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1 Introduction

Rough set theory was introduced by Z. Pawlak in 1980s [1]. It becomes a usefully mathematical tool for data
mining, especially for redundant and uncertain data. At first, the establishment of the rough set theory is based on
equivalence relation. The set of equivalence classes of the universal set, obtained by an equivalence relation, is the
basis for the construction of upper and lower approximation of the subset of universal set.

Fuzzy set theory was introduced by L. Zadeh since 1965 [2]. Immediately, it became a useful method to study in
the problems of imprecision and uncertainty. Since, a lot of new theories treating imprecision and uncertainty have
been introduced. For instance, Intuitionistic fuzzy sets were introduced in1986, by K. Atanassov [3], which is a
generalization of the notion of a fuzzy set. When fuzzy set give the degree of membership of an element in a given
set, Intuitionistic fuzzy set give a degree of membership and a degree of non-membership of an element in a given
set. In 1999 [17], F. Smarandache gave the concept of neutrosophic set which generalized fuzzy set and intuitionistic
fuzzy set. It is a set in which each proposition is estimated to have a degree of truth (T), adegree of indeterminacy (1)
and a degree of falsity (F). Over time, many subclasses of neutrosophic sets were proposed. They are also more
advantageous in the practical application. Wang et al. [18] proposed interval neutrosophic sets and some operators of
them. Smarandache [17] and Wang et al. [19] proposed a single valued neutrosophic set as an instance of the
neutrosophic set accompanied with various set theoretic operators and properties. Ye [20] defined the concept of
simplified neutrosophic sets. It is a set where each element of the universe has a degree of truth, indeterminacy and
falsity respectively and which lies between [0, 1] and some operational laws for simplified neutrosophic sets and to
propose two aggregation operators, including a simplified neutrosophic weighted arithmetic average operator and a
simplified neutrosophic weighted geometric average operator. In 2013, B.C. Cuong and V. Kreinovich introduced
the concept of picture fuzzy set [4,5], as a particular case of neutrosophic set, in which a given element has three
memberships: a degree of positive membership, a degree of negative membership, and a degree of neutral




membership of an element in this set. After that, L. H. Son has given the application of the picture fuzzy set in the
clustering problems [7,8]. We also regard picture fuzzy sets as a particular case of the standard neutrosophic sets [6].

In addition, combining rough set and fuzzy set has also many interesting results. The approximation of rough (or
fuzzy) sets in fuzzy approximation space give us the fuzzy rough set [9,10,11]; and the approximation of fuzzy sets in
crisp approximation space give us the rough fuzzy set [9,10]. W.Z. Wu et al, [11] present a general framework for the
study of fuzzy rough sets in both constructive and axiomatic approaches. By the same, W. Z. Wu and Y. H. Xu were
investigated the fuzzy topological structures on the rough fuzzy sets [12], in which both constructive and axiomatic
approaches are used. In 2012, Y. H. Xu and W. Z. Wu were also investigated the rough intuitionistic fuzzy set and the
intuitionistic fuzzy topologies in crisp approximation spaces [13]. In 2013 B. Davvaz and M. Jafarzadeh study the rough
intuitionistic fuzzy information system [14]. In 2014, X.T. Nguyen introduces the rough picture fuzzy sets.lt is the result
of approximation of a picture fuzzy set with respect to a crisp approximation space [15].

In this paper, we introduce the concept of standard neutrosophic information system, study some problems of the
knowledge discovery of standard neutrosophic information system based on rough standard neutrosophic sets. The
remaining part of this paper is organized as following: we recall basic notions of rough set, standard neutrosophic set and
rough standard neutrosophic set on the crisp approximation space, respectively, in section 2 and section 3. In section 4,
we introduce the basic concepts of standard neutrosophic information system. Finally, we investigate some problems of
the knowledge discovery of standard neutrosophic information system : the knowledge reduction and extension of the
standard neutrosophic information system in section 5 and section 6, respectively.

2 Basic notions of standard neutrosophic set and rough set

In this paper, we denote U be a nonempty set called the universe of discourse. The class of all subsets of U will be
denoted by P(U) and the class of all fuzzy subsets of U will be denoted by F(U).

Definition 1. [6]. A standard neutrosophic (PF) set A on the universe U is an object of the form
A={(X,1a (x):n14(x), ¥4 (x)) | x € U}
where p, (x)(e [O, 1]) is called the “degree of positive membership of x in A”, 1, (X)(E [O, 1]) is called the “degree of

neutral membership of xin A” and v, (X)(E [0,1]) is called the “degree of negative membership of x in A”, and

where
Ma, Ma and 7y, are dependent components alltogether (see [24]) and therefore they satisfy the following condition:

Ua (x)+nA(x)+ Ya (x)Sl, (‘v’ X eX).
The family of all standard neutrosophic set in U is denoted by PFS(U). The complement of a picture fuzzy set A is

~A={(% ¥a(x): Na(x), 1a(x))| Vx € U}.
Obviously, any intuitionistic fuzzy set A={(x,u, (x), v, (x))} may be identified with the standard neutrosophic set in

the form
A :{(X,pA (x),0, v4 (X)X) |x e U}.
The operators on PFS(U): Ac B ,AnB  AwWB were introduced [4]:
Now we define some special PF sets: a constant PF set is the PF set (a,B,0) = {(x,a, B, 8)| x € U} ; the PF universe set

is U=1, =(1,0,0)={(x,1,0,0)| x € U} and the PF empty setis & =0, =(0,0,1) ={(x,0,0,1)| x € U}.

