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"Nature is pleased with simplicity. And Nature is no dummy." - Isaac Newton.  

"Simplicity is the ultimate sophistication.” - Leonardo da Vinci. 

 

Abstract 

We propose a simple, axiom-free modification of Galileo-Newton's dynamics of moving bodies, 

termed Information Relativity theory. We claim that the theory is capable of unifying physics. 

The claimed unification is supported by the fact that the same derived set of simple and beautiful 

transformations, apply successfully to predicting and explaining many phenomena and findings 

in cosmology, quantum mechanics, and more. Our modification of classical physics is done 

simply by accounting for the time travel of information about a physical measurement, from the 

reference frame at which the measurement was taken, to an observer in another reference frame, 

which is in motion relative to the first frame. This minor modification of classical physics turns 

out to be sufficient for unifying all the dynamics of moving bodies, regardless of their size and 

mass. Since the theory's transformations and predictions are expressed only in terms of 

observable physical entities, its testing should be simple and straightforward. 

For quantum mechanics the special version of the theory for translational inertial motion predicts 

and explains matter-wave duality, quantum phase transition, quantum criticality, entanglement, 

the diffraction of single particles in the double slit experiment, the quantum nature of the 

hydrogen atom. For cosmology, the theory constructs a relativistic quantum cosmology, which 

provides plausible and testable explanations of dark matter and dark energy, as well as 

predictions of the mass of the Higgs boson, the GZK cutoff phenomena, the Schwarzschild radius 

of black holes (without interior singularity), and the timeline of ionization of chemical elements 

along the history of the universe. The general version of the theory for gravitational and 

electrostatic fields, also detailed in the paper, is shown to be successful in predicting and 

explaining the strong force, quantum confinement, and asymptotic freedom.   
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1. Introduction 

The Special Theory of relativity (SR) [1], and Lorentz's invariance principle (LI) have been with us 

for more than a century. Most physicist are confident that these two cornerstones of post-Newtonian 

physics will prevail forever. We do not wish to argue of whether these optimistic forecast are true or 
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false. However, we do argue, that a scientific discipline that is free from prejudice and dogmas, 

should allow a freedom of thought about other models of nature. In fact, without such freedom, many 

other theories, including quantum theories, some of which contradicts both SR and LI, would not 

have been developed, and our understanding of the microscopic world would have been impossible. 

Even for the macroscopic world, for which SR and GR are more applicable, some degree of freedom 

is witnessed in modifications of SR, include doubly special relativity (DSR) [2-4] and the "variable 

speed of light" (or VSL) theories [5-8]. In DSR not only the velocity of light, but also the maximum 

energy scale and minimum length scale (the Planck energy and Planck length) are observer-

independent. In VSL theories the pillar of special relativity (constancy of the speed of light) is 

removed and in some versions a hard breaking of Lorentz symmetry is allowed. 

In deriving his SR and GR [9], Albert Einstein adopted an ontological approach in his interpretation 

of the notion of relativity. For him, relativity is a real phenomenon. The famous time dilation effect 

is real. Stationary clocks with respect to an observer are predicted to run faster than moving clocks. 

The same ontological interpretation applies to the predicted distance (Lorentz) contraction, and mass 

increase, with increase in velocity. Modifications of the original theories, including DSR and VSL 

share the same ontological view of relativity. In the proposed theory, which we term Information 

Relativity theory, we take a completely different approach by proposing an epistemic interpretation 

of relativity. In our approach relativity is not an ontic, true state of nature, but an epistemic difference 

in the measurements taken by two or more observers, in relative motion with respect to each other, 

about some observable physical entity.  

The basic idea behind the theory is extremely simple. Consider the case where information from 

a "moving" body of mass, is transmitted to a "stationary" observer by light signals. Assume that 

the start and end of an event on the body's reference frame, are indicated by two signals sent from 

the body's "moving" reference frame to the "stationary" observer. Since the light velocity is finite, 

the two signals will arrive to the observer's reference-frame in delays, which are determined by 

the distances between the body and the observer, at the time when each signal was transmitted. 

Suppose that the "moving" body is distancing from the observer. In this case the termination 

signal will travel a longer distance than the start signal. Thus the observer will measure a longer 

event duration than the event duration at the body's reference-frame (time dilation). 

For approaching bodies, the termination signal will travel a shorter distance than the start signal. 

Thus, the observer will measure a shorter event duration than the event duration at the body's 

reference-frame (time contraction). It is obvious from the above description that no 

synchronization of the clocks at the two reference-frames is required.   

In fact, Information Relativity theory is nothing more than "relativizing" Newtonian physics, 

accomplished by taking into account the time travel of information from one reference frame to 

another. The theory has no constraints formulated as axioms (e.g., constancy of c), nor 

hypothetical constructs (e.g., spacetime). The theory is also local and realistic, and all its elements 

are observable physical entities. It departs from classical physics only in the minimal 

"adjustment" described above. 

We shall demonstrate hereafter that despite its unprecedented simplicity, Information Relativity 

is successful in unifying quantum mechanics and cosmology. By treating the dynamics at cosmic 

scales, in the same manner we treat the dynamics of small particles, we shall throw a new light 

on the mysteries of dark matter and dark energy. In the following section we shall present the 
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formal derivation of the theory's transformations of time interval, length, mass, and energy, 

relating measurements transmitted by the information sender, to the corresponding information 

registered by the receiver. In section 3 we shall summarize the main features and predictions of 

the theory; in section 4 we use the theory to prediction the seminal Michelson-Morley's "null" 

result, and the time dilation of decaying muons; in section 5 we use the theory to derive a 

theoretical expression for the Sagnac effect; in section 6 we show that the theory predicts with 

precision the values of 
𝑣−c

𝑐
 reported by OPERA and other collaborations; in section 7 we explain 

why the theory cannot be forbidden by Bell's theorem, and apply it to predict and explain several 

key quantum phenomena, including entanglement, particles' diffraction in the double-slit 

experiment, and the quantization of orbits of hydrogen atom problem; in section 8 we use the 

theory to construct a new quantum cosmology, and utilize it to several important predictions, and 

to infer about the nature of dark matter and dark energy, which the theory interprets as quantum 

matter and matter's dual-wave energy as cosmic scales.  We also use the cosmological version of 

the theory to predict the mass of the Higgs boson and the time-line of evolution of chemical 

elements. In section 8 we summarize and make a few concluding remarks.  

 

2. Derivation of Information Relativity transformations 

In this article we limit ourselves to the case of two frames of reference in inertial motion with 

respect to each other. Thus for simplicity, but without losing generality, all the derivations 

hereafter are made for a one dimensional space. Generalization to the three dimensional 

configuration space is technically trivial. Generalization to accelerated systems due to a 

gravitational or electrostatic force is developed elsewhere [10].  

 

2.1 Time duration transformation 

We consider a system of two reference frames 𝐹 and 𝐹′ distancing from each other with constant 

velocity v. For the sake of simplicity, but without loss of generality, assume that the observers in 

𝐹 and  𝐹′ synchronizes their clocks, just when they start distancing from each other, such that 𝑡1 

= 𝑡1
′ =0, and that at time zero the points of origin of 𝐹 and  𝐹′ were coincided (i.e., 𝑥1=𝑥1

′ = 0). 

Suppose that at time zero in the two frames, an experiment started in 𝐹′at the point of origin, 

terminating exactly Δt′ seconds according to the clock stationed in 𝐹′, and that promptly with 

the termination of the experiment, a signal is sent by the observer in 𝐹′ to the observer in 𝐹. The 

"experiment" can be any event at the origin with duration of Δt′ (as measured in 𝐹′).     

After Δt′ seconds, the point at which the event took place stays stationary with respect 𝐹′ (i.e., 

𝑥2
′ =𝑥1

′= 0), while relative to frame 𝐹 this point would have departed by 𝑥2 equaling:  

                                      𝑥2= 𝑣 Δ𝑡′                                                          (1) 

Notably, in eq. 1 the left side includes a measurement of distance taken in F, while the right side 

includes a measurement of time duration taken in 𝐹′. The validity of equation could be verified 

by an experimentally feasible method. As example, if the observer in F conducts an identical 

experiment, to the experiment conducted in 𝐹′.  Because the laws of physics are the same 

everywhere, he or she will conclude that when the event at 𝐹′ has terminated, 𝐹′ was at a distance 

of 𝑥2= 𝑣 Δ𝑡′ away as measure in F.   
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If the information carrier sent from the observer in 𝐹′ to the observer in 𝐹 traveled with velocity 

𝑉𝐹 relative to 𝐹, then it will be received by the observer in 𝐹 after a delay of: 

 

                                       𝑡𝑑 = 
𝑥2

𝑉𝐹
=  

𝑣 Δt′  

𝑉𝐹
  =  

𝑣 

𝑉𝐹
  𝛥𝑡′                                                            (2) 

Since 𝐹′ is distancing from 𝐹 with velocity v, we can write: 

                                    𝑉𝐹 = 𝑉0 – 𝑣                                                                              (3) 

Where 𝑉0 denotes the information carrier's velocity in the light-source rest frame (𝐹′). 

Substituting the value of 𝑉𝐹 from eq. 3 in eq. 2, we obtain: 

                                    𝑡𝑑  = 
𝑣 Δt′  

𝑉0 – 𝑣   
  =  

 1

 
𝑉0
𝑣

– 1   
 𝛥𝑡′                                           (4) 

Due to the information time-delay, the event's time duration Δt that will be registered by the 

observer in 𝐹 will be: 

        Δt = 𝛥𝑡′ + 𝑡𝑑= 𝛥𝑡′ + 
 1

 
𝑉0
𝑣

– 1   
 𝛥𝑡′=(1 + 

 1

 
𝑉0
𝑣

– 1    
) 𝛥𝑡′=(

 
𝑉0
𝑣

 
𝑉0
𝑣

– 1  
)  = ( 

1

 1– 
𝑣

𝑉0
   

) 𝛥𝑡′             (5) 

Denoting 
𝑣

𝑉0
  by β eq. 5 becomes:  

                                   
Δ𝑡 

  Δ𝑡′  
 =  

1

  1– 𝛽    
                                                                                     (6) 

For 𝛽 << (𝑣 << 𝑉0) eq. 6 reduces to the classical Newtonian equation Δ𝑡 = Δ𝑡′,  while for 𝛽 → 1 

(𝑣 → 𝑉0), Δ𝑡 → ∞ for all positive Δ𝑡′.  

For a communication medium to be fit for transmitting information between frames in relative 

motion, a justifiable condition is to require that the velocity of the carrier is larger than the 

velocity of the relative motion, i. e. |𝛽| < 1. 

Before proceeding to the more technical part of this article, some remarks regarding eq. 1 are in 

order: 

1. In the derivation of eq. 6 (to be detailed hereafter) synchronization between clocks is 

unnecessary. The time interval Δ𝑡′ is equal to 𝑡2
′  - 𝑡1

′ , where 𝑡1
′  and 𝑡2

′  are respectively the start 

and end time of the event, as measured by a clock stationed on the event's  rest-frame. On the 

other hand, the observer on the other frame will calculate the time interval Δ𝑡  as being equal to 

𝑡2 - 𝑡1,  where 𝑡1 and 𝑡2 are the readings of a clock stationed on the observer's frame of the arrivals 

of the signals indicating the start, and the end of the same event, respectively. There is no 

requirement for synchronization between the two clocks, as long as the two are identical clocks 

that tick at the same rate. 
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2. Evidently, eq. 6's prediction disobeys the Lorentz invariance principle. It is asymmetric with 

respect to the direction of the transverse velocity vector, predicting time dilation for distancing 

frames and time contraction for approaching frames. Most physicists view Lorentz's symmetry 

principle as the corner-stone of current physics. We argue that such view is unfounded. First and 

foremost, numerous experiments and astronomical observations attest to the possibility of 

Lorentz invariance breaking (cf. [11-17]), particularly in the high energy sector (cf. [18-19]). 

Second, despite the continued efforts for unification between Einstein's relativity and quantum 

theory, it is well-known that quantum mechanics contradicts with not only with Lorentz's 

invariance, and the subsequent Special Relativity's Lorentz factor and Lorentz contraction [20-

21], but also with the fundamental assumption of local-realism [22-24]. The quantum 

phenomenon which presents the contradiction between Special Relativity and quantum theory 

and experimental results in a most profound way is the phenomenon of quantum entanglement 

[25-26]. Recent experimental tests of Bell's theorem provide convincing evidence that 

information between two entangled particles passed faster than light [27-30]. 

3. Note that eq. 6, derived for the time travel of moving bodies with constant velocity, is quite 

similar to the Doppler Effect formula [31-32], derived for the wave-length (frequency) of waves 

emitted from traveling bodies. In both cases the direction of motion matters. In the Doppler effect 

a wave emitted from a distancing body will be red-shifted (longer wavelength), whereas a wave 

emitted from an approaching body with be blues-shifted (shorter wavelength). In both cases the 

degree of red or blue shift will be positively correlated with the body's velocity. The same applies 

to the time duration of an event occurring at a stationary point of a moving frame. If the frame is 

distancing from the observer, time will be dilated, whereas if the frame is approaching the 

observer will contract. Interestingly, while eq. 6 predicts that the time dilation for distancing 

bodies approaches infinity when β→ 1, it puts a testable theoretical limit on the time contraction 

to for approaching bodies, since for β→ -1, it predicts a time contraction of exactly 
1

2
. 

4. It is especially important to note that the above derived transformation applies to all carriers 

of information, including acoustic, optic, etc. For the case in which information is carried by 

light or by electromagnetic waves with equal velocity, we have 𝛽 = 
𝑣

𝑐
, where c is the velocity of 

light in the light-source rest frame. 

2.2 Relativity of length  

To derive the distance transformation, consider the two reference-frames F and 𝐹′ discussed 

above.  Without loss of generality assume as before that when 𝐹 and  𝐹′ start distancing from 

each other 𝑡1 = 𝑡1
′ =0, and 𝑥1=𝑥1

′ = 0. Assume further that 𝐹′ has onboard a rod placed along its 

𝑥′ axis between the points 𝑥′ = 0  and 𝑥′ = 𝑥2
′  (see Figure 1) and that the observer in 𝐹′ uses his 

clock to measure the length of the rod (in its rest frame) and communicates his measurement to 

the observer in F. As before, assume that the information carrier from frame 𝐹′ to frame F is 

light or another electromagnetic wave with velocity c (as measured in the light source rest frame). 

To perform the measurement of the rod's length, at 𝑡1
′ = 𝑡1 =0 a light signal is sent from the rare 

end of the rod, i.e., from 𝑥′ = 𝑥2
′  to the observer at the point of origin 𝑥′ = 0.    
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     Figure 1: Two observers in two reference frames, moving with velocity v with  

                        respect to each other. 

 

Denote the reference frame of the first light photon by 𝐹𝑝 (see Fig 1) and the time duration in 𝐹𝑝 

for the light photon to arrive the observer in 𝐹′ by 𝛥𝑡𝑝.  If the signal arrives to the observer in 𝐹′ 

at time 𝑡′ = 𝑡2
′ , then he or she can calculate the length of the rod as being:  

 

𝑙0 = 𝑥2
′  = c 𝑡2

′           (7) 

 

Using eq. 6 𝑡2
′  as a function of 𝛥𝑡𝑝 can be expressed as:  

𝑡2
′   =  

1

 1– 
−𝑣

𝑐
   
 𝛥𝑡𝑝  = 

1

 1+ 
𝑣

𝑐
   
 𝛥𝑡𝑝                        (8) 

Which could be rewritten as: 

     𝛥𝑡𝑝 = (1 +  
𝑣

𝑐
) 𝑡2

′                            (9) 

 

Because 𝐹′ is departing F with velocity v, the light signal reach and observer in F at time 𝑡2 

equaling:  

  𝑡2 = 𝛥𝑡𝑝 + 
𝑣𝑡2

𝑐
 =  𝛥𝑡𝑝 + 

𝑣

𝑐
  𝑡2                                  (10) 

Substituting the value of 𝛥𝑡𝑝 from eq. 9 in eq. 10 yields: 

 𝑡2= (1 +
𝑣

𝑐 
) 𝑡2

′  + 
𝑣

𝑐 
 𝑡2,                                                                   (11) 

Which could be rewritten as: 

𝑡2 = 
(1+ 

𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 

 𝑡2
′                            (12) 

Substituting the value of 𝑡2
′  from eq. 7 we get: 

F 𝑭′ 

𝑭𝒑 

𝑥𝑝 

𝒚𝒑 

𝒛𝒑 

  𝒙′ = 𝒍𝟎 
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   𝑡2 =  
(1+ 

𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 
 
𝑙0

𝑐
                  (13) 

Thus, the observer in F will conclude that the length of the rod is equal to:  

         l = c 𝑡2  = 
(1+ 

𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 

 𝑙0            (14) 

Or: 

         
𝑙

𝑙0
 =  

1+ 𝛽

1− 𝛽
                             (15) 

Where 𝛽= 
𝑣

𝑐 
. 

