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1 Introduction  

Rough set theory was introduced by Z. Pawlak in 1980s [1]. It becomes a usefully mathematical tool for data 

mining, especially for redundant and uncertain data. At first, the establishment of the rough set theory is based on 

equivalence relation. The set of equivalence classes of the universal set, obtained by an equivalence relation, is the 

basis for the construction of upper and lower approximation of the subset of universal set.  

Fuzzy set theory was introduced by L. Zadeh since 1965 [2]. Immediately, it became a useful method to study in 

the problems of imprecision and uncertainty. Since, a lot of new theories treating imprecision and uncertainty have 

been introduced. For instance, Intuitionistic fuzzy sets were introduced in1986, by K. Atanassov [3], which is a 

generalization of the notion of a fuzzy set. When fuzzy set give the degree of membership of an element in a given 

set, Intuitionistic fuzzy set give a degree of membership and a degree of non-membership of an element in a given 

set. In 1999 [17], F. Smarandache gave the concept of neutrosophic set which generalized fuzzy set and intuitionistic 

fuzzy set. It is a set in which each proposition is estimated to have a degree of truth (T), adegree of indeterminacy (I) 

and a degree of falsity (F). Over time, many subclasses of neutrosophic sets were proposed. They are also more 

advantageous in the practical application. Wang et al. [18] proposed interval neutrosophic sets and some operators of 

them. Smarandache [17] and Wang et al. [19] proposed a single valued neutrosophic set as an instance of the 

neutrosophic set accompanied with various set theoretic operators and properties. Ye [20] defined the concept of 

simplified neutrosophic sets. It is a set where each element of the universe has a degree of truth, indeterminacy and 

falsity respectively and which lies between [0, 1] and some operational laws for simplified neutrosophic sets and to 

propose two aggregation operators, including a simplified neutrosophic weighted arithmetic average operator and a 

simplified neutrosophic weighted geometric average operator. In 2013, B.C. Cuong and V. Kreinovich introduced 

the concept of picture fuzzy set [4,5], as a particular case of neutrosophic set, in which a given element has three 

memberships: a degree of positive membership, a degree of negative membership, and a degree of neutral 
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membership of an element in this set. After that, L. H. Son has given the application of the picture fuzzy set in the 

clustering problems [7,8]. We also regard picture fuzzy sets as a particular case of the standard neutrosophic sets [6]. 

In addition, combining rough set and fuzzy set has also many interesting results. The approximation of rough (or 

fuzzy) sets in fuzzy approximation space give us the fuzzy rough set [9,10,11]; and the approximation of fuzzy sets in 

crisp approximation space give us the rough fuzzy set [9,10]. W.Z. Wu et al, [11] present a general framework for the 

study of fuzzy rough sets in both constructive and axiomatic approaches. By the same, W. Z. Wu and Y. H. Xu were 

investigated the fuzzy topological structures on the rough fuzzy sets [12], in which both constructive and axiomatic 

approaches are used. In 2012, Y. H. Xu and W. Z. Wu were also investigated the rough intuitionistic fuzzy set and the 

intuitionistic fuzzy topologies in crisp approximation spaces [13]. In 2013 B. Davvaz and M. Jafarzadeh study the rough 

intuitionistic fuzzy information system [14]. In 2014, X.T. Nguyen introduces the rough picture fuzzy sets.It is the result 

of approximation of a picture fuzzy set with respect to a crisp approximation space [15].  

In this paper, we introduce the concept of standard neutrosophic information system, study some problems of the 

knowledge discovery of standard neutrosophic information system based on rough standard neutrosophic sets. The 

remaining part of this paper is organized as following: we recall basic notions of rough set, standard neutrosophic set and 

rough standard neutrosophic set on the crisp approximation space, respectively, in section 2 and section 3. In section 4, 

we introduce the basic concepts of standard neutrosophic information system. Finally, we investigate some problems of 

the knowledge discovery of standard neutrosophic information system : the knowledge reduction and extension of the 

standard neutrosophic information system in section 5 and section 6, respectively.  

2 Basic notions of standard neutrosophic set and rough set  

In this paper, we denote  be a nonempty set called the universe of discourse. The class of all subsets of will be 

denoted by  and the class of all fuzzy subsets of will be denoted by   

Definition 1. [6]. A standard neutrosophic (PF) set  on the universe is an object of the form  

      A  A AA { x,μ x ,η x ,  γ x | x U}   

where     Aμ x 0,1  is called the “degree of positive membership of  in ”,     Aη x 0,1  is called the “degree of 

neutral membership of   in ” and     Aγ x 0,1  is called the “degree of negative membership of  in ”, and 

where  

A Aμ ,  η  and Aγ  are dependent components alltogether (see [24]) and therefore they satisfy the following condition:  

       A  A Aμ x η x  γ x 1,    x X     . 

The family of all standard neutrosophic set in  is denoted by . The complement of a picture fuzzy set  is  

      A  A A ~ A { x,  γ x ,  η x ,  μ x | x U}   . 

Obviously, any intuitionistic fuzzy set      A AA x,μ x ,  γ x  may be identified with the standard neutrosophic set in 

the form 

    A AA { x,μ x ,0,  γ x X | x U}  . 