Forany X € U, standard neutrosophic set 1, and 1U—{x} are, respectively, defined by: forall y € U




0if y=#x Oif y#x 1if y#x lif y#x
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_Joif y=x Jrify=x
”%{x}(y)_{o if y=x' 71U<x}(y)_{0 if y=x

Definition 2. (Lattice (D*'SD* )), Let
D’ ={(xl,x2,x3)e[0,1]3 DX X, + X, 31}.

We define a relation <. on D" as follows: V(x,,X,,X;), (¥1,¥,,Y;) €D then (x,,x,,X,) <y (Y1, Y,.Y,) ifonly if
(or (X, <Yy, Xg 2Y3) or (X; =Y, X3 >V,) or (x, =y, X; =Y,, X, <y,)) and
(Xl!Xzyxa):D* (yllyziys) @(Xlzyl,X2=y2,X3=y3).

We have (D*,SD* ) is a lattice. Denote 0, = (0,0,1), 1= (1,0, 0). Now, we define some operators on D*

Definition 3.
Q) Negative of x = (x1,%3,%3) €E D" is X = (x3,%3, %)

(i) Forall V(x,,X,,X;), (V1,Y,.Ys) € D" wehave
x/\y=(x1/\y1,x2 /\yz’xs\/ys)

XVY=(X VY% AY X AY;)
We have some properties of those operators.
Lemma 1.

(@ Forall V(x,,x,,X;), (¥1,Y,.Y;) D" we have

(b1) XAy =XVY

(b2) XV y=XAY

(b) Forall X,y,u,veD and X<_. U,y <_. vV we have

@DXAySUUAV

@avaSWUVV

Proof.

(8) Wehave Xay =(x v ya % A Yo X AY:) = (X%, %)V (Vas Yo V1) = XV Y

Similary xvy =(x AYs % Ao v Yy ) = (X6 %00 % ) A (Y3, Y50 Y1) = XAY
m)%r&bﬁﬂe{&ﬂ,ﬁaﬁhcédtMnaACSbAdwﬂmedﬁM%nZdwmmmsweMW

the result to prove. O

Now, we mention the level sets of the standard neutrosophic sets. Where (a, B, 9) eD’ , we define:




. (a, B, 9) — level cut set of the standard neutrosophic set A:{(x,pA (x),m (%), ¥4 (x)) |xe U}

as follows:

A" ={x e Ul(ia (x).14 (%), 74 (%)) = (0 B, O))
e strong ((x, B, 9)— level cut set of the standard neutrosophic set A as follows:

AZ:"3+ ={xe Ul(uA (x).m4(X), ¥a (X)) > (0, B, 0)}
. (a+, B, 6)— level cut set of the standard neutrosophic set A as

Ag+’B ={xeU|u, (X) >a,Y, (X) <0}

e (a,3,8%) — level cut set of the standard neutrosophic set A as
Ag;B ={xeUlu, (x) 20, Yu (x) <0}

When 3 =0 we denoted

A =AY =fxe Ul(a (x):ma (%), 74 (%)= (00, 0))
. (a* , 07 ) — level cut set of the standard neutrosophic set A as
AL ={xeUlu, (x)>a, v, (x) <0}
e o — level cut set of the degree of positive membership of x in A as
A ={xeUp, (x) > o}
the strong o — level cut set of the degree of positive membership of x in A as

AY ={xe Ulp, (x) > o}
e O — level low cut set of the degree of negative membership of x in A as

A, ={xeUly, (X) <0}
the strong 0 — level low cut set of the degree of negative membership of x in A as

A, ={xeUly, (X) <0}
Example 1. Given the universe U = {ul, uz,us}. Then

A=((v,,0.8,0.05,0.1),(u,,0.7,0.1,0.2),(u,,0.5,0.01,0.4))is a standard neutrosophic set on U. Then A3{%? ={u,, u,}

but AS7%t ={u,} and AXTO? ={fu}, AYT ={u}, A ={u}, A ={u,u,u,}, A" ={u,u,},

0.1" 0.1*

Ay =it} Ay ={unu, .

Definition 3. Let U be a nonempty universe of discourse which many be infinite. A subset R e P(Ux U) is referred to

as a (crisp) binary relation on U . The relation R is referred to as:

e Reflexive: if forall X € U, (X,X) eR.




e Symmetric: if for all X,y € U, (X, y) € R then (y,x) eR.

o Transitive: if forall x,yzeU, (x,y)eR,(y,z)eR then (X, Z) eR

e Similarity: if R is reflexive and symmetric
e Preorder: if R is reflexive and transitive
e Equivalence: if R is reflexive and symmetric, transitive.

A crisp approximation space is a pair (U,R). For an arbitrary crisp relation R on U, we can define a set-valued
mapping R, : U — P(U) by:

R, (x)={yeU|(x,y)eR}, xeU.
Then, RS (X) is called the successor neighborhood of X with respect to (w.r.t) R .

Definition 4.[9]. Let (U,R) be a crisp approximation space. For each crisp set A < U , we define the upper

and lower approximations of A (w.r.t) (U,R) denoted by R (A) and R (A) respectively, are defined as follows
R(A)={xeU:R (x)nA= 2},
R(A)={xeU: R (x)c A}

Remark 2.1. Let (U,R) be a Pawlak approximation space, i.e. R is an equivalence relation. Then R, (x) = [X]R holds.

For each crisp set A < U , the upper and lower approximations of A (w.r.t) (U,R) denoted by R (A) and R (A)

respectively, are defined as follows
ﬁ(A)z{XE U:[x]. mA;tZ} B(A)Z{XE U: [x], gA}

Definition 5.[16]. Let (U,R) be a crisp approximation space. For each fuzzy set A < U, we define the upper and
lower approximations of A (w.r.t) (U, R) denoted by R (A) and R(A), respectively, are defined as follows

R(A)={xeU:R, (x)nA =T},
R(A)={xeU: R, (x)c A}
where

Hz(a) (X) = max{s, (y) lyeR, (X)}’

Hra (X) = min{, (y) lyeR; (X)}
Remark 2.2. Let (U,R) be a Pawlak approximation space, i.e. R is an equivalence relation. Then R_ (x) = [X]R holds.