The above derived relativistic distance equation predicts distance contraction only when the two 

reference-frames approach each other. On the other hand, in contradiction of the famous Lorentz 

contraction, for distancing frames eq. 15 predicts length extension.  

The theoretical corollaries of the predicted length extension cannot be exaggerated. As it opens 

the door for a plausible unification between the physics of relativity and quantum mechanics.  

 will incur a relativistic "stretch". This means that at sufficiently high 𝛽, two particles, although 

distanced from each other, could remain spatially connected. We briefly note that the relationship 

between relativistic length and time could be easily derived from equation 6 and 15 yielding: 

𝑙

𝑙0
 = 2 

𝛥𝑡

𝛥𝑡0
 - 1         …. (16) 

Figure 2 depicts the relativistic time and distance as a function of β. As examples, for β = 
1

4
, 

1

3
, 

1

2
,

2

3
,

3

4
, for 

  Δ𝑡 

  Δ𝑡0
 and 

𝑙

𝑙0
 we get 

4

3
 , 

3

2
, 2, , 3, 4, and 

5

3
, 2,  3, 5, 7, respectively.  

 

 

 

Figure2: Relativistic time and distance as a function of β 
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2.3 Mass and kinetic energy transformations   

Let us assume that that the rod has a total rest-mass 𝑚0 distributed uniformly along the x axis. 

 According to eq. 15 an approaching rod will contract causing the mass density along the x axis 

to increase. On the other hand, a distancing rod will extend causing its mass density along the x 

axis to dilute. Denote the body’s density in its rest-frame by 𝜌′, then its mass density distribution 

will be given by 𝜌′ = 
𝑚0

𝐴 𝑙0 
 , where A is the area of the body’s cross section, perpendicular to the 

direction of movement. In F the density is given by: ρ = 
𝑚0

𝐴𝑙 
 , where l is the object’s length in F. 

Using the distance transformation (eq. 15) we can write:   

       

ρ = 
𝑚0

𝐴𝑙 
 = 

𝑚0

𝐴  𝑙0 (
1+ 𝛽

1− 𝛽
) 

 =  
1− 𝛽

1+ 𝛽
 ρ0                               (17) 

Or, 

        
𝜌

𝜌0
 =  

1

𝑙
𝑙0

⁄
  = 

1− 𝛽

1+ 𝛽
                     (18) 

 

As could be seen from eq. 18 the relativistic mass density is inversely proportional to the distance 

transformation. It is predicted to increase for approaching bodies and a decrease for distancing 

bodies. The relativistic kinetic energy density is given by: 

 

𝑒𝑘 = 
1 

2
 ρ 𝑣2= 

1 

2
 ρ0 𝑐2  

(1− 𝛽) 

(1+ 𝛽)
 𝛽2 = e0 

(1− 𝛽) 

(1+ 𝛽)
 𝛽2                                      (19) 

 

Where e0 = 
1 

2
 ρ0 𝑐2. For β →0 (or v << c) eq. 18 reduces to 𝜌 = 𝜌0  and eq. 19 reduces to  

𝑒𝑘 = 
1 

2
𝜌0 𝑣

2, which are the classical Newtonian expressions.  

As shown by Figure 3 the relativistic kinetic energy density for approaching bodies is predicted 

to increase with β, up to infinitely high density values as β → -1. 

 

 

Figure 3. Kinetic energy density as a function of velocity 



10 
  

Strikingly, for distancing bodies the kinetic energy displays a non-monotonic behavior. It 

increases with β up to a maximum at velocity β = 𝛽𝑐𝑟  , and then decreases to zero at β = 1. The 

obtained asymmetry in the kinetic energy density in its dependence on β is a natural result of our 

axiom-free epistemic, in which no symmetry enforcing restrictions were introduced. 

Nevertheless, emerging type of non-monotonicity is quite astonishing and difficult to anticipate. 

Before we suggest what we strongly believe is what such behaviors tells, it is helpful to 

calculating the critical velocity 𝛽𝑐𝑟 at which the kinetic energy density reaches its maximal value. 

Deriving eq. 19 with respect to β and equating the result to zero yields: 

  

 β2 + β – 1 = 0                                 (20) 

 

Which solves for: 

                                 𝛽𝑐𝑟 = 
√5−1

2
 = Φ ≈ 0.618                                  (21) 

 

Where Φ is the famous Golden Ratio [33-34]. Substituting 𝛽𝑐𝑟 in the energy expression (eq. 19) 

yields: 

 

 (𝑒𝑘)𝑚𝑎𝑥 =  𝑒0   𝛷2  
1−Φ 

1+ Φ
                      (22) 

 

From eq. 20 we can write: Φ2 + Φ – 1 = 0, which implies  1 −  Φ =  Φ2 and 1+ Φ = 
1

Φ
.  

Substitution in eq. 22 gives: 

 (𝑒𝑘)𝑚𝑎𝑥 =  𝛷5 e0   ≈ 0.09016994  e0                                              (23) 

 

 

The result above, depicted for the energy term in Fig. 3, are astonishing for more than one aspect. 

Mathematically, they are beautiful with fascinating Golden Ratio symmetries. Second, they 

suggest a relativistic interpretation of the phase transition of matter from a normal (baryonic) 

phase to a quantum phase. According to the suggested explanation, in transverse motion of the 

type analyzed above, the relativistic matter density of a distancing body is diluted as a function 

of its distancing velocity (see, eq. 18). For velocities below the Golden ratio (β < 𝛷) the kinetic 

energy carried by the matter displays a semi-classical behavior, in the sense that an increase in 

the bodies velocity cause an increase in its kinetic energy, although considerably less than what 

would be predicted by Newton's quadratic relationship (see Fig. 3). However, a dramatic 

transition in the distancing matter dynamics is predicted for distancing velocities exceeding the 

Golden ratio. We propose that the point of transition discovered by our relativistic approach is 

the point of quantum transition. A strong support for our conjecture comes from a recent Science 

article [35] reporting that applying a magnetic field at right angles to an aligned chain of cobalt 

niobate atoms, makes the cobalt enter a quantum critical state, in which the ratio between the 

frequencies of the first two notes of the resonance equals the Golden Ratio. Another support for 

our conjecture is the fact the maximal kinetic energy at the point of phase transition is 
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proportional to 𝛷5  ≈ 0.09016994, which equals to the eighth decimal digit to Hardy’s maximum 

probability of obtaining an event which contradicts local realism [36]. 

2.4 Matter-wave duality 

Another conjecture, inspired by de Broglie-Bohm model of matter-wave duality (e.g., [37-41]), 

is that the "relativistic loss" in kinetic energy is carried by the matter's dual-wave. To further 

investigate our conjecture, subtracting the relativistic term in eq. 19 from the nonrelativistic 

(Newtonian) term:  𝑒𝑁 = 
1

2
 𝜌0 𝑣2   = 

1

2
 𝜌0 𝑣𝑐

2 𝛽2, yielding: 

 

   𝑒𝑤 =  𝑒𝑁 -  𝑒𝑘  = 
1

2
 𝜌0 𝑣𝑐

2 𝛽2 - 
1

2
 𝜌0 𝑣𝑐

2 
1−𝛽

1+𝛽
 𝛽2   = (

1

2
 𝜌0 𝑣𝑐

2) 
2𝛽3

1+𝛽
 =  

2 𝛽3

1+𝛽
  𝑒0               (24)

         

Where  𝑒0 = 
1

2
 𝜌0 𝑣𝑐

2. 

 

In agreement with de Broglie's model, for bodies distancing with a fixed velocity β the matter 

and wave energies are predicted to be in a state of equilibrium. As shown in Figure 4, the 

predicted wave-energy density component increases rapidly with velocity. At relatively low 

velocities, the bulk of the particle's energy is carried by its matter. The energy carried by matter, 

and the energy carried by the wave, are predicted to be equal precisely at β = 
1

3
, corresponding to 

a stretch equaling 
𝑙

𝑙0
 =  

1+ 
1

3

1− 
1

3

 = 2. For higher velocities, the matter density becomes very dilute 

and the accompanying wave becomes the primary carrier of the total energy. Surprisingly, at 

velocity 𝛽𝑐𝑟 = Φ ≈ 0.618  at which a distancing body undertakes a phase transition, seizing to 

behave classically, the value of the kinetic energy density reaches its maximum and this 

maximum is exactly equal to Φ5 e0, which amounts to ≈  0.09016994 e0. The amount of the 

wave energy density at this critical point is equal to  
2 Φ3

1+Φ
 = 2 Φ4  ≈ 0.29179607. These results 

are striking given the role played by this type of symmetry, in nature, technology and the arts, 

including in the structure of plants [42-44], physics [35, 45-47], structure of the human brain 

[48], music [49-50], aesthetics [51], social sciences [52-53], and more.  

3. Information Relativity theory's main features  

The main transformations of the theory are depicted in Table 1. In the equations β = 
𝑣

𝑣𝑐
, where v 

is the relative velocity between the moving body and the observer, 𝑣𝑐 is the velocity of the 

information carrier, and 𝑒0 = 
1

2
 𝑚0 𝑣𝑐

2. As could be seen in Table 1 and Figure 1, the theory 

transformations are simple and beautiful, two qualities that are believed to be important features 

of good theories (cf. [54]).  

Inspection of the table reveals that Information Relativity has four unique predictions, which 

distinguish it from all other relativity theories: 1. The time interval transformation is asymmetric 

in its dependence on the relative velocity (see eq.1), predicting time dilation for distancing 

bodies, and time contraction for approaching bodies. 2. The length and mass density 

transformations are also asymmetric with velocity, predicting length extension (and mass 

density dilution) for distancing bodies, and length contraction (mass density increase) for 
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approaching bodies. 3. The kinetic energy density for distancing bodies exhibits a non-

monotonous dependence on velocity, with a unique maximum (see Fig. 4), and 4. A relativistic 

dual wave is predicted to emerge (see eq. 24 and Figures 4a & 4b). As shown in the figures, for 

any given velocity, the total energy of a distancing body is predicted to be carried jointly by the 

corpuscle, and its and pilot wave. At relatively low velocities, most of the body's energy is 

normal energy, carried by the corpuscle, while at very high velocities, most of the body's energy 

is carried by its pilot wave. Interestingly, at a recession velocity β = 
1

3
 the energy densities of 

the corpuscle, and its pilot wave, are predicted to be equal. 

 

Table 1 

Information relativity main transformations for inertial translational motion 

 

 

Variable Mathematical 

expression 

Main properties 

Time interval 1

1−𝛽
     (I) 

Contraction for approaching bodies. 

Increase for distancing bodies; 

 

 

Length 

𝑙

𝑙0
 

1+𝛽

1−𝛽
     (II)     

Contraction for approaching bodies; 

Extension for distancing bodies. 

 

 

Mass density     
𝜌

𝜌0
 

 
 

1−𝛽

1+𝛽
    (III)   

Increases with β for approaching bodies; 

Decreases for distancing bodies. 

 

 

Kinetic energy 

density  
 𝑒𝑘

𝑒0
 

1−𝛽

1+𝛽
𝛽2   (IV) 

Increases with β for approaching bodies; 

non-monotonous for distancing bodies, 

with maximum equaling 

𝛷5 at β= 𝛷 ≈ 0.618 . 

 

 

Wave energy 

density 
 𝑒𝑤

𝑒0
 

2 𝛽3

1+𝛽
    (V)  

Increases with β for distancing bodies. 

For  𝛽 <  
1

3
,  𝑒𝑤<  𝑒𝑘 ; 

For  𝛽 =  
1

3
 ,  𝑒𝑤 =  𝑒𝑘, 

and for  𝛽  >  
1

3
  𝑒𝑤 >  𝑒𝑘. 
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Figure 4a. Matter and dual wave energy densities for a distancing body as functions of velocity 

 

  
Figure 4b.  The ratios of matter and wave energy densities out of the total energy, as  

                    functions of velocity 

 

Two subtle, but extremely important features of the theory, enables its application to ALL 

physical systems:  

First, since in the derivation of the theory transformation we did not restrict ourselves to light 

or another electromagnetic wave as the information carrier, all the transformations depicted in 

Table 1 should apply to classical systems, such as thermodynamic, acoustic, and seismic 

systems. The only requirement for applying the theory to a physical system that the velocity of 

the information carrier in the system must be higher than the relative velocity (i. e. , 𝑣𝑐 > 𝑣). 
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Second, and no less important, Information Relativity theory applies to all moving bodies, 

regardless of their mass or spatial dimension. The logic behind this inference is straightforward: 

Since in the mathematical derivation of the equations we did not put any constraints on the 

body's rest mass density and length (𝜌0 and 𝑙0), the derived equations should be applicable to 

all masses and all lengths. In fact, any other inference would contradict the basic principles of 

logic and mathematics. In section 8.1 we explain why Information Relativity is not forbidden 

by Bell's theorem [22-24] from predicting quantum phenomena, and in sections 8.2-8.5 we 

demonstrate it predictions and explanations of a sample of quantum phenomena, including 

quantum phase transition, entanglement, and the diffraction of particles in the double-slit 

experiment.   

Since we claim that Information Relativity is universal, applying to all physical systems, the 

transformations depicted in Table 1, should to all physical systems, irrespective of mass and size. 

In what follows we demonstrate the universality of the theory by deriving predictions and 

proposing explanations to of microscopic and macroscopic phenomena.  

 

4. Prediction of seminal relativistic results  

4.1 Michelson-Morley's "null" result 

Whether Einstein was motivated by the seminal Michelson -Morley's "null" experiment [55] or 

not, the success of special relativity theory in accounting for the experiments results is many 

times spoken of as a turning point in the history of physics, from Galileo-Newton's ether physics, 

in which time was considered absolute, to the non-classical, Einstein's relativistic physics. 

Another famous experiment, which was the first to confirm special relativity's prediction of time 

dilation is the Frisch and Smith experiment on decaying muons.  

For a typical Michelson-Morley's type interferometer, the fringe shift calculated based on 

Information Relativity theory (for details see [56]) is given by:   

                                            𝛥𝑥 = 𝐷0
1+ 𝛽2

1− 𝛽2
 𝛽2                                                                    (25) 

   

Where 𝛥𝑥  is the fringe Shift, D0 is the interferometer's arm length,  β= 
𝑣

𝑐
 , c ≈ 299792.458 

𝑘𝑚
𝑠⁄  , and v is the velocity of Earth around the sun (v ≈ 29.78 𝑘𝑚

𝑠⁄ ).  

The comparable prediction provided by Special Relativity is given by 2 𝐷0 (√1 −  𝛽2 𝛽2).  Table 

2 summarizes experimental results of several M&M type experiments, together with the 

corresponding predictions of Information Relativity and Special Relativity.  

As could be clearly seen in the table, the "null" result is also accounted for by the proposed 

theory. In fact, the differences between the predictions of the two theories are either zero or in 

the order of magnitude of 10-10.  
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Table 2 

Predictions of findings reported by classical Michelson-Morley type experiments 

Experiment 

 

 

Arm length 

(meters) 

 

 

Expected 

Fringe shift 

 

 

 

Measured 

Fringe shift 

 

 

 

Resolution 

 

 

ER 

prediction 

 

 

SR 

prediction 

 

 

Michelson and 

Morley [55] 

 

 

 

11.0 

 

 

0.4 

 

 

< 0.02 or ≤ 0.01 

 

 

0,01 

 

 

7-≈ 4.34 x 10 

 

 

7-≈ 4.34 x 10 

 

 

Miller [57] 

 

 

32.0 

 

1.12 

 

≤ 0.03 

 

0.03 

 

6-1.27 x 10≈  

 

6-≈ 1.26 x 10 

 

Tomaschek [58] 

 

8.6 

 

0.3 

 

≤ 0.02 

 

0.02 

 

7-≈ 3.40 x 10 

 

7-≈ 3.40 x 10 

 

Illingworth 

[59] 

2.0 

 

0.07 

 

≤ 0.0004 

 

0.0004 

 

8-≈ 7.89 x 10 

 

8-≈ 7.90 x 10 

 

Piccard & Stahel 

[60] 

 

2.8 

 

0.13 

 

≤ 0.0003 

 

0.0007 

 

≈1.11 x 10-7 

 

≈1.11 x 10-7 

 

Michelson et al. 