The operators on :  A B   , A B       A B  were introduced [4]:  

Now we define some special PF sets: a constant PF set is the PF set    α,β,θ { x,α,  β,  θ | x U}  ; the PF universe set 

is    UU 1 1,0,0 { x,1,0,0 | x U}     and the PF empty set is     U0 0,0,1 { x,0,0,1 | x U}     .   

For any x U , standard neutrosophic set  1x  and }U-{1 x  are, respectively, defined by: for all Uy  
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Definition 2. (Lattice  *

*

D
D , ). Let  

    3*

1 2 3 1 2 3D x , x , x 0,1 : x x x 1     . 

We define a relation *D
  on  as follows:      *

1 2 3 1 2 3x ,x ,x ,   y , y , y D   then     *1 2 3 1 2 3D
x ,x ,x y , y , y  if only if  

(or 1 1 3 3(x y ,  x y )   or  1 1 3 3(x y ,  x )y   or   1 1 3 3 2 2x ,  x y ,  x yy   )  and  

   *1 2 3 1 2 3D
x ,x ,x   y , y , y    

1 1 2 2 3 3( , , )x y x y x y    .  

We have  *

*

D
D ,  is a lattice. Denote   *D

0 0,0,1 ,  *D
1 1,0,0 . Now, we define some operators on . 

Definition 3.  

(i) Negative of   is  

(ii) For all     *

1 2 3 1 2 3x ,x ,x ,   y , y , y D   we have  

 1 1 2 2 3 3, ,x y x y x y x y      

 1 1 2 2 3 3, ,x y x y x y x y      

We have some properties of those operators. 

Lemma 1.  

(a) For all     *

1 2 3 1 2 3x ,x ,x ,   y , y , y D   we have  

(b1) x y x y    

(b2) x y x y    

(b) For all 
*, , ,x y u v D  and * *D D

, x u y v   we have 

(c1) *D
x y u v    

(c2) *D
x y u v    

Proof. 

(a) We have  3 3 2 2 1 1  , ,x y x y x y x y      =    3 2 1 3 2 1, , , ,x x x y y y  = x y  

Similary  3 3 2 2 1 1  , ,x y x y x y x y      =    3 2 1 3 2 1, , , ,x x x y y y  = x y  

(b) For  , ,  , 0,1a b c d  , if , a b c d   then  a c b d    and. From definition 2, definition 3 we have 

the result to prove. □ 

 

Now, we mention the level sets of the standard neutrosophic sets. Where   *α,  β,  θ D , we define: 
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  α,  β,  θ   level cut set of the standard neutrosophic set        A  A AA { x,μ x ,η x ,  γ x | x U}    

  as follows: 

        α,β

θ A  A AA {x U| μ x ,η x ,  γ x α,  β,  θ }    

 strong  α,  β,  θ   level cut set of the standard neutrosophic set as follows:   

        α ,β

A  A Aθ
 A {x U| μ x ,η x ,  γ x α,  β,  θ }

 

     

  + ,  β,  θ -  level cut set of the standard neutrosophic set as 

   α ,β

θ A AA {x U|μ x , γ x θ}


     

  level cut set of the standard neutrosophic set  as 

   α,β

A Aθ
A {x U|μ x α,   γ x θ}      

When β 0  we denoted 

α α,0

θ θA A            A  A A{x U| μ x ,η x ,  γ x α,  0,  θ }    

  α ,  θ    level cut set of the standard neutrosophic set  as  

   α

A Aθ
A {x U|μ x , γ x θ}



      

 α   level cut set of the degree of positive membership of  in  as 

 α

AA {x U|μ x α}    

the strong α   level cut set of the degree of positive membership of  in  as 

 α

AA {x U|μ x α}


    

 θ   level low cut set of the degree of negative membership of  in  as 

 θ AA {x U|γ x θ}    

the strong θ   level low cut set of the degree of negative membership of  in  as 

 Aθ
A {x U|γ x θ}     

Example 1.  Given the universe  1 2 3U u ,  u ,u . Then  

      1 2 3,0.8,0.05,0.1 , ,0.7,0.1,0.2 , ,0.5,0.01,0.4A u u u is a standard neutrosophic set on U . Then  0.7,0.2

0.1 1 2A u ,  u  

but  0.7,0.1

0.1 1A u   and   0.7,0.2

10.1
A u  ,  0.7

0.1 1A u ,   0.7

10.1
A u  ,  0.5

1 2 3, ,A u u u  ,  0.5

1 2,A u u


 , 

 10.2
A u  ,  0.2 1 2,A u u . 

Definition 3. Let  be a nonempty universe of discourse which many be infinite. A subset  R P U U   is referred to 

as a (crisp) binary relation on U . The relation R  is referred to as: 

 Reflexive: if for all  x U,   x,x R  . 
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 Symmetric: if for all  x,y U,   x, Ry   then  , x Ry  . 

 Transitive: if  for all    x,y,z U,   x, R, , Ry y z    then  , Rx z   

 Similarity: if R  is reflexive and symmetric 

 Preorder: if R  is reflexive and transitive 

 Equivalence: if R  is reflexive and symmetric, transitive. 

A crisp approximation space is a pair (U,R) . For an arbitrary crisp relation  on , we can define a set-valued 

mapping  sR : U P U  by:  

    sR x y U| x, y R ,  x U.     

