the measurement of if wehave a lose, open, or �at universe, that if
a = ainitial · exp(H · t) (B1)Then by [170℄
H2 = − k

a2 + 8πGρ
3 (B2)

3H2 +
[

2k
a2 + R

6

]

= 0 (B3)Leading to
a2 = 1

k ·
[

R
6 + 8πGρ

] (B4)If ρ = −p [7℄, then with a bit of algebra
|p| = 1

8πG ·
[

R
6 + (ainitial)

2 · exp
[
√

4Λ
3 · ttime

]] (B5)Next, using [134℄, on page 47, at the boundary be-tween Pre Plankian to Plankian spae-time we will�nd
R = 8π ·

(

T 0
0 + T 1

1 + T 2
2 + T 3

3

)

+
4Λ −−−−−−−−−−−−−−−−−−−→

Pr e−Planckian−Conditions
8π ·

(

T 0
0

)

+ 4Λ(B6)Then, we an obtain right at the start of the Plank-ian era,
|p|Planckian ∼ 1

8πG ·
[

8π·(T 0
0 +T 1

1 +T 2
2 +T 3

3 )+4Λ

6

] (B7)The onsequenes of this would be that right after theentry into Plankian spae time, that there would bethe following hange of pressure
|p|Pr e−Planckian = 1

8πG ·
[

8π·(T 0
0 )+4Λ

6 + (ainitial)
2

]

×

×
[

exp
[
√

4Λ
3 · ttime

]]

⇒ |p|Pr e−Planckian ∼ 1
8πG ·

∣

∣

∣

∣

8π·(T 0
0 )+4Λ

6 + 0+
∣

∣

∣

∣

|p|Planckian ∼ 1
8πG ·

∣

∣

∣

∣

8π·(T 0
0 +T 1

1 +T 2
2 +T 3

3 )+4Λ

6

∣

∣

∣

∣

∆P = |p|Planckian − |p|Pr e−Planckian ∼
[

(T 1
1 +T 2

2 +T 3
3 )

6G

](B8)Then, the hange in the k term would be like, say,from Pre Plankian to Plankian spae time
∆k = 1

a2
initial

· [8πG(ρ−∆P )] (B9)

This goes almost to zero if the numerator shrinks farmore than the denominator, even if the initial salefator is of the order of 10−110 or so.Appendix C. Initial entropy, from �rstpriniplesWe are making use of the Padmanabhan publiationof [135, 136℄ where we will make use of
ρΛ ≈ GE6

system

c8~4 ⇔ Λ ≈ 1
l2
Planck

· (Esystem/EPlanck)
6(C1)Then, if Esystem is for the energy of the Universeafter the initiation of Eq.(20) as a bridge betweenPre Plankian, to Plankian physis regimes we ouldwrite, then

Esystem ∝ ngravitons ·mgraviton

Λ ≈ 1
l2
Radius−Universe−today

⇔ mgraviton ∼ 10−62grams⇒ ngravitons ∼ 1037

⇒ Sinitial(graviton) ∼ 1037at− Planck − time(C2)The value of initial entropy, Sinitial(graviton) ∼ 1037should be ontrasted with the entropy for the entireUniverse as given in [137℄ below.Appendix D. Information �ow, Gravitons,and also upper bounds to Graviton massHere we an view the possibility of onsidering thefollowing, namely [138℄ is extended by [139℄, so wean we make the following identi�ation
N = Ngraviton|rH = c3

G·~ · 1
Λ ≈ 1

Λ (D1)Should the N above, be related to entropy, and Eq.(17)? This supposition has to be balaned againstthe following identi�ation, namely, as given by T.Padmanabhan [135, 136℄
ΛEinstein−Const.Padmanabhan = 1

/

l2Planck ·
(E/EPlanck)

6
. (D2)But should the energy in the numerator in Eq. (D2)be given as say by (C2), of Appendix C, we havedefato quinessene. then there would have been de-fato quintessene, i.e. variation in the �Einstein on-stant�, whih would have a large impat upon mass ofthe graviton, with a sharp derease in g∗ being on-sistent with an evolution to the ultra light value ofthe Graviton, with initial frequenies of the order ofsay for wavelength values initially the size of an atom,

ωinitial|rH∼atomic−size ∼ 1021Hz (D3)The �nal value of the frequeny would be of a mag-nitude smaller than one Hertz, so as to have value of



12the mass of the graviton would be then of the order of
10−62grams [117℄, due to Eq.(D2) approahing [138℄below, namely
ΛEinstein−Const. = 1

/

l2Radius−Universe. (D4)Leading to the upper bound of the Graviton mass ofabout 10−62grams [138, 139℄ in the present era
mgraviton = ~

c ·
√

(2Λ)
3 ≈

√

(2Λ)
3 . (D5)Eq. (D5) has a di�erent value if the entropy / partileount is lower, as has been postulated in this note.But the value of Eq.(D5) beomes the Graviton massof about 10−62grams [117℄ in the present era whih isin line with the entropy being far larger in the presentera [137℄.Appendix E. Applying the RiemannianPenrose Inequality with appliations in our�utuation

δgtt ∼ a2(t) · φ << 1 (E1)Re�ning the inputs from Eq. ( E1) means more studyas to the possibility of a non zero minimum sale fa-tor [171℄, as well as the nature of φ as spei�ed byGiovannini [140℄. We hope that this an be done asto give quanti�able estimates and may link the nonzero initial entropy to either Loop quantum gravity�quantum boune� onsiderations [142℄ and/or othermodels whih may presage modi�ation of the sort ofinitial singularities of the sort given in [1℄. Further-more if the non zero sale fator is orret, it maygive us opportunities as to �ne tune the parametersgiven in [171℄ below
α0 =