[61] 

 

 

25.9 

 

0.9 

 

≤ 0.01 

 

0.01 

 

6-≈ 1.02 x 10 

 

6-≈ 1.02 x 10 

 

Joos [62] 

 

 

21.0 

 

0.75 

 

≤ 0.002 

 

0.002 

 

7-≈ 8.30 x 10 

 

7-≈ 8.30 x 10 

 

 

4.2 Time dilation of decaying muons 

Muons generated when cosmic rays strike the upper levels of the Earth's atmosphere are unstable 

particles, with a lifetime of τ = 2.2 μ s. Using counters of muons traveling within a velocity of 

0.99450c to 0.9954c, and comparing their flux densities at different altitudes (e.g., top and bottom 

of a mountain), reveals that the rate of decay near earth level is much higher than the one resulting 

from classical calculations (cf., [63-65]). In the renowned muon decay experiment [63], assuming 

a velocity of 0.992c of muons in air, Frisch and Smith found that the percentage of the surviving 

muons descending from the top of Mt. Washington to the sea level (d ≈ 1907 m.) was (72.2 ± 

2.1) %, considerably higher than 36.79%, the expected percentage resulting from non-relativistic 

calculation. 
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Calculation based on Information Relativity (see details in [56]) shows that the flux density at 

time t on earth is given by:  

 

𝑁(𝑡)= N(0) 𝑒− 
(1−𝛽)𝑡

𝜏                                                                  (26) 

 

where N(0) is the count at the mountain's level, τ is the muon lifetime at its rest-frame and β =
𝑣

𝑐
. 

For β =0.992, Figure 5 depicts the rates of decay predicted by Information Relativity, Special 

Relativity, and a nonrelativistic calculation. For an ascending time of 𝛿𝑡 = 
𝑑

𝑣
 = 

1907 𝑚.

2.998x 108
 ≈ 6.36 

μs., the predictions of Epistemic Relativity and Special Relativity are, respectively, 
N(𝑡=6.36)𝐶𝑅

N(0)
 

x 100= 𝑒− 
(1−0.992)𝑥 6.36 

2.2  x 100 ≈ 97.7% and 
N(𝑡=6.36)𝑆𝑅

N(0)
 x 100 = 𝑒− 

√1− 0.9922  𝑥 6.36

2.2  x 100 ≈ 

69.42%. By contrast, according to nonrelativistic considerations, the expected percentage of 

surviving muons is only 
N(𝑡=6.36)𝑁𝑅

N(0)
 x 100= 𝑒− 

 6.36 

2.2   x 100 ≈ 5.55%.  

 

 

 
  

 

 

Figure 2: Predicted rates of muon decay 

 

5.  Predicting the Sagnac effect 

The Sagnac effect, named after its discoverer in 1913 [66], has been replicated in many 

experiments (for reviews, see [67-71]). The Sagnac effect has well-known and crucial 

applications in navigation [67-68, 71] and in fiber-optic gyroscopes (FOGs) [72-76]. In the 

Sagnac effect, two light beams, sent clockwise and counterclockwise around a closed path on a 

𝑁

𝑁0
 

t (μ s.) 

Relativistic Decay IR Relativistic Decay (IR) 
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rotating disk, take different time intervals to travel the path. For a circular path of radius R, the 

time difference can be represented as ∆t =  
2 𝑣 𝑙

𝑐2
 , where v=ω R and l is the circumference of the 

circle (l=2πR). Today, FOGs have become highly sensitive detectors measuring rotational 

motion in navigation. In the GPS system, the speed of light relative to a rotating frame is 

corrected by ± ω R, where ω is the radial velocity of the rotating frame and R is the rotation 

radius. A plus/minus signs is used depending on whether the rotating frame is approaching the 

light source or departing from it, respectively. 

 Many physicists claim that because the Sagnac effect involved a radial motion, it does not 

contradict SR and that it should be treated in the framework of general relativity [77-78]. 

However, Wang at al. [79-80] strongly refute this claim in two well-designed experiments that 

show unambiguously that an identical Sagnac effect appearing in uniform radial motion occurs 

in linear inertial motion. For example, Wang et al. [79] tested the travel-time difference between 

two counter-propagating light beams in uniformly moving fiber. Contrary to the LI principle and 

to the prediction of SR, their findings revealed a travel-time difference of  
2𝑣 𝛥𝑙

𝑐2 , where 𝛥𝑙 is the 

length of the fiber segment moving with the source and detector at a v, whether the segment was 

moving uniformly or circularly. This finding in itself should have raised serious questions about 

the validity of the LI principle and SR. If the Sagnac effect can be produced in linear uniform 

motion, then the claim that it is a characteristic of radial motion is simply incorrect. Because the 

rules SR apply to linear uniform motion, the only conclusion is that SR is incorrect. Strikingly, 

the unrefuted detection of a linear Sagnac effect and its diametrical contradiction with SR has 

hardly been debated. 

For the linear Sagnac effect, using the time transformation depicted in eq. 6, the difference 

between the arrival times of the two light beams is given by: 

 

𝛥𝑡 = 
𝛥𝑙

𝑐−𝑣
 - 

𝛥𝑙

𝑐+𝑣
 = 

2𝑣 𝛥𝑙

(𝑐−𝑣)(𝑐+𝑣)
 = 

2𝑣 𝛥𝑙

𝑐2− 𝑣2
 ≈ 

2𝑣 𝛥𝑙

𝑐2
              (27) 

Which is in agreement with the analysis and results reported in [79].   

 

6.  Predicting the neutrino velocities reported by OPERA and other collaborations 

Several collaborations, including OPERA have recently reported results indicating that neutrinos 

velocity is not significantly different from the velocity of light. For example, OPERA [81] 

reported an early neutrino arrival time of δt = (6:5 ± 7.4 (stat. ) −8.0
+8.3  (sys.)) ns. The corresponding 

relative difference of the muon neutrino velocity and the speed of light is:  
𝑣−c

𝑐
  = (2.7 ± 3.1 (stat. ) + −2.8

+3.8  (sys.)) ×10−6. A similar "null" result was also reported by other 

collaborations, including ICARUS, LVD, and Borexino [82-85].  

In two recent papers [86-87] we demonstrated that Information Relativity yields precise point 

prediction of the 
𝑣−c

𝑐
 values reported in all the aforementioned experiments. In the framework of 

Information Relativity, contrary to Special Relativity, the direction of motion matters (see eq. 6). 

Thus, the neutrino source and detector are treated in the theory as being stationed in two different 
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reference frames. For a typical neutrino-velocity experiment, our analysis (see [87]) yielded a 

value of  
𝑣−c

𝑐
  equaling:  

 

𝑣−c

𝑐
=  √

2 

 1− 
c  𝛿𝑡

𝑑

− 12  - 1                                                            (28) 

 

Where d is the travel distance. δt is the early neutrino arrival time with respect to the velocity of 

light c. For the OPERA experiment [81], substituting d = 730.085 km, and 𝛿𝑡 = 6.5 n. s. yields:  

𝑣−c

c
 = (

2 

1− 
299792.458 𝑥 6.5 𝑥 10−9

730.085 

− 1)
1

2 – 1 ≈  2.67 x 10-6            (29) 

Which is almost identical to the reported result of  
𝑣−c

c
 (𝐸𝑥𝑝. ) = (2.7 ± 3.1 (𝑠𝑡𝑎𝑡. ) ±−2.8

+3.8  (sys.)) 

×10−6. Applying eq. 28 to the experiments cited above by OPERA, ICARUS, LVD, and Borixeno 

collaborations, yielded the results summarized in Table 3.  

 

Table 3 

Predictions of ER for six neutrino-velocity experiments 

 

Experiment Experimental 
𝑣−c

c
 

 

Predicted  
𝑣−c

c
 

 

OPERA 2012 (corrected result) [81] 

 

(2.7 ± 3.1 (𝐬𝐭𝐚𝐭. ) + −𝟐.𝟖
+𝟑.𝟖  (sys.)) ×10−6 2.67 x 10 -6 

OPERA 2013 [82] 

 

(- 0.7 ± 0.5 (𝐬𝐭𝐚𝐭. ) +−𝟏.𝟓
+𝟐.𝟓 (sys.)) ×10−6 - 0.66 x 10-6 

ICARUS 2012 [83] 

 

(0.4 ± 2.8(stat.) ± 9.8 (sys.)) ×10−7 

 

0.41 x 10-7 

LVD [84] 

 

(1.2 ± 2.5(stat.) ± 13.2 (sys.)) ×10−7 

 

1.23 x 10-7 

Borexino [85] 

 

(3.3 ± 2.9(stat.) ± 11.9 (sys.)) ×10−7 

 

3.28 x 10-7 

 

As the table shows, the theory yields precise predictions for all the tested experiments. Since 

Information Relativity contradicts both Special Relativity and the Lorentz invariance principle, 

by asserting that the direction of relative motion matters, the success of Information Relativity in 

predicting all the above discussed results, is yet another indication of their inadequacy as physical 

laws.     
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7. Explaining quantum mechanics 

For more important, since Information Relativity theory is scale independent, it hold the promise 

of a unified physics of everything. We shall demonstrate convincingly enough, not only that the 

proposed theory is successful in explaining and predicting various quantum phenomena, it also 

opens the door for a new quantum cosmology, according to which cosmological entities, such as 

dark matter, and cosmological phenomena, such as the well-known GZK cutoff redshift, are in 

fact quantum entities and phenomena at the cosmic scale.  

Two main properties enable the application of Information Relativity to quantum phenomena: 1. 

The emergence of a matter dual-wave, discussed in section 2.4 (see figures 4a and 4b). 2. The 

predicted extension of distancing bodies. In the following section we explain why the second 

property enables Information Relativity to bypass Bell's theorem, and in the following sections 

we demonstrate the validity of our claim by reproducing some of the main predictions of quantum 

theory.         

7.1 Bypassing Bell's inequality  

Before proceeding to explain quantum mechanical phenomena, we must justify why our 

endeavor is not blocked by the impossibility asserted by Bell's inequality, by forbidding any local 

realistic theory from reproducing the predictions of quantum theory.  In a recent paper [88], we 

showed that, despite being local-realistic Information Theory cannot be forbidden by Bell's 

theorem. The argument supporting our conclusion is simple: As evident from eq. 2 in Table 1, 

given a sufficiently high velocity β, a distancing particle from an observer's rest-frame, will 

extend enough to keep the particle at spatial proximity with the observer's rest frame. Thus, even 

when locality in time is eliminated, locality in configuration space could be maintained. This 

type of locality, which we term "spatial locality", was not considered previously, most probably 

due to the firm belief in the Lorentz contraction effect, a prediction of SR which in fact has never 

been established experimentally.  

 

7.2 Quantum phase transition and quantum criticality 

Quantum phase transition point [89-90] is explained by the theory as the point at which matter 

departs qualitatively in it dynamical behavior from a classical or quasi-classical behavior. For an 

inertial system, like the one discussed here, the point of quantum criticality is the aesthetically 

appealing Golden Ratio, φ ≈ 0.618 (see Fig. 4a). The corresponding maximal matter energy 

density at  β = φ ≈ 0.618 is equal to φ5  ≈  0.09016994 e0, where e0 = 
1

2
 𝑚0 𝑐2.  

 

7.3 Entanglement 

For an EPR bipartite system comprised of two identical particles moving away from each other 

[91], the argument given in section 4.2.1 implies that given enough velocity, the two particles 

could maintain spatial locality, even when the particles have distanced enough to eliminate the 

possibility of temporal (not faster than light) locality. In [92] we found that the cross correlation 

between the energy densities of two particles A and B, distancing from each other with velocity 

β is given by:  
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                  𝑟(𝑙) =  𝑒𝐴 ∗  𝑒𝐵 = ∫ 𝑒𝑘(𝜉)
𝑙≥1

𝑒0(𝜉 + 𝑙) 𝑑𝑙 = ln (
𝑙 +1

𝑙 
 ) - 

4

(𝑙 +1)(𝑙 +2)
                (30 ) 

Where  𝑙 = 
𝑙

𝑙0
,  is the relative "stretch" (given by eq. 15) of particle A in the rest-frame of particle 

B (see or vice versa). Figure y depicts 𝑟(𝑙) as a function of  𝑙.  The unique maximum appearing 

in the figure is found by derivation with respect to 𝑙 ,  to be the solution of the following 

polynomial: 

                              𝑙3 - 3 𝑙2 - 4 𝑙 + 4 = 0                                                    (31) 

Which for 𝑙 ≥ 1 solves at 𝑙 ≈ 3.7785, corresponding to a maximum cross correlation of  𝑟𝑚𝑎𝑥 ≈ 

0.08994 (see Figure 5).  

 

 

The energies' functions cross-correlation in terms of the distancing velocity β is depicted in 

Figure 6. As shown in the figure, maximum correlation is predicted to occur at a distancing 

velocity of β≈ 0.58145.  

 

 

Figure 6. The cross-correlation between the energies of two distancing particles as a function of 

their distancing velocity β   
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7.4 Diffraction of particles in the double-slit experiment 

The wave-like diffraction of corpuscles in Young's double-slit experiment has been demonstrated 

many times, using photons, electrons, neutrons, atoms, and molecules [93-100]. Nonetheless, it 

continues to be an unsolved mystery. Richard Feynman, who was very fond of the diffraction of 

particles in the double-slit experiment, called it: "a phenomenon which is impossible, absolutely 

impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. 

In reality, it contains the only mystery. We cannot make the mystery go away by “explaining” 

how it works. In telling you how it works, we will have told you about the basic peculiarities of 

all quantum mechanics" [101]. In a recent article [102] we showed that Feynman's view is 

incorrect, and that the buildup of a particles' diffraction pattern in the double-slit experiment 

could be predicted and explained in the framework of Information Relativity theory. 

To apply the proposed theory to the double-slit experiment, consider such an experiment in which 

electrons are fired, one at a time, from an electron gun, towards two open slits in a barrier 

separating the electron gun from an observation screen. According to Information Relativity, an 

electron traveling with sufficiently high velocity, will exhibit the particle-wave nature, from the 

first moment it is fired from the electron gun. In the experimenter's reference-frame, the 

corpuscular component will "stretch" along its travel path (see eq. 15,). Such predicted "stretch", 

resonates with Schrödinger's original thoughts, that particles in quantum states become 

physically "smeared out" over a region in configuration space. The energies carried by the 

corpuscular electron, and its pilot wave, as a function of the electron velocity, are given by 

equations 19 and 24, respectively (see also figures 4a & 4b). The corpuscular particle may either 

hit the barrier and bounce back, or pass through one of the two slits and hit the screen on its upper 

or lower part, depending on the slit from which it passed through. However, the pilot wave will 

pass through the two slits, generating two secondary waves, which will start propagating in phase 

from the two slits, while interfering with each other. If the particle passes through, it will be 

guided by the superposition of the two generated waves. When hitting the observation screen, 

the particle's velocity will decelerate very rapidly. As a result, the particle will shrink back to its 

rest-frame dimensions. The energy of the pilot wave will diminish dramatically and vanish (see 

Fig. 4a). Simultaneously, the corpuscular part will regain the energy lost to the wave, hitting the 

screen in one point with energy equaling the classical magnitude (
1

2
 𝑚0 𝑣2). This prediction could 

be easily verified from equations 4 and 5 for the case β << 1.   

As the reader might notice, the bulk of the above explanation resembles the explanation given by 

the de Broglie-Bohm theory. However, the proposed explanation does not suffer from the 

measurement problem.  In our explanation, the "collapse" of the wave is a direct result of the 

corpuscle's collision with the screen, which causes its velocity to decrease sharply, resulting in 

the transfer of the wave energy to a classical kinetic energy of the corpuscle. 

 In [102] we derived quantitative predictions for particle's diffraction in the double-slit 

experiment. Using eq. 24 for the particle's dual wave energy, and the equation 𝐸𝑤= h f , where 

𝐸𝑤 is the wave energy, f is its frequency, and ℎ is the Planck constant (ℎ ≈ 

4.135667662×10−15eV.s ≈ 6.62607004 × 10−34 𝐽. 𝑠), we found that the wavelength of the 

particle's dual wave could be expressed in terms of the particle's velocity as:  
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λ =  
ℎ

𝑚0 𝑐 
 
1+𝛽 

𝛽2
                         (32) 

 

Where 𝑚0 is the electron rest mass, and c is the velocity of light in the experiment's site with 

respect to its source. For a constructive interference to appear on the apparatus's observing screen, 

λ should satisfy the relationship:  

         d sin θ = n λ           n =1, 2, 3, …                       (33) 

 

Where d is the distance between the two slits, and θ is the angle between the orthogonal line 

connecting the center point between the two slits with the observing screen, and the line 

connecting the center point between the two slits, with a constructive interference point on the 

screen. For the far field, the distance between two constructive lines in the fringe pattern could 

be approximated as:  

 

𝛥𝑦 ≈  
𝑥

𝑑
  λ                                                      (34) 

 

Where x is the distance between the barrier and the observing screen (see Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting the value of λ from eq. 32 in eq. 34 we get:  

 

𝛥𝑦 ≈
𝑥

𝑑
 λ ≈ 

 𝑥 

𝑑

ℎ

𝑚0𝑐
 
1+𝛽 

𝛽2
                      (35)  

 

Figure 7. A schematic setup of a double-slit experiment. 
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To demonstrate, for electrons, the rest mass is about 9.1 x 10−31 kg. Thus:  

 

 
ℎ

𝑚0 𝑐 
 = 

6.62607004 × 10−34  

 9.1 x 10−31 ×  299 792 458
 ≈ 2.4293 x 10−12 m = 0.024 Å.       (36) 

 

Substitution in eq. 32 gives: 

 

λ =  
ℎ

𝑚0 𝑐 
 
1+𝛽 

𝛽2
 ≈ 0.024 

1+𝛽 

𝛽2  Å.                 (37) 

 

Figure 8 depicts the length of the electron's pilot-wave (λ) a function of its velocity (β).   