Then,  sR x  is called the successor neighborhood of x  with respect to (w.r.t) R . 

Definition 4.[9].  Let (U,R)  be a crisp approximation space. For each crisp set  A U  , we define the upper 

and lower approximations of  (w.r.t)  (U,R)  denoted by  R A  and   R A , respectively, are defined as follows 

    sR A x U : R x A      ,   

    sR A x U :  R x A   . 

Remark 2.1. Let (U,R)  be a Pawlak approximation space, i.e. R  is an equivalence relation. Then    sR x
R

x  holds.  

For each crisp set  A U  , the upper and lower approximations of  (w.r.t) 
 (U,R)  denoted by  R A  and   R A , 

respectively, are defined as follows  

    R A x U : A  
R

x         R A x U :   A
R

x    

Definition 5.[16].  Let (U,R)  be a crisp approximation space. For each fuzzy set  A U , we define the upper and 

lower approximations of  (w.r.t)  denoted by  R A  and   R A , respectively, are defined as follows  

    sR A x U : R x A      ,   

    sR A x U :  R x A    

where   

       
R A

μ x { | }A smax y y R x  ,  

     μ x { | }RA A smin y y R x   

Remark 2.2.  Let (U,R)  be a Pawlak approximation space, i.e.  is an equivalence relation. Then    sR x
R

x  holds. 

For each fuzzy set  A U , the upper and lower approximations of  (w.r.t) 
 (U,R)  denoted by  R A  and   R A , 

respectively, are defined as follows   

    R A x U : A  
R

x     ,      R A x U :   A
R

x    

This is the rough fuzzy set in [6].  
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3. Rough standard neutrosophic set 

A rough standard neutrosophic set is the approximation of a standard neutrosophic set w. r. t a crisp approximation 

space. Here, we consider the upper and lower approximations of a standard neutrosophic set in the crisp approximation 

spaces together with their membership functions, respectively. 

Definition 5: Let (U,R)  be a crisp approximation space. For  A PFS U , the upper and lower approximations of A  

(w.r.t) 
 (U,R)  denoted by  ARP  and  ARP , respectively, are defined as follows:   

 
 

 
 

 
 

  RP A RP A RP A
RP A { x,  μ x ,η x ,  γ x | x U}    

              RP A RP A RP A
RP A { x,  μ x ,η x , γ x | x U}  

where  

   
 

 
s

ARP A y R x
μ x μ y


  ,    

 
 

s

ARP A y R x
η x η y


  ,    

 
 

s

ARP A y R x
γ x γ y


  ; 

and  

   
 

 
s

ARP A
y R x

μ x μ y


  ,
   

 
 

s

ARP A
y R x

η x η y


  , 
   

 
 

s

ARP A
y R x

γ x γ y


  .  

   We have  ARP  and  ARP  are two standard neutrosophic sets in U . Indeed, for each x U ,  for all 0  , 

it exists 
0y U  such that 

 
   

 
 A 0RP A RP A

μ x μ y μ x   , 
 

   0RP A
η x A y , 

 
   0RP A

γ x A y  so that 

 
 

 
 

 
 

RP A RP A RP A
μ x η x γ x     

                                   A 0 A 0 0μ y η y   1A y    .  

Hence 
 

 
 

 
 

 
RP A RP A RP A

μ x η x γ x 1      , for all 0  . It means, i.e,   ARP  is a standard 

neutrosophic set. By the same way, we obtain  ARP  is a standard neutrosophic set. Moreover,    A ARP RP . 

Thus the standard neutrosophic mappings , : ( ) ( )RP RP PFS U PFS U  are referred to as the upper and lower PF 

approximation operators, respectively, and the pair  ( ) ( ( ), A )PR A PR A RP   is called the rough standard neutrosophic 

set of A  w.r.t the approximation space. The picture fuzzy set denoted by   and is defined by 

 ( ) ( ( ), A )PR A PR A RP  where ( )PR A  and  ARP  are the complements of the PF sets  ARP  and  ARP  

respectively. 

Example 2. We consider the universe set  1 2 3 4 5, , , ,U u u u u u  and a binary relation R  on U in Table 1. Here, if 

i ju Ru  then cell (i, j) takes a value of 1, else cell (i, j) takes a value of 0 (i, j = 1, 2, 3, 4, 5). A standard neutrosophic 

     

   

1 2 3

2 3

{ ,0.7,0.1,0.2 ,  ,0.6,0.2,0.1 ,  ,0.6,0.2,0.05 ,

,0.6,0.2,0.1 ,  ,0.6,0.2,0.05 }

A u u u

u u


 

Table 1: Binary relation  on  
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R 
1u  2u  3u  4u  5u  

1u  1 0 1 0 0 

2u  0 1 0 1 1 

3u  1 0 1 0 1 

4u  0 1 0 1 0 

5u  0 0 1 1 1 

We have    s 1 1 3R u ,u u ,    s 2 2 4 5R u , ,u u u ,  

   s 3 1 3 5R u , ,u u u ,    s 4 2 4R u ,u u ,    s 5 3 4 5R u , ,u u u . So that, we obtain results 

 
 

     
s 1

1 Ay R uRP A
μ u μ y


 =     1 3max ,A Au u    

 =  max 0.7,0.6 0.7 , 

       
s 1

1 ARP A y R u
η u η y


     1 3 min ,A Au u   

=  min 0.1,0.2 0.1 , 

            
s 1

1 A 1 3RP A y R u
u y  min ,A Au u   


   =  min 0.2,0.05 0.05 .  