For each fuzzy set A < U, the upper and lower approximations of A (w.r.t) (U,R) denoted by R(A)and R(A),

respectively, are defined as follows
R(A)={xeU:[x], nAz T}, R(A)={xeU:[x], cA}

This is the rough fuzzy set in [6].




3. Rough standard neutrosophic set

A rough standard neutrosophic set is the approximation of a standard neutrosophic set w. r. t a crisp approximation
space. Here, we consider the upper and lower approximations of a standard neutrosophic set in the crisp approximation
spaces together with their membership functions, respectively.

Definition 5: Let (U,R) be a crisp approximation space. For A e PFS(U), the upper and lower approximations of A
(w.rt) (U,R) denoted by @(A) and RP(A), respectively, are defined as follows:

RP(A) =4 Hgpin) (%): Mg (%): Y (x)) 1 x € U3

RP(A) ={(X, Hapqn) (%) Mgy (X):Veog) (%)) 1 X € U}

where
ase ()= B (9), Mgy (X) = 28 A (9), Yapn) ()= 23 7a ()
and

“@(A)(X)Z A )“A(y)'n@(A)(X)_ A nA(Y)"Y@(A)(X)ZYE;:(X)YA(Y)'

yeRg(x N yeRy(x)
We have RP(A) and RP(A) are two standard neutrosophic sets in U . Indeed, for each xeU, forall £>0,
it exists y, eU such that Hapa) (x)—e<pa(yo)< Mapa) (x) Mepa) (x)<ma(Yo) » Vﬁ(A)(X) <7a(y,) so that

Hep(a) (X) et Nzp(a) (X) + Yrp(a) (X)

< Ua (YO)+nA(YO)+7/A(yO)S1'

Hence fig (X)—f+ﬂ@(A) (x)+y@(A) (x)<I+e¢, for all £>0 . It means, ie, RP(A) is a standard

neutrosophic set. By the same way, we obtain @(A) is a standard neutrosophic set. Moreover, RP(A) @(A)

Thus the standard neutrosophic mappings RP, RP : PFS(U) — PFS(U) are referred to as the upper and lower PF
approximation operators, respectively, and the pair PR(A) = (E(A),@(A)) is called the rough standard neutrosophic

set of A w.r.t the approximation space. The picture fuzzy set denoted by ~RP(A) and is defined by
[1 PR(A) = (0 PR(A),[] RP(A)) Where 7] PR(A) and [ RP(A) are the complements of the PF sets RP(A) and RP(A)
respectively.

Example 2. We consider the universe set U = {u,,u,,u,,u,,u;} and a binary relation R on U in Table 1. Here, if
u, Ruj then cell (i, j) takes a value of 1, else cell (i, j) takes a value of O (i, j = 1, 2, 3, 4, 5). A standard neutrosophic
A={(u,,0.7,0.1,0.2),(u,,0.6,0.2,0.1),(u,,0.6,0.2,0.05),

(u,,0.6,0.2,0.1),(u,,0.6,0.2,0.05 )}

Table 1: Binary relation R on U




R U u, Us u, Us
u, 1 0 1 0 0
u, 0 1 0 1 1
u, 1 0 1 0 1
u, 0 1 0 1 0
u, 0 0 1 1 1

We have R, (u,)={u,u,}, R, (u,)={u,,u,,ug},

R, (u)={u,u;,us}, Ry (u,)={u,,u,}, R, (ug)=1{u,,u,,ug}.So that, we obtain results

L (u)= V yer, (u A (v)= max{qu (Uy), a (Ug )}

= max{0.7,0.6} = 0.7,

Mre(a) (w)= Avyer,(u,1A (y) =min {’7A (U )77, (us )}
=min{0.1,02} =0.1,

yE(A)(ul)z/\yéRs(ul)yA(y)=min{7/A(u1),yA(u3)} = min{0.2,0.05} = 0.05.

Similar calculations for other elements of U, we have upper approximations of A is
RP(A)={(u,,0.7,0.1,0.05),(u,,0.6,0.2,0.1), (u,,0.7,0.1,0.05) (u,,0.6,0.2,0.1) ,(u5,0.6,0.2,0.05)}

and lower approximations of A is
RP(A)={(u,,0.6,0.1,0.2), (u,,0.4,0.2,0.2), (u3,0.4,0.1,0.2),(u4,0.5,0.2,0.15),(u5,0.4,0.2,0.2)}.

Some basic properties of rough standard neutrosophic set approximation operators represent in the following
theorem:

Theorem 1. Let (U,R) be a crisp approximation space, then the upper and lower rough standard
neutrosophic approximation operators satisfy the following properties: VA, B.A e PFS(U), jeJ is an index

set,

(PL1) PR(1J A)=[1 RP(A)
(PL2) RP(A U (a.0)| = RP(A) L (0 .0)

(PL3) RP(U)=U




(PL4) RP[VA;]E\/RP(AJ

(PL5) RP(AUB) > RP(A)URP(B)
(PL6) Ac B= RP(A)cRP(B)
(PU1) RP(1 A) =l] PR(A)
(PU2) RP (A (ap.0)) = RP(A) (a.B.0)
(PU3) RP(2) =2

(PU4) ﬁ( U Aj) = URP(A))

(PUS) RP(ANB) < RP(A)NRP(B)

(PU6) Ac B = RP(A)c RP(B)

Proof.

(PL1).