 

 
Figure 8. The length of the electron's pilot-wave, λ, as a function of the velocity β 

 

Equation 35 yields two testable predictions: 1. That the fringe width should decrease 

hyperbolically with the increase in the corpuscle's rest-mass, and 2., that it should decrease even 

sharper with increase in the corpuscle's velocity.  

Qualitative explanations of different variants of the double-slit experiments are also simple and 

plausible. For which-way experiments [103-105], installing detectors in front of the slits, causes 

the particle passing through one of the slits to slow down, due to its interaction with the detector. 

As a result, its velocity will decrease, causing the pilot wave to diminish and practically 

disappear. Thus, no interference will occur, which is exactly what happens in such experiments. 

This explanation conforms with the conclusion reached in [106], in which the disappearance of 

the diffraction pattern in the reported which-way experiment was attributed to correlations 

between the detector, and the atomic motion, rather than to the uncertainty principle. 

In experiments in which the detectors are placed after the barrier, as in Wheeler's delayed choice 

experiments [107-108], a particle which has passed through one of the slits, will slow down upon 
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its interaction with the detector, causing its pilot wave to diminish and the interference to 

disappear. 

To summarize, the proposed theories explanation is simple and sensible, with no "mysteries" 

involved. What goes on in the experimental apparatus of the double slit could be summarized as 

follows: 1. The corpuscular matter and its pilot wave exist simultaneously in the apparatus; 2. 

Their paths exist as real trajectories in the apparatus; 3. The "observer's effect" is caused by the 

mechanical interaction between the corpuscle and the measuring devices; 4. The collapse of the 

(real) wave occurs due to the particle's collision with the observation screen, causing its velocity 

to decrease rapidly to zero, and the wave to diminish, while giving away all its energy to the 

corpuscle, which by this restores its classical Newtonian energy.  

7.5 Solving the hydrogen atom problem  

It is well accepted that a satisfactory solution of the hydrogen atom problem, which is compatible 

with first principles and having first principles as the basis of quantization was never found [109] 

The classical model of the hydrogen atom proposed by Niels Bohr was in fact a straightforward 

application of Newton’s laws of motion and Coulomb’s law of electric force. However, the 

solution is with the electromagnetic theory, which predicts that the orbiting electron will radiate 

energy in the form of electromagnetic waves, and will eventually loose energy and fall spirally 

into the nucleus. To overcome this problem Bohr enforced a law of orbits quantization, according 

to which electron can orbit the nucleus only in specific orbits.  

Quantum electrodynamics was proposed by Dirac in 1962 to provide a generalization of quantum 

mechanics for high energies in conformity with the theory of special relativity and to provide a 

consistent treatment of the interaction of matter with radiation. Dirac’s quantum electrodynamics 

gave a more consistent derivation of the results of the correspondence principle, but it also 

brought about a number of new and serious difficulties. (1) It does not explain the non-radiation 

of bound electrons, (2) It admits solutions of negative rest mass and negative kinetic energy, (3) 

It leads to infinite kinetic energy and infinite electron mass for the interaction of the electron with 

the predicted zero-point field fluctuations, and (4) It still yielded infinities when Dirac used the 

unacceptable states of negative mass for the description of the vacuum [110, 111].  

Information Relativity solves the hydrogen atom problem without enforcing quantization of the 

electron's orbits.  For this purpose, we consider a simplified model of the hydrogen atom, in 

which the electron orbits the proton at the nucleus in a circular orbit (see Figure 9).   

The centripetal force which binds the electron to the proton is equal to:  

F = 
𝑚𝑒𝑣2

𝑟
                                  (38) 

Neglecting the gravitational force, we can write 𝐹 =  𝐹𝑒, or: 

𝑚𝑒𝑣2

𝑟
=

𝑘𝑒𝑒2

𝑟2
                                                        (39) 

Where 𝑘𝑒 is the electrostatic constant (𝑘𝑒= 8.9875517873681764×109 N·m2/C2 ≈ 

8.99×109 N·m2/C2).  From eq. 39, the radius r could be written as: 

https://en.wikipedia.org/wiki/Newton_(unit)
https://en.wikipedia.org/wiki/Metre
https://en.wikipedia.org/wiki/Coulomb
https://en.wikipedia.org/wiki/Newton_(unit)
https://en.wikipedia.org/wiki/Metre
https://en.wikipedia.org/wiki/Coulomb
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 r =  
𝑘𝑒𝑒2

𝑚𝑒𝑣2
 = 

𝑘𝑒𝑒2

𝑚𝑒𝑐2𝛽2
                                            (40) 

Where β = 
𝑣

𝑐
, and c is the velocity of light (in the source rest frame).  

 

   

 

 

According to Information Relativity, the orbiting electron will stretch relative to the rest-frame 

of a fixed perimeter corresponding to a radius r is. Using eq. 15, the wavelength of the 

electron's dual-wave is given by: 

λ =  d =  𝑑0 
1+𝛽

1− 𝛽
 = 2 𝑟𝑒 

1+𝛽

1− 𝛽
                 (41) 

Where 𝑟𝑒 is the radius of the electron at rest (i.e., the classical radius). The electron will stabilize 

in a given orbit with radius r only if the weave front of the electron's wave packet, arrives in 

complete phase synchronization with the wave's "tail", i.e., only if it constitutes a standing wave 

(see Fig. 10).  

For this to occur, the wavelength 𝜆  should satisfy:   

      n 𝜆 = 2 π r ,   n = 1,2, 3, …                                   (42) 

Or: 

𝜆 = 
2 𝜋 𝑟 

𝑛
   n = 1, 2, 3…                      (43)  

Substituting the value of r from eq. 40 in eq. 43 we obtain: 

     𝜆 =  
2 𝜋  

𝑛
 

𝑘𝑒𝑒2

𝑚𝑒𝑐2𝛽2
                                 (44) 

    

  

Figure 9. A simplified representation of the hydrogen atom  
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Equating the expressions for λ in equation 41 and 44 we obtain: 

2 𝜋  

𝑛
 

𝑘𝑒𝑒2

𝑚𝑒𝑐2𝛽2
 = 2 𝑟𝑒 

1+𝛽

1− 𝛽
 ,      n = 1, 2, 3…                                (45) 

Which could be written as: 

𝐴1

𝑛 𝛽2
=  

1+𝛽

1− 𝛽
                                  (46) 

Where 𝐴1 =
 𝜋 𝑘𝑒𝑒2

𝑟𝑒 𝑚𝑒𝑐2
 . Defining 𝐴𝑛 =  

𝐴

𝑛
  eq. 46 could be written as: 

  
𝐴𝑛

𝛽2
=  

1+𝛽

1− 𝛽
                    (47) 

Which could be simplified to yield: 

   

𝛽3 + 𝛽2 + 𝐴𝑛 𝛽 −  𝐴𝑛 = 0,  n = 1, 2, 3, …                   (48)   

For n=1 we have: 

𝐴1 = 
 𝜋 𝑘𝑒𝑒2

𝑟𝑒 𝑚𝑒𝑐2
 = 

 𝜋 𝑥 8.99×109𝑥 (1.6021766208×10−19)2

(9.10938356∗10−31∗ 2997924582) 
 

1

𝑟𝑒
 = 8.85523𝑥10−15  

1

𝑟𝑒
                   (49) 

There is no agreed upon length of the electron radius. For a midrange radius of 5.5x 10 -13 m., 

reported in [114] we obtain:  

Figure 10: First three harmonics of a "standing wave" 
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𝐴1 = 8.85523𝑥10−15  
1

𝑟𝑒
 =   

8.85523𝑥10−15

5.5x 10 −13 
 ≈ 0.016           (50) 

Substitution in eq.48 gives: 

 𝛽3 + 𝛽2 +
0.016

𝑛
 𝛽 − 

0.016

𝑛
= 0,        n = , 2, 3, …       (51)  

Table 4 depicts the radii of the electron's orbit for n=1, 2, … 6, together with the corresponding 

electron's velocity β.  These relationships are also shown in Figures 11 and 12.  

 

 

Table 4 

radii and corresponding electron velocity in the hydrogen atom  

n β R (in m.) 

1 0.112929 2.212 x 10−13 

2 0.0823563 4.156 x 10−13 

3 0.0682074 6.059 x 10−13 

4 0.059583 7.940 x 10−13 

5 0.0536128 9.807 x 10−13 

6 0.0491606 1.16610−12 

 

 

 

 

 

 
 

Figure 11. Velocity of the electron at various orbits (Trend line:  β(n)=0.1132 n−0.4642,  R²= 0.9999) 
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Figure 12. Radii of various electron orbits (Trend line: r(n)=1.8878*n+0.3649; R²=0.9999) 

 

It is important to stress that the above derivation of the hydrogen atom's permitted radii was 

accomplished without any assumptions about quantization as done by Bohr, and without any 

considerations of uncertainty, neither directly, nor through utilization of Planck's constant.   

 

8. A new relativistic quantum cosmology and astrophysics 

The proposed theory, without alteration or additional assumptions, provides a simple, yet adequate 

model of the cosmology of the universe, based only on the classical Doppler redshift (a z-

cosmology). We term this model "quantum" because it treats the dynamics of receding galaxies using 

the same model of matter-wave duality utilized for explaining quantum mechanics. In the framework 

of Information Relativity, the scale of the system is of no importance. We shall show in the 

proceedings that dark matter is quantum matter at cosmic scale, and the amounts of "dark energy" 

reported in large scale ΛCDM observational studies.  

 

8.1 Information Relativity's cosmological transformations 

To apply the theory to cosmology, we rewrite the transformations in Table 1 in terms of the redshift 

z, instead of the velocity β.  For deriving the relationship between redshift and velocity, consider an 

observer on earth who receives redshifted waves emitted from a receding galaxy. Assume that the 

recession velocity at the time the waves were emitted was equal to v. Using Doppler's formula, we 

can write:  

 

 

                                                      z = 
𝜆𝑜𝑏 − 𝜆𝑒𝑚  

𝜆𝑒𝑚 
  = 

𝑓𝑒𝑚 − 𝑓𝑜𝑏  

𝑓𝑜𝑏 
                                            (52) 

 

Where 𝜆𝑒𝑚 (𝑓𝑒𝑚 ) is the wavelength (frequency) of the wave emitted by the galaxy and 𝜆𝑜𝑏  (𝑓𝑜𝑏 ) is 

the wavelength (frequency) measured by the observer. We also have 𝑓𝑒𝑚  = 
1

𝛥𝑡𝑒𝑚
 and  𝑓𝑜𝑏  = 

1

𝛥𝑡𝑜𝑏
 ,   
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Where 𝛥𝑡𝑒𝑚 𝑎𝑛𝑑 𝛥𝑡𝑜𝑏 are the time intervals corresponding to 𝑓𝑒𝑚  and 𝑓𝑜𝑏 , respectively. 

Substitution in eq. 52 gives:  

 

       z = 

1

𝑡𝑒𝑚
−  

1

𝑡𝑜𝑏
1

𝑡𝑜𝑏

 =  
𝛥𝑡𝑜𝑏

𝛥𝑡𝑒𝑚
− 1                                                 (53) 

 

From eq. 6 we have: 
𝛥𝑡𝑜𝑏

𝛥𝑡𝑒𝑚
 = 

1

1−𝛽
 , where β =  

𝒗

𝒄
. Substitution in eq. 53 yields:  

 

z =   
1

1−𝛽
−1 =  

𝛽

1−𝛽
                                 (54) 

 

And the recession velocity in terms of redshift is: 

 

         β = 
𝑧

𝑧+1
                                                                           (55)   

 

For blue-shift the same equation holds except that we must replace β by - β. Substituting eq. 55 in 

the transformations depicted in Table 1 yields the transformation as functions of the redshift z 

depicted in Table 5. 

 

Table 5 

Information relativity transformations in terms of redshift z 

Physical Term Relativistic Expression 

Time interval 𝛥𝑡

𝛥𝑡0
 = z +1                     (56) 

Distance 𝑙

𝑙0
 = 2z +1                      (57) 

Mass density 𝜌

𝜌0
=

1

2𝑧+1
                    (58) 

Kinetic energy density  𝑒𝑘

𝑒0
=  

𝑧2

(𝑧+1)2(2𝑧+1)
      (59) 

Wave energy density  𝑒𝑤

𝑒0
 = 

2𝑧3

(𝑧+1)2(2𝑧 +1 )
     (60) 

 

In previous articles [115-116] we applied equations 56-60 to construct a simple and plausible 

cosmology. Here we summarize the more important results: 
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8.2 The pattern of recession velocity 

The recession velocity in eq. 55 fits well with current inflammation cosmological models. As could 

be seen in Figure 13, for very high redshifts (from z ̴ 8 to z ̴ 1089), the predicted recession velocity 

is close to the velocity of light, and its deceleration rate is low and relatively steady. This prediction 

confirms with accepted inflation theory [117-118] predicting an early period of accelerated 

expansion of the universe. For very low redshifts (z ≤ 0.1), the recession velocity is predicted to be 

low and relatively steady. In the midrange of redshifts, between z ̴ 8 and z  ̴0.1, the model predicts 

that the universe underwent a period of rapid deceleration.     

 

 
Figure 13. Recession velocity as a function of redshift z 

 

8.3 Predicting the expanding universe  

The constructed model predicts an expanding universe. From equations 56 and 57 it could be easily 

seen that:  

 
𝑙

𝑙0
 = 2 

𝛥𝑡

𝛥𝑡0
 -1       (61) 

 

Which predicts a unidimensional expanding universe, in which the relativistic spatial dimension 

increases linearly with the relativistic time interval.  

 

8.4 Explaining dark matter and dark energy 

Perhaps the most important result of applying Information Relativity to cosmology is the 

interpretation it provides for dark matter and dark energy. According to the theory dark matter is 

quantum matter at cosmic scales, whereas the measured amounts of what is believed to be negative 

dark energy is the energy of associated with the receding cosmological structures (e.g., galaxies) 

pilot waves. This explanation abolishes the mystery of the source and nature of dark energy.   

The kinetic energy density, and the accompanying wave energy density as functions of redshift (in 

logarithmic scale), are depicted in Figure 14. 

The predicted decline in kinetic energy density at z ≈ 1.618 is in agreement with the well-known 
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GZK cutoff limit to the cosmic-ray energy spectrum [119-120]. In the proposed theory the GZK 

cutoff point is the point of cosmic quantum criticality. As shown in Fig 14, the maximal kinetic 

energy density is predicted to be at redshift z = 1+ φ ≈ 1.618. These predictions are in good agreement 

with the HiRes experiment show a break in the luminosity densities QSO’s and AGN’s at about 

z=1.6, as well as with numerous discoveries of quasars, galaxies, and AGNs, indicating a break in 

luminosity densities at about z=1.6 (e.g., [121-122]), including a recent discovery of galaxies at 

redshift equaling exactly 1.618 [123]. 

 

 

 
Figure 14. Matter and accompanying wave energy densities as functions of redshift 

 

A testable prediction of the model is the prediction that at redshifts below z = 
1

2
, (corresponding to 

recession velocity β = 
1

3
) the universe is dominated by normal matter such that it's the kinetic energy 

density is larger than the energy density of the accompanying wave, while at redshifts higher than z 

= 
1

2
 the universe is dominated by the accompanying wave (dark energy). 