Similar calculations for other elements of U, we have upper approximations of  is           

  1 2RP A {( ,0.7,0.1,0.05),( ,0.6,0.2, 1),0.u u      3 4 5,0.7,0.1, 0.05 ,  ,0.6, 0.2, 0.1 , ,0.6,0.2,0.05 }u u u  

and lower approximations of  is  

  1 2A {( ,0.6,0.1,0.2),( ,0.4,0.2,0. ),2RP u u      3 4 5,0.4,0.1, 0.2 ,  ,0.5, 0.2, 0.15 , ,0.4,0.2,0.2 }u u u . 

Some basic properties of rough standard neutrosophic set approximation operators represent in the following 

theorem: 

Theorem 1. Let (U,R)  be a crisp approximation space, then the upper and lower rough standard 

neutrosophic approximation operators satisfy the following properties:   jA,B,A PFS U ,  j J    is an index 

set, 

(PL1) ( )PR A =  ARP  

(PL2)       RP A α,β,θ  RP A α,β,θ    

(PL3)  RP U U  
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(PL4) 
j j

j J j J

RP A RP(A )
 


 
 
 
    

(PL5)      RP A B RP A  RP B    

(PL6)    A B   RP A RP B      

(PU1)  ARP ( )PR A  

(PU2)       A α,β,θ   A α,β,θRPRP     

(PU3)  RP    

(PU4)   j j

j J

A (A )
j J

RP RP



 

 

(PU5)      RP A B RP A RP B    

(PU6)    A B   RP A RP B    

Proof. 

(PL1).    

              RP ~A RP ~A RP ~A
RP ~ A { x,  μ x ,η x ,  γ x | x U}   

In which,  

       ~RP ~A
μ x

s
Ay R x

y


  = 
   

s
Ay R x

y


 =  

 
 

A
x

RP
 ;  

           ~RP ~A
x  

s s
A Ay R x y R x

y y  
 

   =  

 
 

A
x

RP
  

       ~RP ~A
γ x  

s
Ay R x

y


  = 
   

s
Ay R x

y


 =  

 
 

A
x

RP
  

From that and lemma 1, we have ( )PR A =  ARP . 

(PL2) Because    α,β,θ { x,α,  β,  θ | x U}  , we have 

  
 

RP A α,β,θ
x


=     

 
RP A α,β,θ

 
sy R x

y
   
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= 
      RP A

max ,
sy R x

y 
  

= 
       RP A

max{ , }
y R x y R x

s s
y 

    

=       α,β,θ
,{ (( ) })

RP A
ax xm x   =    RP A α,β,θ

( )x
 . 

 By the same way, we have 

 
  

 
 RP α,β,θRP A α,β,θ

( )
A

x x 


  

and 

 
  

 
 RP α,β,θRP A α,β,θ

( )
A

x x 


 .  

It means       RP A α,β,θ  RP A α,β,θ   .  

(PL3) Since    UU 1 1,0,0 { x,1,0,0 | x U}    , then we can obtain (PL3)  RP U U  by using definition 5.  

The results (PL4), (PL5), (PL6) were proved by using the definition of lower and upper approximation spaces (definition 

5) and lemma 1.  

Similarly, we have (PU1), (PU2), (PU3), (PU4), (PU5), PU(6). □ 

Theorem 2. Let (U,R)  be a crisp approximation space. Then  

a)    RP U U  RP U   and    RP  RP    .  

b)    RP A RP A  forall  A PFS U .□ 

Proof.  

(a) Using (PL3), (PL6), (PU3), (PU6), we easy prove    RP U U  RP U   and    RP  RP    . 

(b) Based on definition 5, we have  

       
s

ARP A y R x
μ x μ y  


  

         
       

s
ARP A y R x

 μ x μ y


  , 

           
s

ARP A y R x RP A
x μ y η x


  , 

and  

       
s

ARP A y R x
γ x γ y


    

   
 

 
s

Ay R x RP A
y x 


  

So that    RP A RP A  forall  A PFS U .□ 

In the case of connections between special types of crisp relation on U , and properties of rough standard 

neutrosophic approximation operators, we have the following 
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Lemma 2. If R  is a symmetric crisp binary relation on , then for all , 

( ) ( )RP A B A RP B    

Proof.  

Let R  be a symmetric crisp binary relation on U, i.e,    s sy R x x R y – , ,x y U  . We assume contradiction 

that  ( )RP A B but ( )A RP B . For each , we consider all the cases:  

+ if 
       

s
BRP B y R x

( ) μ x μ yA x


   then it exists  0 sy R x  such that 

0( ) ( )A Bx y   
) 0(RP A

y   
0

sz R
( ) ( )A Ay
z x 


  (because  0 sy R x  then  s 0Rx y . This is not true.  