RP(~A) :{<X' Mgp-a) (X):Man-a) (%) Yera) (X)) XU

In which,

Hrp(-a) (x)= V yer, (x) M- (v)= Vyer, (x) VA (v)=
Vrp(A) (x);

Tep-a) (X) =Ayer (02 (¥) = Ayer (774 (¥) =
MTrp(a) (%)

Vee(-m) (X) =Ayer 0 7-a (Y) = Ay Ha(¥) =
Hep(a) (%)

From that and lemma 1, we have PR(U A) =[1 RP(A).

(PL2) Because (a,B,0) ={(x,0, B, 6)|x € U}, we have

H @(Au(a,ﬁ,e)) (X) =V yeRs(x)'uﬂ(Au(a,B,e)) ( y)




V yeRS(x)maX {”E(A) ( y) ! a}

max{\/ yeRs(x)/JE(A) ( y) Vv yeRs(x}a}

max{ﬂ@(/_\) (X), ﬂ((u,ﬁ,e))(x)} = 'LIE(A)U(‘I,B,S) (X) .
By the same way, we have

nRP(Au(a,ﬁ,G)) (X) - n@Au(a,B,e) )

and

7RP(Au(a,B,0)) (X) - 7/@Au(a,ﬁ,e) (x)-
It means @(Au(a,ﬁ,e)): RP(A)U(a.B.0)-

(PL3) Since U =1, = (1,0,0) :{(X,l,0,0) | x e U}, then we can obtain (PL3) @(U) = U by using definition 5.

The results (PL4), (PL5), (PL6) were proved by using the definition of lower and upper approximation spaces (definition
5) and lemma 1.
Similarly, we have (PU1), (PU2), (PU3), (PU4), (PU5), PU(6). O

Theorem 2. Let (U,R) be a crisp approximation space. Then

3 RP(U)=U=RP(U)and RP(&)=& =RP(Q)-
b) RP(A)cRP(A) forall AePFS(U).0
Proof.

(8) Using (PL3), (PL6), (PU3), (PUB), we easy prove RP(U)=U = @(u) and RP(2) = = @(@)

(b) Based on definition 5, we have
Hre(a) (x)= Ayer, (xHa (v)
< “’ﬁ(A) (X) = VyeRs(x)“'A (y) !

ﬂE(A) (X) = /\yeRs(x)p'A (y) = T]ﬁ(A) (X)’

and
Tre(a) (x)= V yer, (x)/ A (v)z

Ayer,(x)/A (v)= 7re(A) (x)
So that RP(A) < RP(A) forall A ePFS(U).0

In the case of connections between special types of crisp relation on U, and properties of rough standard
neutrosophic approximation operators, we have the following
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Lemma 2. If R is a symmetric crisp binary relation on U, then for all A,B € PFS(U),
RP(A) € B < Ac RP(B)
Proof.

Let R be a symmetric crisp binary relation on U, i.e, y e R, (x)— xeR, (y) VX, Yy €U . We assume contradiction
that RP(A) — Bbut A RP(B). For each x € U, we consider all the cases:
+ if Hia(X) > Ugp(e) (x)= Ayer,(oHe (v) then it exists Yo €R; (X) such that

Ha (X) > 145 (Y,) = Fesin (Vo) = Vi (y }/’lA(Z) > 11, (x) (because y, e R, (x) then x e R, (y, ) This is not true.
+ the cases 7/A(X) < 7ﬁ(s>(x) or 7, (x) > ’7@(3)()() is also not true. o

Theorem 3. Let (U,R) be a crisp approximation space, and RP,RP: PFS(U) — PFS(U) are the upper and lower PF
approximation operators. Then

(@) Risreflexive if and only if at least one of the following conditions are satisfied
(al) (PLR)RP(A)c A, VA ePFS(U)
(2) (PUR) A cRP(A), VA e PFS(U)
(b) R is symmetric if and only if at least one of the following conditions are satisfied
(b1) (PLR)RP(RP(A))c A VA ePFS(U)
(b2) (PUR) A = RP(RP(A))VA ePFS(U)
(c) R istransitive if and only if at least one of the following conditions are satisfied
(c1) (PLT)RP(A)=RP(RP(A)) VAePFS(U)
(c2) (PUT) RP(A) = RP(RP(A))VA e PFS(U)
Proof.
(@. We assume that R is reflexive, ie, XeRg(X) , so that VAePFS(U) we have
Hep(a) (x)= Ayer,(xHA (¥) <pa(x), TTre(A) (x)= Avyer,(xHA (v)=ma(x),

and YE(A)(X):VyeRS(x)VA(y)Z 7a(X). It means that RP(A)c A, YAePFS(U), ie., (al) was verified.

Similarly, we consider upper approximation of:

Mewa) () = Vyempta (V) Z0a (%) M (%) = Ayrpa (V) =ma(x) o and 7, (X) =
Ayer, () (Y)<7a(X).1tmeans A < RP(A), VA € PFS(U), i.e., (a2) is satisfied.
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Now, assume that (al) @(A) cA, VAe PFS(U) we show that R is reflexive. Indeed, We assume contradiction that

. o . _ . 0if y=x

R is not reflexive, i.e., xeR (x) - We consider A=1, ., ie, u]Hx}(y): Lif y# X
0if y=x 1if y=x
nlu—{x} (y)_{o if y # X ! ylu—{x} (y)_{o if y # X.

Then Yep(a) (X) =V yer,(x)VA (y) =02 y, (X) =1. This is not true. It implies R is reflexive.

Similarly, we assume that (a2) AQ@(A),VAest(U) we show that R is reflexive. Indeed, We assume

contradiction that R is not reflexive, i.e., ngS (x) . We consider We consider A=1,
1if y=x 0if y=x 0if y=x
ul*(y)_{o if y£x' le(y)—{o ify=zx b (y)_{lif y#EX

Then Hep(a) (x) =V yer, (A (y) =0=>p, (x) =1. Thisis not true. It implies R is reflexive.