For a given redshift range (𝑧1, 𝑧2),  𝑧2 > 𝑧1, the amounts of matter and wave energies could be 

calculated by integrating over the functions in equations 59 and 60, yielding (see [116]): 

 

          
 𝑒𝑘(𝑧1− 𝑧2)

𝑒0
= =  

1

2
 ln( 

2𝑧2+1

2𝑧1+1
 ) -  

𝑧2−𝑧1

(𝑧2+1)(𝑧1 +1)
                                 (62) 

And, 

 

         
 𝑒𝑑(𝑧1− 𝑧2)

𝑒0
 = (𝑧2 − 𝑧1) +2 

(𝑧2−𝑧1)

(𝑧 2+1) (𝑧 1+1)
 – 2 ln(

(𝑧 2+1) 

(𝑧 1+1)
) - 

1

2
 ln(

(2𝑧 2+1) 

(2𝑧 1+1)
)  (63)                                    

 

8.5 Predicting the results of ΛCDM cosmologies 

Calculations based on the above expressions are in good agreement with observationally based 

ΛCDM cosmologies. As example, for the redshift ranging 0.6-1, tested by Wittman et al. (2000) 

[124] , it was concluded that dark matter is distributed in a manner consistent with either an open 

universe, with Ω𝑏 = 0.045, Ω𝑚𝑎𝑡𝑡𝑒𝑟 - Ω𝑏 = 0.405, ΩΛ = 0, or with a ΛCDM with Ω𝑏 = 0.039, 
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Ω𝑚𝑎𝑡𝑡𝑒𝑟 - Ω𝑏 = 0.291, ΩΛ = 0.67, where Ω𝑏 is the fraction of critical density in ordinary (baryonic) 

matter, Ω𝑚𝑎𝑡𝑡𝑒𝑟 is the fraction of all matter, and ΩΛ is the fraction of dark energy. In the open 

universe model, we have Ω𝑚𝑎𝑡𝑡𝑒𝑟 = 0.045 + 0.405 = 0.45, and ΩΛ = 0, whereas in the ΛCDM, we 

have Ω𝑚𝑎𝑡𝑡𝑒𝑟 = 0.039 + 0.291 = 0.33, and ΩΛ = 0.67.  Calculating the ratios of kinetic and wave 

energies from equations 62 and 63 for the same redshift range gives: 

 

   
𝑒𝑘

𝑒𝑡𝑜𝑡
 = 

𝑒𝑘

𝑒𝑘+𝑒𝑤
 = 

0.0300775 

0.0300775 +0.0486354 
 ≈ 0.382 (≈ 38.2%)                           (64) 

 

And,  

 
𝑒𝑤

𝑒𝑡𝑜𝑡
 = 

𝑒𝑤

𝑒𝑘+𝑒𝑤
 = 

0.0486354

0.0300775+0.0486354
 ≈ 0.618 (≈ 61.8%)                             (65) 

 

Which is in agreement with the observations based ΛCDM model with (Ωm = 
1

3
, ΩΛ = 

2

3
). For the 

entire range of semi-classical matter (0 ≤z < 1.618) we get: 
 𝑒𝑘(0 −1.618)

𝑒0
  ≈ 0.1038, and 

 𝑒𝑤(0 −𝜑)

𝑒0
 ≈ 

0.3420, yielding: 

                                                   

 
𝑒𝑘

𝑒𝑘+ 𝑒𝑤
  = 

0.138

0.138+0.3420
 ≈ 0.233 (or 23%)                                                         (66) 

And, 

 
𝑒𝑤

𝑒𝑘+ 𝑒𝑤
  = 

0.3420

0.138+0.3420
 ≈ 0.767 (or 76.7%)                                                       (67) 

 

Which is in excellent agreement with the ΛCDM cosmology with Ωmatter = 0.23, ΩΛ = 0.77 (see, 

e.g., [125-127]), and quite close to the Ωmatter = 0.26, ΩΛ = 0.74 cosmology (see, e.g., [128 -130 ]). 

 

8.6 Predicting the Schwarzschild radius of black holes. 

Karl Schwarzschild, while serving in the German Army on the Russian front, solved Einstein’s 

field equations for a non-rotating, uncharged, spherical black hole [131-132]. For a star of a given 

mass, M, Schwarzschild found the critical radius R = 
2 𝐺 𝑀

𝑐2
, where G is the gravitational constant 

and c is the velocity of light, at which light emitted from the surface would have an infinite 

gravitational redshift, and thereby infinite time dilation. Such a star, Schwarzschild concluded, 

would be undetectable by an external observer at any distance from the star.  

Our understanding of the processes involved in the evolution and decay of black holes is largely 

due to quantum mechanical and thermodynamic theories. Early in 1974, Stephen Hawking 

predicted that a black hole should radiate like a hot, non-black (“gray”) body [133]. Hawking’s 

theory of black holes, is consistent with Bekenstein's generalized second law of thermodynamics 

[134], stating that the sum of the black-hole entropy and the ordinary thermal entropy outside the 

black hole cannot decrease. According to this prediction, black holes should have a finite, non-

zero, and non-decreasing temperature and entropy. 
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The first X-ray source, widely accepted to be a black hole, was Cygnus X-1 [135]. Since 1994, 

The Hubble Space Telescope, and other space-crafts and extremely large ground telescopes [see, 

e.g., 136-139], have detected numerous black holes of different sizes and redshifts. We now know 

that black holes exist in two mass ranges: small ones of (M ≲ 10 M⊙) (M⊙, solar mass), believed 

to be the evolutionary end points of the gravitational collapse of massive stars, and supermassive 

black holes of M ≳ 106 M⊙, responsible for the powering of quasars and active galactic nuclei 

(AGN) [140-142]. Supermassive black holes, residing at the centers of most galaxies, are 

believed to be intimately related to the formation and evolution of their galaxies [140- 142]. 

The Schwarzschild solution to Einstein’s field equations yielded a critical hole radius of R = 
2 𝐺𝑀

𝑐2
. However, Schwarzschild’s solution suffers from a serious pathology, because it predicts a 

singularity whereby the fabric of spacetime is torn, causing all matter and radiation passing the 

event horizon to be ejected out to an undefined spacetime, leaving the black hole empty, thus, in 

violation of the laws of thermodynamics and contradiction with quantum mechanics [e.g., 143-

144]. Many believe that the black holes (and the Big Bang) singularities mark a breakdown in 

GR. 

Attempts to solve the singularity problem are aplenty. Bardeen was the first to propose a regular 

black hole model [145]. In 1968, he produced a famous model, conventionally interpreted as a 

counterexample to the possibility that the existence of singularities may be proved in black hole 

spacetimes without assuming either a global Cauchy hyper-surface or the strong energy 

condition. Other regular “Bardeen black holes” models have been also proposed [e.g., 146-151], 

but none of these models is an exact solution to Einstein equations [152]. Other solutions to 

produce singularity-free black hole come from quantum mechanics [e.g., 153-157], and string 

theory [e.g., 158-159], and. As examples, Ashtekar and others proposed a loop quantum gravity 

model that avoids the singularities of black holes and the Big Bang. Their strategy was to utilize 

a regime that keeps GR intact, except at the singularity point, at which the classical spacetime is 

bridged by a discrete quantum one. Although the solution is mathematically difficult, its strategy 

is simple. It begins with semi-classical state at large late times (“now”), and evolves it back in 

time, while keeping it semi-classical until one encounters the deep Planck regime near the 

classical singularity. In this regime, it allows the quantum geometry effects to dominate. As the 

state becomes semi-classical again on the other side, the deep Planck region serves as a quantum 

bridge between two large, classical spacetimes [153]. 

To derive Information Relativity solution for an uncharged, non-rotational black hole, consider   

Figure 15 which depicts a schematic representation of a supermassive black hole with mass M 

and radius R residing at the center of its host galaxy. The figure shows three particles, with equal 

masses and velocities, at different distances from the center of the black hole. As depicted in the 

figure, the more distant particle will be deflected toward the black hole, but will escape it due to 

its large distance, and continue its travel in space. By contrast, the closest particle to the black 

hole will experience a strong enough gravitational force to cause its absorption into the black 

hole. Now consider the third particle, which rotates around the black hole at radius r. Such 

particle could be a baryon or wave quanta entrapped at a critical distance, ensuring that it rotates 

around the black hole. For such particle, the acceleration |�⃗�| supporting a uniform radial motion 

with radius r should satisfy: 
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𝑎 = |�⃗�| = 
𝑣2

𝑟
 = 

𝑐2

𝑟
 𝛽2                                                       (68) 

The force supporting such motion, according to Newton's second law, could be expressed as: 

 

𝐹= 
𝜕𝑃

𝜕𝑡
 = 

𝜕(𝑚𝑣)

𝜕𝑡
 = m 

𝜕(𝑣)

𝜕𝑡
 + v 

𝜕(𝑚)

𝜕𝑡
 = 

                             m 𝑎+ 𝑣 
𝜕(𝑚)

𝜕𝑣
 
𝜕(𝑣)

𝜕𝑡
 = m 𝑎 + v a 

𝜕(𝑚)

𝜕𝑣
   =  (m + v 

𝜕(𝑚)

𝜕𝑣
) a                                     (69) 

 

 

 

 

 

 

 

 

  

 

 

Substitution the term for m from eq. 18 in eq. 69, and deriving m with respect to v yields: 

 

F = 
1−2𝛽−𝛽2

(1+𝛽)2
   𝑚0  a                                           (70) 

 

Substitution the value of a, from Eq. 68 in Eq. 70 yields: 

 

F = 
1−2𝛽−𝛽2

(1+𝛽)2
   𝑚0  a =  

1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝑚0  

𝑣2

𝑟
 =  𝑚0 𝑐2 

1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝛽2 

1

𝑟
                  (71) 

 

Using Newton’s general law of gravitation, we get: 

 

G 
 𝑚0 𝑀

𝑟2
 = 𝑚0 𝑐2 

1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝛽2 

1

𝑟
                                               (72) 

 

m 

r

m 

M 

     Figure 15. Three particles near a black hole   
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Solving for r yields: 

 

r = 
 𝐺 𝑀

𝑐2
 

(1+ 𝛽)2

1−2 𝛽− 𝛽2
  𝛽2                                                             (73) 

 

Assuming spherical symmetry, eq. 73 describes the dynamics of the host galaxy as a function of 

velocity. For a light photon (𝛽 = 1), we have: 

 

                                    r (𝛽 = 1) = R = 
2 𝐺 𝑀

𝑐2
                                             (74)  

 

Which exactly equals the Schwarzschild radius, but with no singularity in the hole’s interior.  

Interestingly, the solution (eq.  73) has a naked spatial singularity at 𝛽 satisfying: 

 

1 − 2 𝛽 − 𝛽2 = 0                        (75) 

Solving for β, we have: 

 

β =√2
2

 -1 ≈ 0.4142                                    (76) 

With corresponding redshift of: 

   z = 
β 

1−β 
 = 

1

√2
2  ≈ 0.707                                                            (77) 

 

It is important to stress that the predicted singularity is in space and not in spacetime, as 

prescribed by General Relativity's field equations.  In fact, Information Relativity in general, 

including in its present application to the black hole problem, does not require reference to the 

notion of spacetime. Rather, it is a straightforward relativistic extension of Galileo-Newton's 

physics, and as such, it treats space and time independently of each other.   

To express the derived radius in terms of redshift, we substitute the value of β from eq. 55 in Eq. 

73 and solve for 𝑟, yielding:  

 

                      𝑟 = (
 𝐺 𝑀 

𝑐2
) 

𝑧2(1+2𝑧)2

(1+𝑧)2 (1−2𝑧2 )
                              (78) 

 

 

Figure 16 depicts the ratio 𝑟, normalized by 
 𝐺𝑀 

𝑐2
, as a function of z. 
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As shown by the figure, for very high redshifts 𝑟 converges to 2
 𝐺 𝑀 

𝑐2  (the Schwarzschild radius). 

Moreover, the result in eq. 78 has some interesting properties: (1) 𝑟 has a naked spatial 

singularity, at z = 
1

√2
2  ≈ 0.707, (2) It displays a striking Golden Ration symmetry, such that for z 

= φ ≈ 1.618, 𝑟 / (
 𝐺 𝑀 

𝑐2
) ≈ 1.618, (3) It has a point of minimum in the range between the above 

mentions redshifts. To find the point of minimum we derive 𝑟 / (
 𝐺 𝑀 

𝑐2
) with respect to z and 

equate the result to zero, yielding: 

 

 4 𝑧4 − 2 𝑧3 − 10 𝑧2 − 6 𝑧 − 1 = 0        (79) 

 

Which solves at 𝑧𝑚 ≈ 2.078, yielding: 

 

𝑟𝑚 ≈ 1.5867 (
 𝐺 𝑀 

𝑐2
)                                                                     (80)  

 

The prediction of an extreme galactic activity at z ≈ 0.707 is supported by many observational 

studies, which reported the detection of quasars, blazars and other AGNs at z ≈ 0.707 [e.g., 160 

-163]. For example, a recent study by Steinhardt et al. [160] reported the discovery of a Type 1 

quasar, SDSS 0956+5128, with extreme velocity offsets at redshifts z = 0.690, 0.714, and 0.707. 

The prediction of AGNs at z ≈ 2.078 is also confirmed by observations [e.g. 164-165].  

I also compared the dynamical dependence of r on redshift (eq. 19) with the dynamics reported 

in [166] for a cosmology of ΩM = 0.3 and ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1. Figure 17a depicts 

the predicted radius r (in Km) as a function of redshift for intermediate and massive black holes 

Figure 16. r / (
 𝐺𝑀 

𝑐2
)  as a function of redshift 

Z ≈ 1.618 

Z ≈ 0.707 Z ≈ 2.0782 

≈ 1.5867 
≈ 1.618 

z 
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and Figure 17b depicts comparable results reported in [166]. Comparison of the two figures, 

despite differences in scaling, reveals a remarkable similarity between the results of the two 

models. 

 

 

 

Figure 17a 

Figure 17b 

Figure 17. Predicted r as a function of z (Fig. 17a) and comparable results based on ΛCDM 

model (ΩM = 0.3,  ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1) reported by Hook (2005) [166] (Fig 17b).  

 

8.7 Predicting the mass of the Higgs boson 

The possibility of existence of the recently discovered Higgs boson [167-168] was proposed more 

than forty years ago. In the Standard Model (SM), electroweak symmetry breaking (EWSB) is 
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achieved by invoking the Higgs mechanism, which requires the existence of the Higgs boson 

[169-172]. In the SM, the Higgs boson mass, 𝑚𝐻, is a priori unknown. However, for a given 𝑚𝐻 

hypothesis, the production cross sections and branching fractions of each decay mode are 

predicted, which enables a combined search with data from several decay channels [167]. In July 

2012, the ATLAS [167] and CMS [168] collaborations announced that they had discovered a 

new particle with a mass ~125 GeV, which qualifies as a candidate for the theorized Higgs boson. 

ATLAS reported a particle mass 𝑚𝐻 ∼ 126 GeV with a local significance of 3.5 σ, and CMS 

reported a mass 𝑚𝐻 = 125.3 ± 0.4(stat.) ± 0.5(syst.) GeV, with a local significance of 5 σ. In the 

signal region of (5.56 – 5.68) GeV, the reconstructed mass of 𝛬𝑏
0  and 𝛬 ̅𝑏

0 using up to 4.6 𝑓𝑏−1 at 

7 TeV of pp collision data is shown in Figure 18 (see [173-174]). 

To predict the mass of the Higgs boson we took a cosmological view of the creation of the 

unstable Higgs boson (e.g., [175-178]). Like the W and Z bosons, the Higgs boson gets its 

mass from the Higgs mechanism. It is assumed that this process has occurred at an epoch in 

the early universe, characterized by an unstable phase transitions [[178]. This assumption fits 

well with the prediction of Information Relativity theory, which predicts that quantum phase 

transition is predicted to have happened at a redshift equaling z = 1+ φ ≈ 1.618 (see Fig 14).  

 

Figure 18. The reconstructed mass of Λb
0  and Λ ̅b

0
 candidates, fitted with a three-component PDF (blue 

solid curve) consisting of signal (blue dashed curve), combinatorial (magenta long-dashed straight line) 

and 𝐵𝑑
0 background (red dot-dashed curve, bottom). (Source: [173])  

 

To calculate the Higgs mass, from eq. 23, which gives the kinetic energy at redshift z ≈ 1.618, 

we can write:  

 (𝑒𝑘)𝑚𝑎𝑥 =  𝛷5 e0 =𝛷5 x 
1

2
  𝑚0 𝑐2,              (81) 
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Or:  

                                      𝑚0 𝑐2  = 2 𝛷−5  (𝑒𝑘)𝑚𝑎𝑥                                                                    (82) 

 

For the lower bound of the signal region of (5.56 – 5.68) GeV, reported by ATLAS, we have: 

𝑚0 𝑐2 = 2 x (
√5−1

2
 )−5  x 5.56 (GeV) ≈ 22.180 x 5.56 (GeV) ≈ 123.321 GeV.                (83) 

And for the upper bound we have: 

𝑚0 𝑐2 = 2 x (
√5−1

2
 )−5  x 5.68 (GeV) ≈ 22.180 x 5.68 (GeV) ≈ 125.983 GeV.               (84) 

And the average mass is equal to: 

𝑚0 𝑐2 ≈ 
123.321+125.982

2
  ≈ 124.652 GeV.                                                  (85) 

Which highly agrees with the reported results of the mass of the Higgs boson. 

8.8 Predicting the evolutionary timeline of chemical elements    

Currently, the details of the ionization history are not well understood [179], but it is believed to 

exist at as early as z ∼ 20 [180]. It is well accepted that fusion reactions (starting with hydrogen 

into helium) inside stars synthesize the elements up to iron, and that elements heavier than iron 

cannot be formed by fusion, and that they are synthesized as a result of slow and fast neutron-

capture reactions, known as n-capture [180]. 