+ the cases 
( )

( ) ( )
A RP B

x x   or 
( )

( ) ( )A RP B
x x   is also not true. □ 

Theorem 3.  Let (U,R)  be a crisp approximation space, and  , : ( ) ( )RP RP PFS U PFS U  are the upper and lower PF 

approximation operators. Then 

(a) R is reflexive if and only if at least one of the following conditions are satisfied 

(a1)      PLR  RP A A ,   A PFS U    

(a2)      PUR  A  RP A ,  A PFS U    

(b) R is symmetric if and only if at least one of the following conditions are satisfied 

(b1)       PLR RP  RP A A    A PFS U    

(b2)       PUR  A  RP RP A A PFS U    

(c) R  is transitive if and only if at least one of the following conditions are satisfied 

(c1)         PLT  RP A RP RP A     A PFS U    

(c2)         PUT   RP A RP RP A A PFS U    

Proof. 

(a). We assume that R is reflexive, i.e., ( )Sx R x , so that  A PFS U   we have  

         
s

A ARP A y R x
μ x μ y   μ x


  ,          

s
ARP A y R x Ax μ y η x


  , 

and        
s

ARP A y R x
γ x γ y


    A x . It means that    RP A A ,   A PFS U   , i.e., (a1) was verified. 

Similarly, we consider upper approximation of:  

 
       

s
A Ay R xRP A

μ x μ y μ x


  , 
 

 
RP A
η x = 

     
s

A Ay R x
μ y η x


 ,  and

 
 

RP A
x = 

     
s

Ay R x
y xA 


 . It means    A  RP A ,  A PFS U   , i.e., (a2) is satisfied.  
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Now, assume that (a1)    RP A A ,   A PFS U    we show that R is reflexive. Indeed, We assume contradiction that 

R is not reflexive, i.e.,  x R x
s

 .  We consider  { }A = 1U x , i.e.,  
{ }1

if

i
μ

f

0

1U x

y x
y

y x










, 

 
{ }1

if

f

0

i0U x

y x
y

y x









 


,  
{ }1

if

f

1

i0U x

y x
y

y x









 


.  

Then 
       

s
ARP A y R x

γ γ 0x y


     A 1x  . This is not true. It implies R is reflexive.  

Similarly, we assume that (a2)    A  RP A ,  A PFS U    we show that R is reflexive. Indeed, We assume 

contradiction that R is not reflexive, i.e.,  x R x
s

 .  We consider  We consider  xA = 1 , i.e., 

 1

1

0 if
μ

if

x

y x
y

y x






 


,  1

if

i

0

0 fx

y x
y

y x







 


,  1

if

i

0

1 fx

y x
y

y x







 


.  

Then 
 

       
s

A Ay R xRP A
μ x μ y 0 μ x 1


    . This is not true. It implies R is reflexive.  

(b).  

We verify case (b1).  

We assume that R is symmetric, i.e., if ( )Sx R y  then ( )Sy R x . For all  A PFS U , because ( )Sx R y then 

   
s

AR
μ

z y
z


  Aμ x , 

   
s

AR
μ

z y
z


  Aμ x , 

   
s

ARz y
z


  A x for all   ( )Sy R x , we have 

 
 

 
(RP A )

μ x
RP


     

s s
Ay R x R

( μ ) 
z y

z
 

   Aμ x , 

 
         

s s
A Ay R x R(RP A )

x ( ) 
zRP y

z x  
 

    ; and 

 
         

s s
A Ay R x R(RP A )

x ( ) 
zRP y

z x  
 

    .  

It means that     RP  RP A A    A PFS U   .  

Now, we assume contradiction that     RP  RP A A    A PFS U    but R is not symmetric, i.e., if ( )Sx R y  then 

( )Sy R x  and if ( )Sy R x  then ( )Sx R y . We consider { }A = 1U x . Then, 

 
 

(RP A )
μ x

RP


     
s s

Ay R x R
( μ ) =1

z y
z

 
   A> μ 0x  . It is not true, because 

 
 

(RP A )
μ x ( ),ARP

x for all x U .So that R is symmetric. 

By the same way, it yields (b2). 

(c). R  is transitive, i.e., if for all , ,x y z U : ( ), ( )S Sz R y y R x  then ( )Sz R x . It means that ( ) ( )S SR y R x , 

so that for all  ( )A PFS U we have
       

s s
A AR R

μ μ
x yz z

z z
 

   . Hence 

           
s s s s

A AR R R R
( μ ) ( μ )

x z y z yy x x
z z

   
     . Because 

     
s s

( ) AR R
( ) ( μ )RP A y zx x

zx
 

    and 
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     
s s

( ( )) AR R
( ) ( μ )RP RP A y x yz
x z

 
   . So that  ( ) ( ( ))( ) ( )RP A RP RP Ax x  , for all , ( )x U A PFS U  . It 

mean that (c1) was varified. Now, we assume contradiction that (c1):       RP A RP RP A A PFS U   , but R  is not 

transitive, i.e., , ,x y z U : ( ), ( )S Sz R y y R x  then ( )Sz R x . We consider { }A = 1U x , then 

   
s

( ) AR
( ) μ 1RP A z x
x z


   , but 

     
s s

( ( )) AR R
( ) ( μ ) 0

x yRP RP A y z
zx

 
    . It is false. By same way, we 

show that (c2) is true. Hence, (c) was verified.⧠ 

 Now, according to Theorem 1, Lemma 1 and Theorem 3, we obtain the following results:  

Theorem 4. Let R be a similarity crisp binary relation on U  and  , : ( ) ( )RP RP PFS U PFS U  are the upper and 

lower PF approximation operators. Then, for all  A PFS U  

   A RP A RP A A –  

   ~ A RP ~ A RP ~ A ~ A  –  

4. The standard neutrosophic information systems 

In this section, we introduce a new concept: standard neutrosophic information system.  