√

4πG
3µ0c

B0
⌢

λ (defined) = Λc2
/

3

amin = a0 ·
[

α0

2
⌢

λ (defined)

]

×

×
[(

√

α2
0 + 32

⌢

λ (defined) · µ0ω · B2
0 − α0

)]1/4(E2)Where the following is possibly linkable to minimumfrequenies linked to E and M �elds [171℄, and pos-sibly reli Gravitons
B > 1

2·√10µ0·ω (E3)So, now we investigate the question of appliabilityof the Riemann Penrose inequality whih is [143℄, p.431, whih is stated asRiemann Penrose Inequality: Let ( M, g) be aomplete, asymptotially �at 3- manifold with Non

negative-salar urvature, and total mass m, whoseoutermost horizon Σ has total surfae area A. Then
mtotal−mass ≥

√

Asurface−Area

16π (E4)And the equality holds, i� (M, g) is isometri to thespatial isometri spatial Shwartzshield manifold Mof mass m outside their respetive horizons.Assume that the frequeny, say using the frequenyof Eq.(E3) , and A ≈ Aminof Eq.(E4) is employed.So then say we have , if we use dimensional analysisappropriately, that
(v = velocity ≡ c) = f(frequency)× λ(wavelength)

⇒ ω ≈ ωinitial ∼ c
dmin

∼ 1
dmin

∣

∣

∣

c≡1
&dmin ∼ A1/3 ∝ amin(E5)Assume that we also set the input frequeny as to Eq.(E3) as aording to 10 < ζ ≤ 37 i.e. does

(

mtotal−mass ∼ 10ζ ·mgraviton

)2 ∝ a3min/16π

⇔ ω ≈ ωinitial ∼ 1
dmin

∼
(

16π × 10ζ ·mgraviton

)−2/3(E6)Our supposition is that Eq.(E6) should give the samefrequeny as of Eq. (D3) above. So if we have indoing this, this is a frequeny input into Eq. (E3)above where we are safely assuming a graviton massof about [117℄
mtotal−mass ∼ 1037 ·mgraviton

mgraviton ∼ 10−62grams
(E7)Does the following make sense? I.e. look at it, when

10 < ζ ≤ 37
(

mtotal−mass ∼ 10ζ ·mgraviton

)2 ∝ a3min/16π

⇔ ω ≈ ωinitial ∼ 1
dmin

∼
(

16π × 10ζ ·mgraviton

)−2/3(E8)We laim that if this is an initial frequeny and that itis onneted with reli graviton prodution, that theminimum frequeny would be relevant to Eq. (E3),and may play a part as to admissible B �elds.Note, if Appendix D is used, this makes a re do ofEq. (E8) whih is a way of saying that the gravitonmass given by [117℄ no longer holds.In either ase, Eq. (E8) and Eq. (E3) in some on-�guration may argue for implementation of work, itwas done in referene [144℄, as to reli ylindrial GW,i.e. their allowed frequeny and magnitude, so on-sidered.



13Appendix F. First priniple treatment of prePlankian kineti energy so the In�aton
φ̇2 >> (P.E ∼ V )We give this as a plausibility argument whih un-doubtedly will be onsiderably re�ned, but its impor-tane annot be overstated. I.e. this is for Pre in�a-tionary, Pre Plankian physis, so as to get a lowerbound to the Graviton mass. To do this, we look atwhat [170℄ is saying and also we will be enlisting anew referene, [145℄, by Bojowald, and also T. Pad-manbhan [146℄ as to details to put in, so as to on�rma dominane of Kineti energy. Start with a Friedmanequation of
(

ȧ
a

)2
+ kcurvature

a2 = 4πG
3 · p2

φ

a6 + Λ (F1)We will treat, then the Hubble parameter, as
(

ȧ
a

)

= Hinitial ≡ 2

t·(1+P
ρ )

−−−−−−−→
P=−ρ+ε+

2

t·
(

ε+

ρ

) −−−→
t→tP

2ρ
tP ·ε+ (F2)Now from Padmanabhan [146℄, we an write density,in terms of �ux aording to
dρ
dt = 1

V (3)=V olume
· (A = Area) · (ℑ = Flux) ∼

(ℑ=Flux)
lP

(F3)Then using p. 463 of [146℄, if T is temperature, here,then if N is the partile ount in the �ux region perunit time (say Plank time), as well as using the `idealgas law' approximation, for superhot onditions
dρ
dt = 1

V (3)=V olume
· (A = Area) · (ℑ = Flux) ∼ (ℑ=Flux)

lP

ρ ∼ (ℑ=Flux)
c

⇒ H = N
ε+ · 1

V (4)=4−Dim V olume
·
√

8
π

√

kBT
mflux−particle(F4)Next, aording to [145℄ we an make the followingsubstitution.

pφ = a3 · φ̇ (F5)Therefore, if
φ̇2 ≈ a−6 · (12πG) · V (4) ·

(

H2 + |Λ|
)

≈ a−6 · (12πG) · V (4)
(

[

N
ε+ · 1

V (4)=4−Dim V olume
·
√

8
π

√

kBT
mflux−particle

]2

+ |Λ|
)(F6)If the sale fator is very small, say of the order of

a = ainitial ∼ 10−55, then no matter how fall theinitial volume is, in four spae (it anels out in the�rst part of the brakets), its easy to see then that
φ̇2 >> (P.E ∼ V ) [170℄.We will in the future add more struture to thisalulation so as to on�rm via a preise alulationthat the lower bound to the graviton mass, is about
10−70grams.
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