The proposed theory can be used to make predictions about the cosmic ionization of light and of 

heavy elements. This highly important issue goes far beyond the scope of the present paper, and 

will hopefully be addressed in a subsequent paper. Here, I only give a glimpse of the topic by 

applying the theory for predicting the times of formation, after the Big Bang, of two light elements, 

Carbon C12
6  and Oxygen C12

6 . 

 

For this purpose, consider the generic nuclear fusion of the type 

 

 X𝑘  + Y𝑙  = Z𝑚 +  ω + 𝐸𝑘           (86) 

 

Where k, l, and m are the atomic weights of the elements X, Y, and Z, respectively, ω is some 

elementary particle, and 𝐸𝑘 is the emitted kinetic energy. Denote the difference in atomic mass 

between the interacting and the produced elements by ∆m.  Assuming that all the emitted kinetic 

energy is carried by the newly formed particle Z, from eq. 59, we have the following: 
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 𝐸𝑘  = (
1

2
𝑚 𝑐2) 

𝑧2

(𝑧+1)2(2𝑧 +1 )
 = 

1

2
 ∆m 𝑐2                    (87) 

Solving for 
∆𝑚

𝑚
, we get: 

 

 
∆𝑚

𝑚
  = 

𝑧2

(𝑧+1)2(2𝑧+1)
                                                                     (88) 

 

The right-side term in eq. 88 is identical to the kinetic energy term (see eq. 59), implying that the 

dependence of  
∆𝑚

𝑚
 on z mimics the dependence on z of the kinetic energy density depicted in 

Figure 4, with maximum obtained at z ≈ 1.618. Inspection of eq. 88 (see also Figure 14) reveals 

that for very high redshifts, the rate of increase in atomic mass, 
∆𝑚

𝑚
, is very low, suggesting the 

differences between the atomic masses of very heavy elements are predicted to be small. A similar 

prediction applies to the differences between the atomic masses of very light elements. As we 

move from epochs of very low redshifts to epochs of larger redshifts (or from epochs of very high 

redshifts to earlier epochs), 
∆𝑚

𝑚
 is predicted to increase, reaching a crest at z = φ ≈ 1.618. 

To derive the term for the dynamical dependence of  
∆𝑚

𝑚
 on time, denote the redshift 

corresponding to the Big Bang moment by 𝑧𝑇 (≈ 1089), with corresponding time of T (≈ 13.789 

BY). From eq. 56, we can write the following: 

 

                
𝑇

𝑡′
  = 𝑧𝑇 +1                      (89) 

 

For any time, t, and redshift z, using equation 66 and 89 we can write: 

 

                
𝑡

𝑇
 = 

𝑧+1

𝑧𝑇 +1
                   (90) 

  

Which yields: 

       z = (𝑧𝑇  + 1) 
𝑡

𝑇
 - 1                        (91) 

 

Substituting z from eq. 91 in eq. 88, we get: 

  

    
∆𝑚

𝑚
  = 

((𝑧𝑇 +1) 
𝑡

𝑇
 −1  )2

((𝑧𝑇 +1)
𝑡

𝑇
)

2

(2(𝑧𝑇 +1) 
𝑡

𝑇
 −2+ 1)

                                           (92) 
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For  𝑧𝑇 ≈ 1089 >> 1, solving eq. 92 for  
𝑡

𝑇
  gives:  

 

    
𝑡

𝑇
 ≈ 

1

2𝑧𝑇 
∆𝑚

𝑚

  ≈  
1

2178 
∆𝑚

𝑚

                                (93) 

 

For T ≈ 13.789 BY, we get: 

 

                 𝑡 ≈  
1

2178 
∆𝑚

𝑚

 . 13.789 BY                              (94) 

 

In principle, given any nucleuses reaction, eq. 92 could be used to explore the timeline for the 

formation of the various chemical elements. Solving eq. 92 for z gives: 

 

  2 𝑧3 + (5- 
1

(
∆𝑚𝑖
𝑚𝑖

)
 ) 𝑧2 + 4 z +1 = 0                                  (95) 

To demonstrate, we apply the model for estimating the redshifts and times for the cosmic 

formation of two important elements: Carbon C 12
6  and Oxygen O.16

8  Carbon C 12
6 is produced by 

the nuclear fusion: 

 

                                                 Be8
4  + He4

2  → C12
6  + 𝐸𝑘                             (96) 

 

Thus, 

 

∆𝑚

𝑚
 = 

(𝑚𝑏−8 + 𝑚𝐻𝑒−4) −  𝑚𝐶−12

𝑚𝐶−12
 = 

(8.00530510 + 4.0026020)−12 

12 
 ≈ 0.000658925                      (97) 

 

Substituting 
∆𝑚

𝑚
 = 0.000658925 in eq. 95 and solving for z yields: 

 

𝑧ℎ ≈ 756, and  𝑧𝑙≈ 0.027 .                 

 

Using eq. 90, we have: 
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𝑡ℎ = 
𝑧ℎ+1

𝑧𝑇 +1
 T = 

756+1

1089 +1
 x 13.789 ≈ 9.6 BY.                                               (98) 

And:  

    𝑡𝑙 = 
𝑧𝑙+1

𝑧𝑇 +1
 T = 

0.027+1

1089 +1
 x 13.789 ≈ 0.013 BY = 13 MY.                           (99) 

       

 For Oxygen O ,16
8  the nuclear fusion reaction is:     

 

C12
6  + He4

2  →  O 16
8 + 𝐸𝑘                         (100) 

 

Thus,  

 

∆𝑚

𝑚
 = 

(𝑚𝐶−12 + 𝑚𝐻𝑒−4) −  𝑚𝑂−16

𝑚𝐶−12
 =  

(12.0107 + 4.002602)u– 15.9994u

15.9994u
 ≈  0.00086891              (101) 

 

Substituting 
∆𝑚

𝑚
 = 0.00086891 in eq. 95 yields: 

 

𝑧ℎ ≈ 573, and  𝑧𝑙≈ 0.031               

 

Which correspond to:  

𝑡ℎ = 
573+1

1089 +1
 x 13.789 ≈ 7.26 BY.                                                      (102) 

 

And,  

      𝑡𝑙 = 
𝑧𝑙+1

𝑧𝑇 +1
 T = 

0.031+1

1089 +1
 x 13.789 ≈  0.013 BY = 13 MY.                  (103)   

The above results are consistent with observations. The low redshift predictions are in agreement 

with the findings of several survey studies using highly ionized metal absorption lines in 

ultraviolet, and X-ray spectra. These findings revealed an abundance of Carbon and Oxygen in 

the Milky Way, at redshift z = 0.027 [50], and of Oxygen at z = 0.031 [179]. Precision tests for 

the predicted high redshifts are (still) unfeasible, but several survey findings were successful in 

tracing the formation of Carbon and Oxygen to early epochs, of z ≥ 5 [180]. 

The above mentioned predictions are quite interesting, because they imply that Carbon C 12
6  and 

Oxygen O16
8 , and most probably all chemical elements, were created twice: once in massive galaxy 

structures in the early universe epochs, at redshifts z > 1.618 (golden ratio), and a second time in 

the more recent history of the universe, at redshifts z ≤ 1.618. It is not unrealistic to conjecture 
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that the ionization of elements at low redshifts is indeed a second-round, or “re-ionization,” 

probably in the internal galaxy of the observer (the Milky Way). Because the analysis applies to 

an observer in any galaxy, the theory predicts that the process of ionization that took place closer 

to the Big Bang repeats itself in all galaxies, with their massive black holes playing the role of the 

Big bang, mother of all black holes. 

 

9. Relativizing Newton's universal law of gravitation 

For the simple two-body gravitational system, the calculus involved in relativizing Newton's 

gravitation law is as simple as the one used in the inertial system case. To accomplish consider 

the two uncharged bodies in Fig. 19. To avoid unnecessary calculations, assume that the mass 

𝑚0 of the body on the left is distributed uniformly along its length 𝑙0 and that there are no other 

masses to gravitate with any of the two bodies. For an observer in reference frame F, at a given 

time t along its movement due to the attraction by mass 𝑀0, the "moving" body shown in figure 

19 is predicted to stretch along its travel path, and its matter density is predicted to decrease (see 

equations II and III in Table 1). The mass of a segment dx is given by: 

 

𝑑𝑚 = 𝜌 𝑑𝑥  = 𝜌0 
1+𝛽

1−𝛽
 𝑑𝑥                             (104) 

 

And its attraction force with 𝑀0 is given by: 

 

       𝑑𝐹𝑅𝐺 = G 
𝑑𝑚 𝑀0

(𝑟+𝑥)2
 = G 𝑀0  𝜌0 

1+𝛽

1−𝛽
 

 𝑑𝑥

(𝑟+𝑥)2
                (105) 

 

The total relativistic gravitational force can be calculated by integrating 𝑑𝐹𝑅over 𝑙, yielding: 

Figure 19. Two gravitational bodies in relative motion with respect to each other 



44 
  

                  𝐹𝑅𝐺 = ∫
𝑙

𝐺 𝑀0  𝜌0  
1+𝛽

1−𝛽
 

 𝑑𝑥

(𝑟+𝑥)2
 = 𝐺 𝑀0  𝜌0  

1+𝛽

1−𝛽
 ∫

𝑥=𝑟+𝑙

𝑥=𝑟
 

 𝑑𝑥

(𝑟+𝑥)2
  

                          =   𝐺 𝑀0  𝜌0  
1+𝛽

1−𝛽
 ( 

1

𝑟
 - 

1

𝑟+𝑙
 ) = 𝐺 𝑀0  𝜌0 (

1+𝛽

1−𝛽
 ) 

𝑟+𝑙−𝑟

𝑟 (𝑟+𝑙)
 

                          =  𝐺 𝑀0  𝜌0(
1+𝛽

1−𝛽
 ) 

𝑙

𝑟 (𝑟+𝑙)
 = 𝐺 𝑀0  𝜌0(

1+𝛽

1−𝛽
 ) 

𝑙

𝑟2 (1+
𝑙

𝑟
)
 

                           = G 
 𝑀0  𝜌0

𝑟2
 (

1−𝛽

1+𝛽
 )

𝑙0
1+𝛽

1−𝛽

𝑟2 (1+
𝑙

𝑟
)

 = G 
 𝑀0  𝜌0𝑙0

𝑟2
 

1

𝑟2 (1+
𝑙

𝑟
)
 = G  

 𝑀0  𝑚0

𝑟2
   

1

 1+
𝑙

𝑟

 

     = G  
 𝑀0  𝑚0

𝑟2
   

1

 1+
𝑙0
𝑟

(
1+𝛽

1−𝛽
)
                                     (106)  

Or: 

                     𝐹𝑅𝐺 = 
1

 1+
𝑙0
𝑟

(
1+𝛽

1−𝛽
)
 𝐹𝑁                                    (107) 

Fig. 20 depicts a three-dimensional graph of the ratio 
𝐹𝑅𝐺

𝐹𝑁
 as a function of the velocity β and the 

ratio 
𝑙0

𝑟
. A cross-section for selected 

𝑙0

𝑟
 values appears in Fig. 21. For stationary bodies (β =0), 

the classic law is recovered as long as the 𝑙0/r is sufficiently small. For approaching bodies, the 

relativistic gravitational force is weaker than the classic force. It decreases with an increase of 

the ratio 
𝑙0

𝑟
.  As shown in the figures, for very small 

𝑙0

𝑟
 ratios (small body dimensions relative 

to the distance r from the attracting mass), at all velocities, the relativistic force is very close to 

the classic Newtonian force. For large body dimensions relative to the distance r the relativistic 

force is predicted to reduce significantly, particularly at high approach velocities. 

For velocities close to the velocity of light, the obtained result predicts a complete breakdown 

of gravitation. As β approaches 1, the relativistic gravitational force goes down to zero. This 

theoretical result, derived solely from simple relativistic consideration, is in complete 

agreement with the important phenomenon occurring at strong interactions known as 

asymptotic freedom [181-182].  
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9.1 Velocity as a function of distance from a gravitating body 

Without loss of generality, assume that at t = 0 the mass 𝑚 was at rest (𝛽0 = 0) at r =R before 

it started moving due to its attraction by mass 𝑀0. As m moves along the horizontal axis, it will 

accelerate. At distance r from 𝑀0, the incremental increase in its kinetic energy is given by:  

 

Figure 20.  
𝐹𝑅𝐺
𝐹𝑁

 as a function of the velocity β and the ratio 
𝑙0

𝑟
 

 

 

 
𝑙0

𝑟
 

Figure 21. 
𝐹𝑅𝑁
𝐹𝑁

 as a function of the velocity for selected 
𝑙0

𝑟
 values 
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𝑑𝑒𝑘 =  𝑑𝑊 = F. d𝑟             (108)  

 

Where 𝑑𝑊 is the work done by the gravitational force F along the segment dr. Using the kinetic 

energy transformation (see Table 1), we can write:  

F= 
𝑑𝑒𝑘

𝑑𝑟
 = 

𝑑𝑒𝑘

𝑑𝛽
 
𝑑𝛽

𝑑𝑟
 = 

1

2
 𝑚0 𝑐2  

𝑑( 
1−𝛽

1+𝛽
 𝛽2)

𝑑𝛽
 
𝑑𝛽

𝑑𝑟
 

   = 𝑚0 𝑐2 
(1−𝛽− 𝛽2 ) 𝛽

(1+𝛽)2
  

𝑑𝛽

𝑑𝑟
            (109) 

Equating the expressions in equations 107 and 109, we get:   

𝑚0 𝑐2 
(1−𝛽− 𝛽2 ) 𝛽

(1+𝛽)2
  

𝑑𝛽

𝑑𝑟
  =  G  

 𝑀0  𝑚0

𝑟2
   

1

 1+
𝑙0
𝑟

(
1+𝛽

1−𝛽
)
                          (110) 

Which can be re-written as: 

 
(1−𝛽− 𝛽2 ) 𝛽

(1+𝛽)2
  𝑑𝛽  =  

 𝐺 𝑀0  

𝑐2
 

𝑑𝑟

𝑟2

 1+
𝑙0
𝑟

(
1+𝛽

1−𝛽
)
              (111) 

For the case 
𝑙0

𝑟
 << 1 the general term above reduces to: 

(1−𝛽− 𝛽2 ) 𝛽

(1+ 𝛽)
  𝑑𝛽  = 

 𝐺 𝑀0     

𝑐2
 
𝑑𝑟

𝑟2
                (112) 

Integrating on the path from x=R (starting point) to x= R-r (boundaries of 𝑀0), we get: 

∫
(1−𝛽− 𝛽2 ) 𝛽

(1+ 𝛽)

𝛽

0
  𝑑𝛽    = 

  𝐺 𝑀0     

𝑐2
 ∫

𝑑𝑟

𝑟2

𝑅−𝑟  

𝑅
                (113) 

Performing the integration gives: 

(𝛽 (𝛽 + 2) + 𝑙𝑛 (
1−𝛽

1+𝛽
))2 = 

  𝐺 𝑀0     

𝑐2
 (

1

𝑟
 - 

1

𝑅 
)             (114) 

Solving for 𝛽 (after some calculations) gives: 

𝛽 = - 
1−𝑒

 𝐺 𝑀0
𝑐2  (

1
𝑟

 − 
1
𝑅 

)

1+𝑒
 𝐺 𝑀0

𝑐2  (
1
𝑟

 − 
1
𝑅 

)
 = tanh(

1

2

 𝐺 𝑀0

𝑐2
(

1

𝑟
 −  

1

𝑅 
))                  (115) 

Substituting 
 𝐺 𝑀0

𝑐2
 = 

𝑅𝑆𝑐ℎ

2
, where 𝑅𝑆𝑐ℎ is defined as the Schwarzschild radius of the attracting 

mass 𝑀0, we can write:   
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β = tanh(
1

4

𝑅𝑆𝑐ℎ

𝑅
(

𝑅

𝑟
 −  1))                                  (116) 

Fig. 22 depicts the velocity β as a function of  
𝑟

𝑅
 for selected 

𝑅𝑆𝑐ℎ

𝑅
 values.   

 

 

 

Figure 22. Velocity β as a function of 
𝑟

𝑅
 for selected 

𝑅𝑆𝑐ℎ

𝑅
 values.   

 

As shown in the figure, for a given dimension R of the system, as the distance from the attracting 

mass 𝑀0 becomes smaller, the velocity increases quite sharply when approaching β =1 as r→0, 

and the predicted increase in velocity is steeper for larger attracting masses (larger 𝑅𝑆𝑐ℎ).   