Let  , ,U A F  be a classical information system. Here U  is the (nonempty) set of objects, i.e., 

 1 2,  , , ,nU u u u     1 2, , , mA a a a   is the attribute set, and F  is the relation set of U  and A , i.e., 

  : ,  1,2, ,j jF f U V j m     where jV  is the domain of the attribute , 1, 2,. ,  ..ja j m .  

We call  , , , ,U A F D G  an information system or decision table, where  , ,U A F  is the classical information sys-

tem,  A  is the condition attribute set and D  is the decision attribute set, i.e.,  1 2  , , , pD d d d   and G is the rela-

tion set of U  and D , i.e.,  ' : ,  1,2, ,j jG g U V j p     where 
'

jV  is the domain of the attribute 

, 1,2,...,jd j p . 

Let  , , , ,U A F D G  be the information system. For  B A D  , we define a relation, denoted  BR IND B , as fol-

lows, , : x y U    

            j jx IND B y f x f y–  for all  : jj j a B  . 

The equivalence class of x U  based on BR  is    : BB
x y U yR x  . 

Here, we consider   AR IND A ,  DR IND D . If 
DAR R , i.e., for any   , 

A
x x U  there exists   

D
x  such that 

   
DA

x x , then the information system is called a consistent information system, other called an inconsistent infor-

mation system. 

 Let  , , , ,U A F D G  be the information system, where  , ,U A F  be a classical information system.  If 

{ | 1,2, , }kD D k q   , where kD  is a fuzzy subset of U , then  , , , ,U A F D G  be the fuzzy information system. 

If { | 1,2, , }kD D k q   where kD  is an intutionistic fuzzy subset of U , then  , , , ,U A F D G  be an intuitionistic 

fuzzy information system. 
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Definition 6. Let  , , , ,U A F D G  be the information system or decision table, where  , ,U A F  be a classical 

information system. If { | 1,2, , }kD D k q    where kD  is a standard neutrosophic subset of U  and G  is the 

relation set of U  and D , then  , , , ,U A F D G  is called a standard neutrosophic information system. 

Example 2. The following table 2 gives a standard neutrosophic information system, where the objects set  

    2 0.15,0.05,0.6ARP D x    condition attribute set is  1 2 3, ,A a a a  and the decision attribute set is 

 1 2 3, ,D D D D , where 1 ,,( ,2 3)kD k   is the standard neutrosophic subsets of . 

Table 2: A standard neutrosophic information system 

U  
1a  2a  3a  1D  2D  3D  

1u  3 2 1 (0.2,0,3,0.5) (0.15,0.6,0.2) (0.4,0.05,0.5) 

2u  1 3 2 (0.3,0.1,0.5) (0.3,0.3,0.3) (0.35,0.1,0.4) 

3u  3 2 1 (0.6,0,0.4) (0.3,0.05,0.6) (0.1,0.45,0.4) 

4u  3 3 1 (0.15,0.1,0.7) (0.1,0.05,0.8) (0.2,0.4,0.3) 

5u  2 2 4 (0.05,0,2,0.7) (0.2,0.4,0.3) (0.05,0.4,0.5) 

6u  2 3 4 (0.1,0.3,0.5) (0.2,0.3,0.4) (1,0,0) 

7u  1 3 2 (0.25,0.3,0.4) (1,0,0) (0.3,0.3,0.4) 

8u  2 2 4 (0.1,0.6,0.2) (0.25,0.3,0.4) (0.4,0,0.6) 

9u  3 2 1 (0.45,0,1,0.45) (0.25,0.4,0.3) (0.2,0.5,0.3) 

10u  1 3 2 (0.05,0.05,0.9) (0.4,0.2,0.3) (0.05,0.7,0.2) 

 

5. The knowledge discovery in the standard neutrosophic information systems    

 

In this section, we will give some results about the knowledge discovery for a standard neutrosophic information 

systems by using the basic theory of rough standard neutrosophic set in section 3. Throughout this paper, let 

 , , , ,U A F D G  be the standard neutrosophic information system and B A  we denote  B jRP D  is the lower rough 

standard neutrosophic approximation of  jD PFS U  on   approximation space  , BU R .  

Theorem 5. Let  , , , ,U A F D G  be the standard neutrosophic information system and B A . If for any  
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             , ,  , , 
i i iD D Dx x x x x x       

      B Bi jRP D x RP D x i j   , 

then       
 

 ,0x

jB x
x D




         and    

 

   ,x x

iB x
x D

 


     

where        *, , x x x D    . 

Proof.  

We have 

 
 

   
      

,
{ :  , , 

i i i

x x

i D D Dx
D y U y y y

 


     

      , ,  }x x x   .  

Since          , ,  B ix x x RP D x    ,  

we have      
iB

Dy x
x y 


  ,      

iB
Dy x

x y 


  , and      .
iB

Dy x
x y 


   So that, for any ,  [ ]Bx U y x    

then     
iD y x  ,     

iD y x   and     
iD y x  . It means that   

 

   ,x x

i x
y D

 


 , i.e.,   

 

   ,
[ ]

x x

B i x
x D

 




.
 