(b).
We verify case (bl).
We assume that R is symmetric, i.e., if X € Ry(y) then y € Ri(X). For all AePFS(U), because X € Rq (y) then

Arer )M (2) SHA (X)) A ) B (2) SBA (X)) Vi ) 7a (2) Z 74 (X)forall y e Ry(X), we have
Hepre(a) (x)= Vyer 0 (A aeryy) Ma (2)) S Ha (%),
gsin () =y (v 7 (2)) 70 (5): 0
ey ()= Ay (amy 74 (2)) 2 7 ()
It means that RP(RP(A))c A VA ePFS(U).

Now, we assume contradiction that ﬁ(@(A))gA VA e PFS(U) but R is not symmetric, ie., if X e Ry (y) then
yeR(x) and if yeR(X) then xegR((y) . We consider A=1,,, . Then
”ﬁ(ip(A)) (x) = Vyer.0 ( Aeri(y) Ma (z) =1 >H,u (X) =0 . It is not true, because
Hepme(a) (x) < 1, (X), forall X € U .So that R is symmetric.

By the same way, it yields (b2).

(c). R istransitive, i.e., if forall X,y,Ze€U : zeR;(y),y € R;(x) then z € R (X) . It means that R, (y) = R, (X),

so that  for all AcPFSU) we  have A, Ha(Z) S Ay )uA( ) . Hence

/\yeRS( )( zeRy(x )HA ( )) /\yeR (x )(AZeRS(y) Ha (Z)) ’ Because Hrp(a) (X) = AyeRs(x) (/\ZERS(X) Ha (Z)) and
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Heppiay (X) = Ayery(x) (/\ZeRS(y) TN (Z)) . S0 that e ) (X) < Ligp(rp(ay (X) , for all xeU,AePFS(U) . It

mean that (c1) was varified. Now, we assume contradiction that (cl): @(A)g@(@(A))VAEPFS(U), but R is not
transitive, ie, X, ¥,zeU : zeR(y),yeRs(x) then zgR(X) . We consider A=1, ., , then

Hepay(X) = Aser,(x) Ma (Z) =1, but Lgprp(ay (X) = Ayer,(x) (/\ZeRS(y) T8 (Z)) =0. It is false. By same way, we
show that (c2) is true. Hence, (c) was verified.O

Now, according to Theorem 1, Lemma 1 and Theorem 3, we obtain the following results:

Theorem 4. Let R be a similarity crisp binary relation on U and RP,RP: PFS(U) — PFS(U) are the upper and
lower PF approximation operators. Then, for all A e PFS(U)

A=RP(A)- RP(A)=A
— ~A=RP(~A)<RP(-A)=—A

4. The standard neutrosophic information systems

In this section, we introduce a new concept: standard neutrosophic information system.
Let (U,A,F) be a classical information system. Here U is the (nonempty) set of objects, i.e.,

U :{ul,uz,...,un}, A:{ai,az,...,am} is the attribute set, and F is the relation set of U and A, i.e.,
E :{fj U -V, j =1,2,...,m} where V; is the domain of the attribute @, j =1, 2,..., m.
We call (U, A F,D,G) an information system or decision table, where (U, A F) is the classical information sys-

tem, A is the condition attribute set and D is the decision attribute set, i.e., D = {dl,dz,...,d } and G is the rela-

p
tion set of U and D , ie, G= {9,- ‘U _>vj',j =12,..., p} where Vj' is the domain of the attribute
d;,j=12,..,p.

Let (U, A F,D,G) be the information system. For B Au D, we define a relation, denoted R, = IND(B), as fol-
lows, Vx,yeU :
XIND(B)y— f;(x)=f,(y) forall je{j:a B}.

The equivalence class of X € U based on RB is [X]B = {y cU: yRBx}.

Here, we consider R, = IND(A), R, = IND(D). If R, =R, i.e., forany [X]A ,xeU there exists [x]D such that
[x]A c [x]D, then the information system is called a consistent information system, other called an inconsistent infor-

mation system.
Let (U,A F,D,G) be the information system, where (U,AF) be a classical information system. If

D={D, [k=12,...,q}, where D, is a fuzzy subset of U , then (U, A,F,D,G) be the fuzzy information system.
If D={D, |[k=12,...,q}where D, is an intutionistic fuzzy subset of U , then (U, A,F,D,G) be an intuitionistic

fuzzy information system.
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Definition 6. Let (U,A,F,D,G) be the information system or decision table, where (U,A,F) be a classical

information system. If D ={D, |k =1,2,...,q} where D, is a standard neutrosophic subset of U and G is the

relation set of U and D, then (U, A F,D,G) is called a standard neutrosophic information system.

Example 2. The following table 2 gives a standard neutrosophic information system, where the objects set
@A(Dz)(x)=(0.15,0.05,0.6) condition attribute set is A:{ai,az,as} and the decision attribute set is

D={D,,D,,D,}, where D,,(k =1,2,3) is the standard neutrosophic subsets of U.