9.2 Time duration and length transformations in a body's gravitational field 

Using the transformations in Table 1, we can write the gravitational transformations for time 

duration and length as: 

 

(
𝛥𝑡

𝛥𝑡0
)𝐺 =  

1

1−𝛽
 =   

1

1−𝛽0−𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

             (117) 

And  

         (
𝑙

𝑙0
)𝐺 = 

1+𝛽

1−𝛽
 = 

1+𝛽0+𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

1−𝛽0−𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

                       (118) 

For 𝛽0 = 0, we get: 
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(
𝛥𝑡

𝛥𝑡0
)𝐺=  

1

1−𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

 = 
1

2
 (𝑒(

1

2

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1))

 + 1)                    (119) 

And:   

(
𝑙

𝑙0
)𝐺 = 

1+𝛽

1−𝛽
 = 

1+𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

1−𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

 = 𝑒(
𝑅𝑆𝑐ℎ

𝑅
(

𝑅

𝑟
 − 1))

              (120) 

The relationships in equations 119 and 120 are depicted in figures 23 and 24, respectively. 

   

 

 

 

 

 

Figure 23. Time dilation as function of distance from attracting body 

Figure 24. Length stretch as function of distance from attracting body 
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9.3 Relativistic force as a function of distance from a gravitating body 

Substituting the expression for β from eq. 116 in the relativistic gravitation force expression in 

eq. 107 and simplifying gives: 

          𝐹𝑅𝐺 = G  
 𝑀0  𝑚0

𝑟2
   

1

 1+
𝑙0
𝑟

𝑒
 𝐺 𝑀0

𝑐2  (
1
𝑟

 − 
1
𝑅 

)
  = G  

 𝑀0  𝑚0

𝑟2
   

1

 1+
𝑙0
𝑟

𝑒
𝑅𝑆𝑐ℎ

2
 (

1
𝑟

 − 
1
𝑅 

)
 

 = 
1

 1+
𝑙0
𝑟

𝑒
𝑅𝑆𝑐ℎ

2
 (

1
𝑟

 − 
1
𝑅 

)
   𝐹𝑁        (121) 

 

 

 

Figure 25 depicts the classic gravitational force as a function of the distance between two 

gravitating bodies alongside of its relativistic extension plotted for selected 
𝑙0

𝑟
 values. As could 

be seen from q. 121 and Fig. 25, at long distances from the gravitating body the relativistic 

force is almost equal to the Newtonian term. Strikingly, as the moving body gains more velocity 

while it approaches the attracting mass, the gravitational force drops sharply below the value 

predicted by Newton's law, reaching zero as the distance approaches zero. As noted above, this 

counterintuitive prediction is in complete agreement with quantum-theoretic explanation of 

asymptotic freedom [181-182], a demonstrated phenomenon [e.g., 183-184], which according 

to gauge theories results from an asymptotic decrease in the bonds between particles as energy 

increases and distance decreases. The region of asymptotic freedom emerges also in the 

following analysis of the moving body's kinetic energy during its travel towards the 

attractor 𝑀0. 

 

 

 

Asymptotic Freedom 

Figure 25. Gravitational force as function of the distance from attracting body 
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9.4 Matter-wave duality in a gravitational field 

To calculate the expression for the matter kinetic energy, we substituted the value of β from eq. 

116 in the energy equation in Table 1. After simplification we get: 

 

𝑒𝐾

𝑒0
  =𝑒

𝑅𝑆𝑐ℎ
𝑅  

(𝑒
𝑅𝑆𝑐ℎ

𝑟 −𝑒
𝑅𝑆𝑐ℎ

𝑅 )2 

(𝑒
𝑅𝑆𝑐ℎ

𝑟 −𝑒
𝑅𝑆𝑐ℎ

𝑅 )3

           (122) 

And the dual (pilot) wave energy as a function of the distance r is given by: 

  
𝑒𝑊

𝑒0
  = 𝛽2 − 

𝑒𝑘

𝑒0
=  𝛽2 − 𝑒

𝑅𝑆𝑐ℎ
𝑅  

(𝑒
𝑅𝑆𝑐ℎ

𝑟 −𝑒
𝑅𝑆𝑐ℎ

𝑅 )2 

(𝑒
𝑅𝑆𝑐ℎ

𝑟 +𝑒
𝑅𝑆𝑐ℎ

𝑅 )3

                      (123) 

Substituting the value of β from Eq. 116 we get: 

𝑒𝑊

𝑒0
  = 𝛽2 − 

𝑒𝑘

𝑒0
=  𝑡𝑎𝑛ℎ(

1

4
𝑅𝑆𝑐ℎ(

1

𝑟
 −  

1

𝑅 
))2 − 𝑒

𝑅𝑆𝑐ℎ
𝑅  

(𝑒
𝑅𝑆𝑐ℎ

𝑟 −𝑒
𝑅𝑆𝑐ℎ

𝑅 )2 

(𝑒
𝑅𝑆𝑐ℎ

𝑟 +𝑒
𝑅𝑆𝑐ℎ

𝑅 )3

      (124) 

Fig. 26 depicts the kinetic energy and dual wave energy of mass "𝑚0" for a "large" and a 

"small" gravitating mass (with 
𝑅𝑆𝑐ℎ

𝑅
= 1 and 0.1, respectively).   

 

Figure 26. Matter and wave energies as functions of the distance from the attracting mass 

The figure reveals some interesting features of the predicted matter-wave dynamics. As 𝑚0 

approaches 𝑀0, the wave energy increases with acceleration, reaching the maximal value of 

𝑒𝑊 =  𝑒0 at r = 0, with the increase in wave energy being larger the larger the mass of the 

Asymptotic Freedom 
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attractor (the larger 
𝑅𝑆𝑐ℎ

𝑅
) is. The kinetic energy of 𝑚0 displays a non-monotonic pattern in its 

dependence on the proximity to the attractor. It increases at large normalized distances 
𝑟

𝑅
, 

behaving somewhat classically, reaching a maximum after which classic physics breaks down, 

such that a further decrease in the distance from the attractor results in a decrease in kinetic 

energy, reaching zero as r → 0. Maximum kinetic energy is attained at a critical distance 

𝑟𝑐𝑟, satisfying 
𝜕𝑒𝐾

𝜕𝑟
 (r = 𝑟𝑐𝑟)= 0. Performing the differentiation yields the following simple 

equation: 

                                           
𝑟𝑐𝑟

𝑅𝑆𝑐ℎ
 =  

1
𝑅𝑆𝑐ℎ

𝑅
+𝑙𝑛 (5)

                              (125) 

For very large 
𝑅𝑆𝑐ℎ

𝑅
  values we have 

𝑟𝑐𝑟

𝑅
 ≈ 1, while for 

𝑅𝑆𝑐ℎ

𝑅
≪ 𝑙𝑛 (5),  

𝑟𝑐𝑟

𝑅
 ≈ 

𝑅𝑆𝑐ℎ
𝑅

𝑙𝑛 (5)
 ≈ 0.62133494.  

Substituting 
𝑟𝑐𝑟

𝑅𝑆𝑐ℎ
  in Eq. 122, we get: 

(
𝑒𝐾

𝑒0
)𝑚𝑎𝑥 = 𝑒

𝑅𝑆𝑐ℎ
𝑅  

(𝑒
ln(5)+ 

𝑅𝑆𝑐ℎ
𝑅 − 𝑒

𝑅𝑆𝑐ℎ
𝑅 )2 

(𝑒
𝑙𝑛 (5) + 

𝑅𝑆𝑐ℎ
𝑅 +𝑒

𝑅𝑆𝑐ℎ
𝑅 )3

 = 
𝑒

𝑅𝑆𝑐ℎ
𝑅 𝑒

2
𝑅𝑆𝑐ℎ

𝑅 (𝑒𝑙𝑛 (5) −1)2 

𝑒
3

𝑅𝑆𝑐ℎ
𝑅 (𝑒𝑙𝑛 (5) +1)3

  

           =  
(𝑒𝑙𝑛 (5) −1)2 

(𝑒𝑙𝑛 (5) +1)3  = 
2

27
! (≈ 0.074074074074074…)           (126) 

Or:    

(𝑒𝐾)𝑚𝑎𝑥 = 
2

27
 𝑒0 = 

2

27
 
1

2
 𝜌0  𝑐

2 = 
1

27
 𝜌0  𝑐

2          (127) 

Strikingly, the maximal kinetic energy attained by 𝑚0 is the same for all values 
𝑅𝑆𝑐ℎ

𝑅
 (see 

figure). Moreover, the wave energy at the points of maximal kinetic energy is 5 times higher 

than the maximal kinetic energy (≈ 0.3704). 

Fig. 27 depicts the proportions of matter and wave energies as functions of the normalized 

distance from the attracting mass 
𝑟

𝑅
 for masses with normalized Schwarzschild radii 

𝑅𝑆𝑐ℎ

𝑅
 of 1 

(large) and 0.1 (small), respectively. As the figure shows, for any 
𝑅𝑆𝑐ℎ

𝑅
 ≠ 0 there exists a critical 

distance at which the ratios of matter and wave energies are equal. That is a distance at which  
𝑒𝐾

𝑒𝐾+ 𝑒𝑤
 = 

𝑒𝑤

𝑒𝐾+ 𝑒𝑤
 = 

1

2
. Substitution of the values of 𝑒𝑘  and 𝑒𝑤 from equations 122 and 124, 

and  simplifying yields: 

𝑒𝑦(𝑒𝑦−1)2

(𝑒𝑦+1)3   = 
1

2
                                (128) 
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Where y = 
𝑅𝑆𝑐ℎ

𝑅
 (

1
𝑟

𝑅

− 1). Solving Eq. 128 for y yields y ≈ 1.9684, which corresponds to:  

𝑟

𝑅
 = 

𝑅𝑆𝑐ℎ
𝑅

𝑅𝑆𝑐ℎ
𝑅

+ 𝑦 
 ≈ 

𝑅𝑆𝑐ℎ
𝑅

𝑅𝑆𝑐ℎ
𝑅

+ 1.9684 
                   (129) 

For 
𝑅𝑆𝑐ℎ

𝑅
 = 1, substitution in the equation above gives: 

𝑟

𝑅
 = 

𝑅𝑆𝑐ℎ
𝑅

𝑅𝑆𝑐ℎ
𝑅

+ 𝑦 
 ≈ 

1

1+ 1.9684 
 ≈ 0.336882, 

and for 
𝑅𝑆𝑐ℎ

𝑅
 = 0.1 we get: 

𝑟

𝑅
 ≈ 

0.1

0.1 + 1.9684 
 ≈ 0.048347. 

 

 

Figure 27. Ratios of matter and wave energies as functions of distance from a gravitating mass   

 

9.5 Summary of main results 

Table 6 summarizes the main predictions for the discussed two-body gravitational system. The 

picture emerging from the predicted matter-wave dynamics is the following: Assuming a closed 

gravitational two-body system with rest-masses 𝑀0 and 𝑚0, distanced by R,  which start moving 

towards each other (from rest) due to gravitation. For an observer in F (the rest frame of 𝑀0), 

Information Relativity theory predicts that as 𝑚0  𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑀0, the wave energy of "𝑚0 will 

first increase with acceleration and then with deceleration leveling to 𝑒𝑊 =  𝑒0 = 
1

2
 𝜌0 𝑐2 at very 

short distances from 𝑀0′𝑠 boundary. The matter (kinetic) energy is predicted to first increase 

with a decrease in distance up to a maximum reached at a critical distance determined by the 

spatial dimension of the system R and the Schwarzschild radius of the gravitating mass (see eq. 

122 and fig. 26). For shorter distances the kinetic energy decreases continually until it reaches 

zero at r =0, where the two masses are predicted to move freely without any gravitational pull 

between them. Surprisingly, while the point of maximum kinetic energy density "shifts" closer 

to the gravitating body as its mass becomes smaller, the maximum kinetic energy remains 

constant at (𝑒𝐾)𝑚𝑎𝑥 = 
2

27
 𝑒0 (= 

1

27
 𝜌0  𝑐

2).  
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Table 6 

Summary of main results  

Physical Term Relativistic expression as function of the distance r from the 

gravitating mass 

Velocity 

(from rest) 𝛽 = - 
1−𝑒

 𝐺 𝑀0
𝑐2  (

1
𝑟

 − 
1
𝑅 

)

1+𝑒
 𝐺 𝑀0

𝑐2  (
1
𝑟

 − 
1
𝑅 

)
 =  tanh(

1

4

𝑅𝑆𝑐ℎ

𝑅
(

𝑅

𝑟
 −  1)) 

Time dilation 
(

𝛥𝑡

𝛥𝑡0
)𝐺= 

1

2
 (𝑒(

1

2

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1))

 + 1) = 
1

1−𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

 

Length extension 

 

(
𝑙

𝑙0
)𝐺 = 𝑒(

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1))

= 
1+𝑡𝑎𝑛ℎ(

1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

1−𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

 

Mass density 
(

𝜌

𝜌0
)𝐺 = 

1

𝑒
(
𝑅𝑆𝑐ℎ

𝑅
(
𝑅
𝑟

 − 1))
 = 

1−𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

1+𝑡𝑎𝑛ℎ(
1

4

𝑅𝑆𝑐ℎ
𝑅

(
𝑅

𝑟
 − 1)) 

 

Force 𝐹𝑅𝑁 =  G  
 𝑀0  𝑚0

𝑟2    
1

 1+
𝑙0
𝑟

𝑒
𝑅𝑆𝑐ℎ

2
 (

1
𝑟

 − 
1
𝑅 

)
 

Kinetic energy  

    density 

𝑒𝐾

𝑒0
  =𝑒

𝑅𝑆𝑐ℎ
𝑅  

(𝑒
𝑅𝑆𝑐ℎ

𝑟 −𝑒
𝑅𝑆𝑐ℎ

𝑅 )2 

(𝑒
𝑅𝑆𝑐ℎ

𝑟 +𝑒
𝑅𝑆𝑐ℎ

𝑅 )3

 

 

Accompanying 

wave energy 

density 

𝑒𝑊

𝑒0
  = 𝑡𝑎𝑛ℎ(

1

4
𝑅𝑆𝑐ℎ(

1

𝑟
 −  

1

𝑅 
))2 − 𝑒

𝑅𝑆𝑐ℎ
𝑅  

(𝑒
𝑅𝑆𝑐ℎ

𝑟 −𝑒
𝑅𝑆𝑐ℎ

𝑅 )2 

(𝑒
𝑅𝑆𝑐ℎ

𝑟 +𝑒
𝑅𝑆𝑐ℎ

𝑅 )3

 

 

Critical distance at 

 which the 

proportion of 

matter and wave 

energies are equal 

𝑟

𝑅
 ≈ 

𝑅𝑆𝑐ℎ
𝑅

𝑅𝑆𝑐ℎ
𝑅

+ 1.9684 
 

Critical distance  

 at which matter  

KE is maximal 

𝑟𝑐𝑟

𝑅𝑆𝑐ℎ
 =  

1
𝑅𝑆𝑐ℎ

𝑅
+𝑙𝑛 (5)

 ≈ 
1

𝑅𝑆𝑐ℎ
𝑅

+1.6094
 

Maximal kinetic  

energy 
(𝑒𝐾)𝑚𝑎𝑥 = 

2

27
 𝑒0 = 

1

27
 𝜌0  𝑐

2 
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Inspection of the ratios of matter and wave energies out of the total energy (see fig. 27), provides 

insight into the dynamics between the two energy carrier components. At normalized distances 

exceeding a critical 
𝑟

𝑅
 ratio, which is determined completely by the ratio 

𝑅𝑆𝑐ℎ

𝑅
  (see eq. 129), the 

matter kinetic energy dominates its dual wave energy, while at normalized distances 
𝑟

𝑅
 below 

the critical distance, the dual-wave's energy dominates the matter energy. In de Broglie's 

terminology, we may say that at distances above the critical distance the matter might guide the 

wave, whereas at distances below the critical value, the dual wave takes the lead and pilots its 

dual matter.         

It is worth noting that by setting 𝑀0= 0 (𝑅𝑠𝑐ℎ = 0), all the transformations of in the table reduce 

to the transformations derived for inertial systems, which in turn reduce to the classical 

Newtonian terms for β = 
𝑣

𝑐
  << 1. For example, setting 𝑅𝑠𝑐ℎ = 0 in Eq. 117 gives: 

𝛥𝑡

𝛥𝑡0
=

 
1

1−𝛽0−𝑡𝑎𝑛ℎ(0) 
  = 

1

1−𝛽0 
, which for 𝛽0 << 1 gives  

𝛥𝑡

𝛥𝑡0
 = 1. Similarly, the velocity term after the 

elimination of gravity gives 𝛽 = 𝛽0 + 𝑡𝑎𝑛ℎ(0) = 𝛽0, and the kinetic energy becomes 𝑒𝑘 = 𝑒0 

1−𝛽0 

1+𝛽0
𝛽0

2
, which for  𝛽0 << 1 gives 𝑒𝑘 = 𝑒0 𝛽0

2
= 

1 

2
 𝜌0 𝑐2 (

𝑣

𝑐
)2 = 

1 

2
 𝜌0 𝑣2. 