Now, since 

             , ,  B Bi jx x x RP D x RP D x i j      then there exists  [ ]By x  such that  

             , ,  , , 
i i iD D Dy y y x x x       

,i.e., or    (  
iD y x  ,    )

iD y x   or    (  
iD y x  ,    )

iD y x   or    (  
iD y x  , 

   )
iD y x   and    )

iD y x  ). It means that here exists   
B

y x  such that  

           , ,  ,0,
i i iD D Dy y y x x     , i.e.,    

 

 ,0x

j x
y D




  . So that  

 

 ,0
[ ]

x

B j x
x D




    .□ 

Let  , , , ,U A F D G  be the standard neutrosophic information system, 
AR  is the equivalence classes which induced 

by the condition attribute set  and the universe is divided by 
AR  as following:  1 2/ ,  , A kU R X X X  . Then the 

approximation of the standard neutrosophic decision denoted as, for all 1, 2,  ,  .i k  . 

            1 2,  , ,A A A Ai i i q iRP D X RP D X RP D X RP D X  Example 3. We consider the standard neutrosophic 

information system in Table 2. The equivalent classes  

   1 1 3 9 2 2 7 10/ { , , ,  , , , AU R X u u u X u u u    

 

The approximation of the standard neutrosophic decision is as follows:  

Table 3:    The approximation of the picture fuzzy decision 
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/ AU R    1A iRP D X    2A iRP D X    3A iRP D X  

1X   
(0.15,0.05,0.6) (0.1,0.05,0.5) 

2X  (0.05,0.05,0.9) 
 

(0.05,0.1,0.4) 

3X  (0.15, 0.1,0.7) (0.1,0.05,0.8) (0.2,0.4,0.3) 

4X  (0.05,0.2,0.7) (0.2,0.3,0.4) (0.05,0,0.6) 

5X  (0.1,0.3,0.5) (0.2,0.3,0.4) (1,0,0) 

Indeed, for  1 1 3 9, ,  X u u u . We have 
1 x X  , 

       
1 11

min 0.2,0.6,0.45 0.2
A

y X DRP D
x y     , 

       
1 11

min 0.3,0,0.1 0
A

y X DRP D
x y      

       
1 11

max 0.5,0.4,0.45 0.5
A

y X DRP D
x y     , 

 , so that     1 0.2,0,0.5ARP D x  . And 

 
       

1 22
min 0.15,0.3,0.25 0.15

A
y X DRP D

x y     ,
 

       
1 22

min 0.6,0.05,0.4 0.05
A

y X DRP D
x y      , 

       
1 22

max 0.2,0.6,0.3 0.6
A

y X DRP D
x y     so     2 0.15,0.05,0.6ARP D x   and  

       
1 33

min 0.4,0.1,0.2 0.1
A

y X DRP D
x y     , 

       
1 33

min 0.05,0.45,0.5 0.05
A

y X DRP D
x y     ,        

1 33
max 0.5,0.2,03 0.5

A
y X DRP D

x y      

so that     3 0.1,0.05,0.5ARP D x  . 

Hence, for   1 1 3 9, ,X u u u , 2 x X  ,  
    1,2,3 A ii

max RP D x


     1 0.2,0.5,0ARP D x  , 

and      
0.2,0

1 1 3 9 1 1 2 3 7 90.5
, ,   , , , ,X u u u D u u u u u   ;  

For  2 2 7 10, ,X u u u . We have 
2 x X  ,  

    1,2,3 A ii
max RP D x


      2 0.3,0.3,0.1ARP D x  , 

and      
0.3,0.1

2 2 7 10 2 2 7 100.3
, ,   , ,X u u u D u u u   . 

For  3 4X u , we have 
3 x X  ,  
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    1,2,3 A ii
max RP D x


      3 0.2,0.3,0.4ARP D x  ,   

and      
0.3,0.1

3 4 2 4 6 90.3
  , ,X u D u u u   . 

For  4 5 8,X u u , we have 
4 x X   

    1,2,3 A ii
max RP D x


      0.2,02 .4,0.3ARP D x   

and      
0.2,0.3

4 5 8 2 2 5 8 9 100.4
,   , , , ,X u u D u u u u u    . 

For  3 4X u , we have 
5 x X  ,  

    1,2,3 A ii
max RP D x


      3 1,0,0ARP D x  , and      

1,0

5 6 2 60
 X u D u   . 

 

6 The knowledge reduction and extension of standard neutrosophic information systems  

 

Definition 7.  

(i) Let  , ,U A F   be the classical information system and B A . B  is called the standard neutrosophic reduction 

of the classical information system  , ,U A F , if  is the minimum set which satisfies the following relations: for any 

  , X PFS U x U  . 

       ,   A BA BRP X RP X RP X RP X   

(ii) B  is called the standard neutrosophic lower approximation reduction of the classical information system 

 , ,U A F , if B  is the minimum set which satisfies the following relations: for any   , X PFS U x U   

   A BRP X RP X  

(iii) B  is called the standard neutrosophic upper approximation reduction of the classical information system 

 , ,U A F , if B  is the minimum set which satisfies the following relations: for any   , X PFS U x U   

   A BRP X RP X  

Where        , ,   ,A BA BRP X RP X RP X RP X  are standard neutrosophic lower and standard neutrosophic upper 

approximation sets of standard neutrosophic set   X PFS U  based on , A BR R , respectively.   