Table 2: A standard neutrosophic information system

U a1 aZ a3 Dl D2

D3

u, 3 2 1 0.20305)  (0.15,0.6,0.2)

u, 1 3 2 (0.3,0.1,0.5) (0.3,0.3,0.3)

3 2 1 (0.6,0,0.4) (0.3,0.05,0.6)
Us

3 3 1 (0.15,0.1,07)  (0.1,0.05,0.8)
u,

2 2 4 (0.05020.7)  (0.2,0.4,0.3)

Us

2 3 4 (0.1,0.3,0.5) (0.2,0.3,0.4)
Ug

1 3 2 (0.25,0.3,04)  (1,0,0)
U,

2 2 4 (0.1,0.6,0.2) (0.25,0.3,0.4)
Ug

3 2 1 (0.45,0,1,0.45)  (0.25,0.4,0.3)
Ug

u 1 3 2 (0.05,0.050.9)  (0.4,0.2,0.3)
10

(0.4,0.05,0.5)

(0.35,0.1,0.4)

(0.1,0.45,0.4)

(0.2,0.4,0.3)

(0.05,0.4,0.5)

(1,0,0)

(0.3,0.3,0.4)

(0.4,0,0.6)

(0.2,0.5,0.3)

(0.05,0.7,0.2)

5. The knowledge discovery in the standard neutrosophic information systems

In this section, we will give some results about the knowledge discovery for a standard neutrosophic information
systems by using the basic theory of rough standard neutrosophic set in section 3. Throughout this paper, let

(U,A F,D,G) be the standard neutrosophic information system and B A we denote RP (Dj) is the lower rough

standard neutrosophic approximation of D, e PFS (U) on approximation space (U Ry )

Theorem 5. Let (U JAF, D,G) be the standard neutrosophic information system and B < A. If forany x € U:
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(ko ()1, (.7 ()2 (). £(3).00)
ZEB(Di)(X)>@B(Dj)(X)(i¢j)'
ten [, n(~0,)[)" #2029 [, = ()"

*

where (a(x), 8(x),0(x))eD".
Proof.

We have

(D )y ™ =y €U 2120, (¥). 710, (¥),75, ()

> (e (%), B(x).0(X) )}

since (c(x), B(x).0(x)) = RPg (D, ) (%)

we have (x) = A, o o (¥): B(X)=Ayq o (¥) @00 O(X) =, 1 76 (y). Sothat, forany x €U,y €[],

then 41 (y) 2ex(x) 7, (1) 26(x) and 5, () <0(x)- Hmeansthat y e (D). e, [X]y = (B, )y ™

(x
Now, since

(er(x), B(x),0(x)) = RPg (D, )(x) > RPg (D; )(x)(i = j)then there exists y <[], such that

(0, (¥)s720, (¥), 70, () < (@(x), B(x).0(x))

e, or (up (y)<a(x) . 7, (y)Z@(X)) or (p, (y) :a(x) . 7, (y)>6?(x)) or (p, (y) =a(X) :
7o, (y) = 0(X)) and 77, (y) < [)’(x))). It means that here exists y e[x], such that

o(x) 6(x),0

(o (¥) 10 (¥), k1, (¥)) 2 (0(x),0,cc(x)) i y e (~ D, )a(x)'o. So that [x], m(~ D, )a(x)) #@.0

Let (U,A F,D,G) be the standard neutrosophic information system, R, is the equivalence classes which induced
by the condition attribute set 4, and the universe is divided by R, as following: U /R, ={x1,x2_,,,xk}. Then the
approximation of the standard neutrosophic decision denoted as, forall i =1,2,..., K.
EA(D(Xi))=(@A(D1(Xi)),EA(D2(Xi)) ..... EA(DQ (Xi))) Example 3. We consider the standard neutrosophic
information system in Table 2. The equivalent classes
u /RA :{Xl ={u1,U3,U9},X2 :{uzvuwulo}'

X3 = {ugd, Xy = {us,ugh, Xs = {ug}}
The approximation of the standard neutrosophic decision is as follows:

Table 3:  The approximation of the picture fuzzy decision




U /Ry RP,(D(X;)) RP,(D, (X)) RP.(Ds(X,))

X, (0.2,0,0.5) (0.15,0.0506)  (0.1,0.05,0.5)
X, (0.050.050.9)  (0.3,0.1,0.3) (0.05,0.1,0.4)
X, (0.15,0.1,07)  (0.1,0.050.8) (02,0.4,0.3)
X, (0.05,0.2,0.7) (0.2,0.3,0.4) (0.05,0,0.6)
X, (0.1,0.3,0.5) (0.2,0.3,0.4) (1,0,0)

Indeed, for X, ={U,,U,, U, } . We have Vx € X,
Hep, () (X) = Ayx, 5, (y) =min{0.2,0.6,0.45} = 0.2 ’

e 0 (X) = Ay, o (¥) = Min{0.3,0,0.24 =0
Ve, (0, (X) = Vyex, 75, (¥) = max {0.5,0.4,0.45} = 0.5

,sothat RP, (D, )(x)=(0.2,0,0.5). And
Frp (o) (X) = Ayex, H, (V) =min{0.15,0.3,0.25} = 0.15
Tlge, (0,) (X) = Ayex, 7o, (¥) = Min {0.6,0.05,0.4} = 0.05 ,

Vo (o) (X) = Vyex, 75, (V) = Max{0.2,0.6,0.3} = 0.6 50 RP, (D, )(x) =(0.15,0.05,0.6) and

Hp, (o) (X) = Ay, 2o, (¥) = Min{0.4,0.1,0.2} = 0.1,
Tep (o) (X) = Ayex, o, (¥) =Min{0.05,0.45,0.5} = 0.05 7, (1 (X) =V, 75, (V) =Max{05,0.2,03} =05
so that RP, (D, )(x)=(0.1,0.05,0.5).

Hence, for X, ={U,,U,, Uy}, VX €X,, max_,, RP, (D;)(x) = RP, (D;)(x)=(0.2,0.5,0),

0.2,0

and X, :{ulvusvug}g(D1)0.5 :{u11u21u3’u7vu9};

For X, ={u,,u;,u,}. We have Vx e X,,

max,_,, RP, (D, )(x) = RP4(D,)(x)=(0.3,03,0.1),

and X, :{u2'u7!u10}§(D2 )2;2‘0'1 ={u2,u7,u10}.