 

10. Relativizing Coulomb's law 

The classical Coulomb's law of the electrostatic force between two charged bodies is given by:  

 

𝐹𝐸  = 𝑘𝑒 
𝑞1𝑞2

𝑟2
                                                                      (130)      

Where 𝐹𝑒 is the electrostatic force, 𝑘𝑒 is Coulomb's electrostatic constant (𝑘𝑒= 8.99 x 109 𝑁 

𝑚2/𝐶2),  𝑞1 and 𝑞2 are the charges of respective charged bodies, r is the distance between 

the two particles. For a two-body system like the one described in fig. 19, assume that the body with 

rest mass 𝑚0 has a negative rest charge of  - 𝑞
0
, and the body with rest mass 𝑀0has a positive rest charge 

of  𝑄0. Also, assume that in the rest-frame of an observer, the electric charge of a "moving" body 

will distribute uniformly along its "stretched" physical dimension. The complete equivalence 

between Coulomb's law of electrostatic force and Newton's law of gravitation, implies that the 

derivation of the laws of motion of a negatively charged body in the rest-frame of a positively charged, 

in the rest-frame of the latter could be easily written by mimicking the derivation described in the 

previous section for the gravitational field. Thus, what seems very hard to achieve in quantum 

gravity or even in QCD theories, is floating on the surface of our theory.  

Similarly, to eq. 106, the relativistic electrostatic force could be written as: 

 𝐹𝑅𝐸 = 𝑘𝑒 
 𝑄0  𝑞0

𝑟2
   

1

 1+
𝑙0
𝑟

(
1+𝛽

1−𝛽
)
                  (131)  

Also, similarly to eq. 110, we can write: 
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𝑚0 𝑐2 
(1−𝛽− 𝛽2 ) 𝛽

(1+𝛽)2
  

𝑑𝛽

𝑑𝑟
  =  𝑘𝑒 

 𝑄0  𝑞0

𝑟2
   

1

 1+
𝑙0
𝑟

(
1+𝛽

1−𝛽
)
                          (132) 

Which can be re-written as: 

 
(1−𝛽− 𝛽2 ) 𝛽

(1+𝛽)2
  𝑑𝛽  =  

𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2
 

𝑑𝑟

𝑟2

 1+
𝑙0
𝑟

(
1+𝛽

1−𝛽
)
              (133) 

For the case 
𝑙0

𝑟
 << 1 the general term above reduces to: 

(1−𝛽− 𝛽2 ) 𝛽

(1+ 𝛽)
  𝑑𝛽  = 

𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2
  

𝑑𝑟

𝑟2
                (134) 

Integrating on the path from x=R (starting point) to x= R-r (boundaries of 𝑀0), we get: 

∫
(1−𝛽− 𝛽2 ) 𝛽

(1+ 𝛽)

𝛽

0
  𝑑𝛽    = 

𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2
 ∫

𝑑𝑟

𝑟2

𝑅−𝑟  

𝑅
                (135) 

Performing the integration gives: 

                                (𝛽 (𝛽 + 2) + 𝑙𝑛 (
1−𝛽

1+𝛽
))2 = 

𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2
 (

1

𝑟
 - 

1

𝑅 
)                      (136) 

Solving for 𝛽 (after some calculations) gives: 

         𝛽 = - 
1−𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟

 − 
1
𝑅 

)

1+𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟 − 

1
𝑅 )

 = tanh(
1

2

𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2
(

1

𝑟
 −  

1

𝑅 
))                  (137) 

 

10.1 Time duration and length transformations in a charged particle's electrostatic field 

Using the transformations in Table 1, we can write the relativistic time and d transformations 

for time duration and length in an electrostatic field as: 

 

          (
𝛥𝑡

𝛥𝑡0
)𝑅𝐸 =  

1

1−𝛽
 =   

1

1−𝛽0−tanh(
1

2

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
))  

            (138) 

And  

         (
𝑙

𝑙0
)𝑅𝐸 = 

1+𝛽

1−𝛽
 = 

1+𝛽0+tanh(
1

2

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
))   

1−𝛽0+tanh(
1

2

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
))  

                       (139) 

For 𝛽0 = 0, we get: 
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(
𝛥𝑡

𝛥𝑡0
)𝑅𝐸=  

1

1−tanh(
1

2

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
))   

 = 
1

2
 (𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
)
 + 1)                    (140) 

And:   

(
𝑙

𝑙0
)𝑅𝐸 = 

1+𝛽

1−𝛽
 = 

1+tanh(
1

2

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
))  

1−tanh(
1

2

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
))  

 = 𝑒
𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2 (
1

𝑟
 − 

1

𝑅 
)
              (141) 

 

10.2 Matter-wave duality of a body moving in an electrostatic field 

To calculate the expression for the matter kinetic energy, we substituted the value of β from eq. 

137 in the energy equation in Table 1, yielding:  

 

          
𝑒𝐾

𝑒0
 = 

1−𝛽

1+𝛽
   𝛽2 = 

1−tanh(
1

2

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
))  

1+ tanh(
1

2

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
)) 

   (tanh(
1

2

𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2 (
1

𝑟
 − 

1

𝑅 
)) )2 

 

                  = 
(𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟

 − 
1
𝑅 

)
−1)2

(𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟 − 

1
𝑅 )+ 1)2

  𝑒
− 

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
)
                    (142) 

 

And the dual (pilot) wave energy as a function of the distance r is given by: 

𝑒𝑊

𝑒0
  = 𝛽2 − 

𝑒𝑘

𝑒0
=  𝛽2 −  

(𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟

 − 
1
𝑅 

)
−1)2

(𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟 − 

1
𝑅 )+ 1)2

  𝑒
−

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
)
            (143) 

Substituting the value of β from Eq. 116 we get: 

          
𝑒𝑊

𝑒0
  = (− 

1−𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟

 − 
1
𝑅 

)

1+𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟 − 

1
𝑅 )

 )2 −  
(𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟

 − 
1
𝑅 

)
−1)2

(𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟 − 

1
𝑅 )+ 1)2

  𝑒
−

 𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
)
 

                        =   
(𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟

 − 
1
𝑅 

)
−1)2

(𝑒

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2  (

1
𝑟 − 

1
𝑅 )+ 1)2

 (1- 𝑒
−

 𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2 (

1

𝑟
 − 

1

𝑅 
)
 )                                     (144) 

 

Figure 28 depicts the kinetic energy and dual wave energies as a function of the normalized 

distance 
𝑟

(
𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2 )
 from the attracting charge. The ratio of each energy from the body's total 

energy is depicted in Figure 29.   
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Figure 28. Matter and dual-wave energies as functions of the distance from an attracting 

                  charge   

 

 
 

 

Figure 29.  Ratios of matter and wave energies as functions of the distance from an attracting 

                  charge   

Asymptotic Freedom 
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The distance at which the matter energy reaches is maximum is calculated by deriving the 

kinetic energy term in eq. 142 with respect to r and equating the derivative to zero, which 

after simplification yields: 

                                              𝑟∗ = 
1

𝑙𝑛 (2+ √5)

(
𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2 )
+ 

1

𝑅

                                                            (145) 

 

 

For R>>1 the above expression becomes: 

 

            𝑟∗ = 

(
𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2 )

𝑙𝑛 (2+ √5)
 ≈ 0.3413884 

𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2                               (146) 

 

The distance from the attracting body at which the matter and dual wave energies are 

predicted to be equal could be found by equating the expressions in equations 142 and 144, 

which after simplification yields:  

 

  𝑟∗∗ = 
1

𝑙𝑛 (2)

(
𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2 )
+ 

1

𝑅

                                                            (147) 

 

Which for R>>1 reduces to: 

 

 𝑟∗∗ =  
(

𝑘𝑒 𝑄0  𝑞0
𝑚0 𝑐2

)

𝑙𝑛 (2)
 ≈ 1.4426950  

𝑘𝑒 𝑄0  𝑞0

𝑚0 𝑐2                            (148) 

 

In order to account for both electrodynamics and gravitation, we simply relativize both 

forces or fields, and then sum up the forces vectors. 

 

11. A brief note on the theory's application to radial motion 

In the previous section we investigated the relativistic dynamics of bodies in translational 

motion. However, most physical systems involve non-translational motion in open or closed 

trajectories. An important and frequently observed form of motion in systems of all 

dimensions, from a bound electron to a nucleus' atom to a planet orbiting its sun, could be 

approximated by radial motion. We shall devote a separate article to investigating the 

relativistic dynamics of radial motion.  Here we confine ourselves to commenting on a 

common misconception in classical and modern physics, where it is the commonly accepted 

that radial motion with constant radial velocity differs from translational motion with constant 

linear velocity. While the latter is considered to be an inertial motion, the first is considered 

an accelerated motion. We claim that this distinction is fundamentally wrong and 

counterproductive. In fact, it is easy to see that the translational and radial systems of motion 
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are completely equivalent systems [185-186]. Because all the relationships between the 

various variables in one system are identical in their mathematical form to corresponding 

relationships between variables in the second system, the dynamics of the two system in time 

could be mapped one onto the other.  Table 7 summarizes well know relationship between 

distance, linear velocity, acceleration, mass, force, work and kinetic energy, for translational 

motion, and the corresponding relationships between angular position, velocity, acceleration, 

inertia, torque, work and kinetic energy. The complete dynamical equivalence between the 

two types of motion is hard to miss. Thus to apply Information Relativity to radial motion, 

we can use the previous results derived for translational motion to write the equivalent results 

for radial motion, simply by replacing each translational variable by its corresponding radial 

variable. 

  

Table 7 

Classical Translational and radial laws of motion 

 Translational   Radial  

 Position x  Angular position θ 

 Velocity v = 
𝑑𝑥

𝑑𝑡
    Angular velocity ω= 

𝑑θ

𝑑𝑡
  

Acceleration a = 
𝑑𝑣

𝑑𝑡
    Angular acceleration α= 

𝑑𝜔

𝑑𝑡
   

Mass m  Radial inertia I 

Newton’s second law F= ma  Newton’s second law τ = I α 

Work W=∫ Fdx  Work W = ∫ τ  dθ 

Kinetic energy E= 
1

2
 m𝑣2  Kinetic energy E = E= 

1

2
 I 𝜔2 

For the case of radial motion with constant radial velocity w, we can use the results in Table 1 

inertial translational motion for to write the equivalent transformations relating physical 

measurements in one radial reference frame which rotates with respect to an observer's frame 

with radial velocity w. For example, the time duration transformation for constant radial 

motion could be written directly as: 

𝛥𝑡

𝛥𝑡′ = 
1

1−
𝜔

𝑐

 = 
1

1−
𝑣

𝑟 𝑐

 = 
1

1−
𝛽

𝑟 

                                    (149) 

And the length transformation becomes:  
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𝛥𝜃

𝛥𝜃′
 = 

1+ 
𝜔

𝑐

1−
𝜔

𝑐

 = 
1+ 

𝛽

𝑟 

1−
𝛽

𝑟 

                                           (150) 

 

The matter and dual wave energy densities could be also immediately written as: 

 

 𝑒𝑘

𝑒0
 = 

1− 
𝜔

𝑐

1+ 
𝜔

𝑐

 (
𝜔

𝑐
)2                                                      (151) 

And, 

 𝑒𝑤

𝑒0
=  

2 (
𝜔

𝑐
)3

1+
𝜔

𝑐

                                                                  (152) 

 

For accelerated radial motion, in eq. 70 replacing the force F by the angular torque τ, the mass m 

by the moment of inertia I and the translational acceleration a by the radial acceleration α, gives:  

 

τ = 
1−2

𝜔

𝑐
 −(

𝜔

𝑐
)2

(1+
𝜔

𝑐
)2

   𝐼0  α                                                     (153) 

 

Other relationships could be derived using the same method.   

 

12. Summary and some concluding remarks 

The recent literature has witnessed many theories proposing a new physics. The main efforts 

were directed towards reconciliation between special relativity and quantum mechanics in what 

is broadly referred to as quantum field theory. This includes QED, QCD and the group of QG 

theories, which can be considered quantum field theories directed at a unification of gravity and 

quantum mechanics. More "extreme" theories abandoned both postulates of special relativity, 

included a preferred reference-frame, and allowed breaking of the time-translation invariance 

[187]. 

Information relativity theory constitutes a completely different approach to relativity by defining 

it epistemologically as a modulation in information about physical realities. Specifically, we 

extended classical physics to the realm of high velocities, simply by accounting for the time travel 

of information about a physical measurement, from the reference frame at which the 

measurement was taken, to an observer in another reference frame, which is in motion relative 

to the first frame. We demonstrated that this modification is capable of unifying the physics of 

moving bodies, regardless of their size and mass. The resulting model turns out to be in agreement 

with quantum mechanics predictions. However, it is advantageous in several important aspects 

including its axiom-free nature, universality, simplicity, continuity with classic physics, 

dependence only on observables, and explanatory power. Table 8 summarizes the main 

prediction presented in this article. The signs -, +, ?, and ?? in the table's cells, indicate no-

prediction, successful prediction, disputed, and highly disputed predictions, respectively. Of 

particular significance are the solutions of the hydrogen atom problem and the mystery of the 
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double slit experiments, for which no satisfying explanations have been provided yet. No less 

important are the explanations proposed for the bewildering phenomena of dark matter and dark 

energy. 

Generalization of the theory to include the gravitational force provided predictions and simple 

explanations for the strong force, quantum confinement, and quantum asymptotic freedom. Since 

the theory applies equally to the too-small and the too-big, we conjecture that similar forces and 

quantum processes may govern the interaction of black holes with matter gravitated by them. 

 

Table 8 

Summary of main predictions 

 

   Experimental Result/ 

Observation 

Special 

Relativity 

General 

Relativity 

Quantum 

theories 

Informatio

n 

Relativity 

Remarks 

 1. Particle physics      

1 Michelson-Morley 

"null" result 
+ - -   +  

2 Time dilation of decaying 

muons 
+ - -   +  

3 Radial and linear Sagnac 

effect 
- - -   + Contradicts 

Special 

Relativity 

4 Higgs Boson mass - - +   +  

 2. Quantum mechanics      

5 Matter-wave duality - - +   + Compatible with 

de Broglie-

Bohm theory 

6 Quantum phase transition - - +   +  

    +   +  

7 Quantum criticality - - +   + At the Golden 

Ratio  

(Coldea, 2010)  

8 Entanglement - - +   + Explained in 

physical terms 

       
9 Particle's diffraction in the 

double-slit experiment 
- - +   + Explained in 

physical terms 

10 Hydrogen atom problem - - ?   + Quantization is 

concluded, not 

assumed  

11 The strong force - - +   + Explained in 

physical terms 

see [10] 

12 Quantum confinement    +   + Explained in 

physical terms 

see [10] 

13 Asymptotic freedom    +   + Explained in 

physical terms, 

see [10] 
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3. Cosmology 
14 Dark matter - -      ?   + Explained as 

cosmic quantum 

matter 

 Experimental Result/ 

Observation 

Special 

Relativity 

General 

Relativity 

Quantum 

theories 

Informatio

n 

Relativity 

Remarks 

 

 

15 

 

 

Dark energy 

 

- 

 

- 

 

?? 

   

+ 

 

Explained as the 

energy of the 

matter's dual-

wave at cosmic 

scales 

16 GZK cutoff - - -   + Quantum 

criticality at 

cosmic scales 

17  Predicting results  

 Of ΛCDM cosmologies 

 

- ? -   + Explained as the 

amounts of 

cosmic dual-

wave energy 

18 Black hole radius - + -   + Without an 

interior 

singularity  

19 Timeline of evolution of 

chemical elements 
- - -   + Not predicted 

by other 

theories 

 

We are fully aware of the fact that the proposed approach constitutes a huge paradigm shift in all 

physics. The difficulties in merging it with contemporary physics are enormous, and so are the 

social and psychological difficulties which would result from such merger. However, the fact 

that our theory is grounded only on physical facts with no theoretical axiom, coupled with its 

unquestionable successful in predicting and explaining a multitude of physical phenomena, 

should be enough to convince an unbiased reader, that it deserves a chance to be put for 

experimental testing. At present, the theoretical model of reality is fragmented, mathematically 

cumbersome, expressed in non-physical terms, full of inner contradictions, non-bridgeable with 

Newtonian physics, and incapable of answering fundamental questions like the nature of dark 

matter and dark energy. In contrast, we propose a unifying alternative which is coherent, non-

axiomatic, simple and beautiful, consistent with Newton's physics, which provides plausible, and 

easy to test explanations of fundamental questions of physics. Unless directed by prejudice or 

conservatism, it is hard to understand why a true scientist will not want to consider the proposed 

theory.  
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