Tom's Query: Perfect n-bics?

Abstract: A number theory query related to Fermat's last theorem in higher dimensions. **Author:** Tom Masterson, tom.masterson@colorado.edu

When I first encountered Fermat's Last Theorem $[\mathbf{I} \mathbf{n} > 2 : \mathbf{m}_1^{\mathbf{n}} + \mathbf{m}_2^{\mathbf{n}} = \mathbf{m}^{\mathbf{n}}$, where **n**, **m** and **m**_i are integers] more than 50 years ago, I posed the query,

are there positive integers m_i , m such that $m_1^3 + m_2^3 + m_3^3 = m^3$?

Or, more generally, positive integers m, m_i and $N{>}2$ such that

$$\sum_{i=1}^{N} m_i^N = m^N$$

I immediately found one example: $3^3 + 4^3 + 5^3 = 6^3$ (27 + 64 + 125 = 216, a perfect cu-bic) but since then have had no time to pursue the matter further.

Query: has anyone worked on this problem? **Challenge**: examples of perfect n-bics for n≥3