For X, ={u,}, we have VX € X,,
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max_,, 5 RP,(D,)(x)= RP,(D;)(x)=(0.2,0.30.4),

and X, = {U4}§ (Dz )0.3,0.1 _ {U41U5,Ug}'

0.3

For X, ={us,u,}, we have Vx e X,

maXi_, 5 3

RP,(D)(x)= RP,(D2)(x)=(02,0.4,0.3)

and X, :{us'us}g(Dz)gjO's ={u2,u5,u8,u9,u10} :

For X, ={u,}, we have VX e Xy,

maxi:{xz,a}EA(Di )(x)= RP,(D,)(x)=(10,0),and X, = {Us}g (D, );0 = {ue}'

6 The knowledge reduction and extension of standard neutrosophic information systems

Definition 7.
0] Let (U A, F) be the classical information system and B — A. B is called the standard neutrosophic reduction

of the classical information system (U,A, F), if B is the minimum set which satisfies the following relations: for any
X e PFS(U),XEU .
RP, (X)=RP (X), RPA(X) = RPs (X)

(i) B is called the standard neutrosophic lower approximation reduction of the classical information system
(U, A F), if B is the minimum set which satisfies the following relations: for any X € PFS(U),x €U

RP, (X ) =RP, (X )
(iii) B is called the standard neutrosophic upper approximation reduction of the classical information system
(U, A F), if B is the minimum set which satisfies the following relations: for any X e PFS(U),x €U
RPA (X ) =RPs (X )
Where RP,(X),RPg(X), @A(X),@B (x)are standard neutrosophic lower and standard neutrosophic upper

approximation sets of standard neutrosophic set X e PFS(U) based on R,, Ry, respectively.

Now, we express the knowledge of the knowledge reduction of standard neutrosophic information system by in-
troducing the discernibility matrix.

Definition 8. Let (U,A, F, D,G) be the standard neutrosophic information system. Then M = [Dij]kxk where
o - {a e AL (X)) = £ (X))} 9x, (D)= 9y, (D)) is called the discernibility matrix of (U, A,F,D,G) (where
’ A ;gx,(Dt):ng(Dt)

gy, (D) is the maximum of EA(D(Xi )) obtained at D, i.e., g, (D,)=RP,(D,(X;))

= max{RP, (D, (X,)).2=12,....a})
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Definition 9. Let (U,A, F,D,G) be the standard neutrosophic information system, for any B c A, if the fol-

lowing relations holds, forany X € B:
RP5 (D;)(x) > RP5 (D; )(x) - EA(Di)(X)>@A(DJ)(X)(i¢j)
then B is called the consistent set of A.
Theorem 6. Let (U, A F,D,G) be the standard neutrosophic information system. If there exists a subset

B <= Asuchthat BN Dy # <, then B is the consistent set of A.

Definition 10. Let (U JAF, D,G) be the standard neutrosophic information system

{"’HEA:fl(Xi):fl(Xj)}; dx, (D)= 9x, (D))

% 19x, (D) =9y, (D)
is called the discernibility matrix of (U, A,F,D,G) (where g, (D,) is the maximum of EA(D(xi)) obtained at
D,
0y, (D) =RP,(D;(X;))=max{RP, (D, (X,)).2=12,...,a})

Theorem 7. Let (U,A,F,D,G) be the standard neutrosophic information system. If there exists a subset

C
D =

i.e.,

B < A suchthat B~ DijC =, then B is the consistent set of A.

Proof. If BAD{ =@, then B < D;;. According to Theorem 6, B is the consistent set of A .0

The extension of a standard neutrosophic information system present on the following definition:

Definition 11.
(M Let (U,A, F) be the classical information system and B < A. B is called the standard neutrosophic extension

of the classical information system (U, A, F), if B satisfies the following relations: for any X € PFS (U ),X eU
RP, (X) = RP; (X), RPA(X ) =RPs (X)

(i) B is called the standard neutrosophic lower approximation extension of the classical information system

(U,AF),if B satisfies the following relations: for any X e PFS (U),xeu

RP, (X ) =RPy (X )
(iii) B is called the standard neutrosophic upper approximation extension of the classical information system
(U, AF),if B satisfies the following relations: for any X e PFS (U),xeU

RPA(X)=RPs(X)
Where @A(X),@B (X) @A(X),@B (x)are picture fuzzy lower and upper approximation sets of standard neutro-
sophic set X e PFS(U) based on R,, Ry, respectively.

We can be easily obtained the following result.

Definition 12. Let (U,A, F) be the classical information system, for any hyper set B, such that A € B, if A is the
standard neutrosophic reduction of the classical information system (U,B, F), then (U,B, F) is the standard neutro-

sophic extension of (U A, F), but not conversely necessary.
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Example 4. In the approximation of the standard neutrosophic decision in Table 2, Table 3. Let B = {ai,az } then we
obtained the family of all equivalent classes of U based on the equivalent relation R, = IND(B) as follows
u/ RB :{Xl ={U1,U3,U9},XZ ={u2,u7,um},X3 :{UA}’XA ={U5,U8},X5 :{ue}}

We can get the approximation value given in Table 4.

Table 4:  The approximation of the standard neutrosophic decision

U/ Rs  RP(D(X)) RPy(D,(X)) RPg(D:(X;))

X1 (0.2,0,0.5) (0.15,0.05,0.6) (0.1,0.05,0.5)
X, (0.05,0.05,0.9) (0.3,0.1,0.3) (0.05,0.1,0.4)
X, (0.15,0.1,0.7) (0.1,0.05,0.8) (0.2,0.4,0.3)
)(4 (0.05,0.2,0.7) (0.2,0.3,0.4) (0.05,0,0.6)
X, (0.1,0.3,0.5) (0.2,0.3,0.4) (1,0,0)

It is easy to see that B satisfies Definition 7 (ii), i.e., B is the standard neutrosophic lower reduction of the classical
information system (U, 4, F).