Now, we express the knowledge of the knowledge reduction of standard neutrosophic information system by in-

troducing the discernibility matrix.  

Definition 8. Let  , , , ,U A F D G  be the standard neutrosophic information system. Then [ ]ij k kM D   where 

        

   

:  ;             

                                                       ; 

i j

i j

l l i l j X X

ij

t t

t X tX

a A f X f X g D g D
D

A g D g D

   
 



is called the discernibility matrix of  , , , ,U A F D G  (where 

 
i tXg D  is the maximum of   A iRP D X  obtained at 

tD , i.e.,     
i AX t t ig D RP D X  

=    max ,  1,2, , )A izRP D X z q   
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Definition 9. Let  , , , ,U A F D G  be the standard neutrosophic information system, for any B A , if the fol-

lowing relations holds, for any  x B :  

             B B Ai j i jA
RP D x RP D x RP D x RP D x i j  –  

then B  is called the consistent set of  A .  

Theorem 6. Let  , , , ,U A F D G  be the standard neutrosophic information system. If there exists a subset 

B A  such that ijB D  , then B  is the consistent set of  A . 

Definition 10. Let  , , , ,U A F D G  be the standard neutrosophic information system 

        

   

:  ;             

                                                       ; 

i j

i j

l l i l j X XC

i

t

j

tX X

t

t

a A f X f X g D g D
D

g D g D

   
 

 

 

is called the discernibility matrix of  , , , ,U A F D G  (where  
i tXg D  is the maximum of   A iRP D X  obtained at 

tD , i.e.,  

        max ,  1,2, , ).
i t t zA AX i ig D RP D X RP D X z q     

Theorem 7. Let  , , , ,U A F D G  be the standard neutrosophic information system. If there exists a subset 

B A  such that C

ijB D  , then B  is the consistent set of  A . 

Proof. If C

ijB D  , then ijB D . According to Theorem 6, B  is the consistent set of  A .  

The extension of a standard neutrosophic information system present on the following definition:   

Definition 11.  

(i) Let  , ,U A F  be the classical information system and B A . B  is called the standard neutrosophic extension 

of the classical information system  , ,U A F , if B  satisfies the following relations: for any   , X PFS U x U   

       ,   A BA BRP X RP X RP X RP X   

(ii) B  is called the standard neutrosophic lower approximation extension of the classical information system 

 , ,U A F , if B  satisfies the following relations: for any   , X PFS U x U   

   A BRP X RP X  

(iii) B  is called the standard neutrosophic upper approximation extension of the classical information system 

 , ,U A F , if B  satisfies the following relations: for any   , X PFS U x U   

   A BRP X RP X  

Where    ,A BRP X RP X     ,A BRP X RP X are picture fuzzy lower and upper approximation sets of standard neutro-

sophic set   X PFS U  based on , A BR R , respectively.   

We can be easily obtained the following result.  

Definition 12. Let  , ,U A F  be the classical information system, for any hyper set B , such that , if  is the 

standard neutrosophic reduction of the classical information system  , ,U B F , then  , ,U B F  is the standard neutro-

sophic extension of  , ,U A F , but not conversely necessary.  
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Example 4. In the approximation of the standard neutrosophic decision in Table 2, Table 3. Let  1 2,B a a , then we 

obtained the family of all equivalent classes of   based on the equivalent relation  BR IND B  as follows 

          1 1 3 9 2 2 7 10 3 4 4 5 8 5 6/ , , ,  , , ,  ,  , , BU R X u u u X u u u X u X u u X u       

We can get the approximation value given in Table 4.  

Table 4:    The approximation of the standard neutrosophic decision 

/ BU R    1 iBRP D X    2 iBRP D X    3 iBRP D X  

1X   
(0.15,0.05,0.6) (0.1,0.05,0.5) 

2X  (0.05,0.05,0.9) 
 

(0.05,0.1,0.4) 

3X  (0.15, 0.1,0.7) (0.1,0.05,0.8) (0.2,0.4,0.3) 

4X  (0.05,0.2,0.7) (0.2,0.3,0.4) (0.05,0,0.6) 

5X  (0.1,0.3,0.5) (0.2,0.3,0.4) (1,0,0) 

It is easy to see that  satisfies Definition 7 (ii), i.e.,  is the standard neutrosophic lower reduction of the classical 

information system .  

The discernibility matrix of the standard neutrosophic information system  will be presented in Table 5.  

 

Table 5:      The discernibility matrix of the standard neutrosophic information system 

 1X  
2X  

3X  
4X

 

5X

 

1X   
    

2X    
   

3X     
  

4X      
 

5X       

7 Conclusion 

In this paper, we introduce the concept of standard neutrosophic information system, study the knowledge discovery 

of standard neutrosophic information system based on rough standard neutrosophic sets. We investigate some problems 

of the knowledge discovery of standard neutrosophic information system: the knowledge reduction and extension of the 

standard neutrosophic information systems .  
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