The discernibility matrix of the standard neutrosophic information system (U, 4, F, D, G) will be presented in Table 5.

Table 5:  The discernibility matrix of the standard neutrosophic information system

U/Rg X, X, X, X, X,
X, A
X, A A
X3 {as} {ay. a3} A
X, {ay. a3} A A A
X5 {ay. a3} A A {as} A
7 Conclusion

In this paper, we introduce the concept of standard neutrosophic information system, study the knowledge discovery
of standard neutrosophic information system based on rough standard neutrosophic sets. We investigate some problems
of the knowledge discovery of standard neutrosophic information system: the knowledge reduction and extension of the
standard neutrosophic information systems .




19

Acknowledgment
This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under
grant number 102.01-2017.02 .

References

[1] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, vol. 11, no.5 , pp 341 — 356,
1982.

[2] L. A. Zadeh, Fuzzy Sets, Information and Control, VVol. 8, No. 3 (1965), p 338-353.
[3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy set and systems, vol.20, pp.87-96, 1986.

[4] B.C. Cuong, V. Kreinovick, Picture fuzzy sets — a new concept for computational intelligence problems, in the
proceedings of the third world congress on information and communication technologies WICT 2013, Hanoi, Vietnam,
December 15-18, pp 1-6, 2013.

[5] B.C. Cuong, Picture Fuzzy Sets, Journal of Computer Science and Cybernetics, Vol.30, n.4, 2014, 409-420.

[6] B.C. Cuong, P.H.Phong and F. Smarandache, Standard Neutrosophic Soft Theory: Some First Results, Neutrosophic Sets
and Systems, vol.12, 2016, pp.80-91.

[7] L.H. Son, DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets, Expert systems with applica-
tions 42, pp 51-66, 2015.

[8] P.H. Thong and L.H.Son, Picture Fuzzy Clustering : A New Computational Intelligence Method, Soft Computing, v.20
(9) 3544-3562, 2016.

[9] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, International journal of general systems, Vol. 17, p 191-
209, 1990.

[10] Y.Y. Yao, Combination of rough and fuzzy sets based on o — level sets, Rough sets and Data mining: analysis for
imprecise data, Kluwer Academic Publisher, Boston, p 301 — 321, 1997.

[11] W. Z. Wu, J. S. Mi, W. X. Zhang, Generalized fuzzy rough sets, Information Sciences 151, p. 263-282, 2003.

[12] W. Z. Wu, Y. H. Xu, On fuzzy topological structures of rough fuzzy sets, Transactions on rough sets XVI, LNCS
7736, Springer — Verlag Berlin Heidelberg, p 125-143, 2013.

[13] Y.H. Xu, W.Z. Wu, Intuitionistic fuzzy topologies in crisp approximation spaces, RSKT 2012, LNAI 7414, ©
Springer — Verlag Berlin Heidelberg, pp 496-503, 2012.

[14] B. Davvaz, M. Jafarzadeh, Rough intuitionistic fuzzy information systems, Fuzzy information and Engineering, vol.4,
pp 445-458, 2013.

[15] N.X. Thao, N.V. Dinh, Rough picture fuzzy set and picture fuzzy topologies, Science computer and Cybernetics, Vol
31, No 3 (2015), pp 245-254.

[16] B. Sun, Z. Gong, Rough fuzzy set in generalized approximation space, Fifth Int. Conf. on Fuzzy Systems and
Knowledge Discovery, IEEE computer society 2008, pp 416-420.

[17] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic, American Re-
search Press, Rehoboth, 1998, 1999.

[18] H. Wang, F. Smarandache, Y.Q. Zhang et al., Interval neutrosophic sets and logic: Theory and applications in com-
puting, Hexis, Phoenix, AZ 2005.

[19] H. Wang, F. Smarandache, Y.Q. Zhang, et al., Single valued neutrosophic sets, Multispace and Multistructure 4
(2010), 410-413.

[20] J. Ye, A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, Journal
of Intelligent & Fuzzy Systems 26 (2014) 2459-2466.

[21] P. Majumdar, Neutrosophic sets and its applications to decision making, Computation intelligentce for big data




20

analysis (2015), V.19, pp 97-115.

[22] J. Peng, J. Q. Wang, J. Wang, H. Zhang, X. Chen, Simplified neutrosophic sets and their applications in
multi-criteria group decision-making problems, International journal of systems science (2016), V.47, issue
10, pp 2342-2358.

[23] Florentin Smarandache, Degrees of Membership > 1 and < 0 of the Elements With Respect to a Neutro-
sophic OffSet, Neutrosophic Sets and Systems, vol. 12, 2016, pp. 3-8.

[24] Florentin Smarandache, Degree of Dependence and Independence of the (Sub)Components of Fuzzy Set
and Neutrosophic Set, Neutrosophic Sets and Systems, vol. 11, 2016, pp. 95-97;
http://fs.gallup.unm.edu/NSS/DegreeOfDependence Andindependence.pdf.



http://fs.gallup.unm.edu/NSS/DegreesOf-Over-Under-Off-Membership.pdf
http://fs.gallup.unm.edu/NSS/DegreesOf-Over-Under-Off-Membership.pdf
http://fs.gallup.unm.edu/NSS/DegreesOf-Over-Under-Off-Membership.pdf
http://fs.gallup.unm.edu/NSS/DegreeOfDependenceAndIndependence.pdf
http://fs.gallup.unm.edu/NSS/DegreeOfDependenceAndIndependence.pdf

