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Abstract 

 
The concept of ‘thermal heating efficiency’, G, considered as a duel of Carnot efficiency, offers a suitable 

method to test the validity of second law of thermodynamics. This concept claims to offer us many practical 

(therefore, experimentally testable) advantages, specifically, economy in heating houses, cooking, besides 

others. For example, if one unit of fuel when burnt inside the house gives Q joules of heat, the thermodynamic 

method based on this concept offers as much as 10 Q joules for the same one unit of fuel, giving a 10 fold 

economy in heating houses. We show in this article that the economy claimed is a myth and we can get no more 

heat into the house using this method than that we get by burning the fuel inside the house. We propose, the 

concept of thermal heating efficiency as a suitable method to test the validity of the second law of 

thermodynamics. 

 

Introduction 

 
The thermodynamic process of heating houses more economically than burning the fuel directly inside the house 

was originally conceived by Lord Kelvin1, who was one of the founders of thermodynamics and one who 

postulated the second law. The economy arises due to ‘thermal heating efficiency’2, sometimes referred to as 

‘Heat multiplication factor’3,4. In more recent times it is referred to as the duel of Carnot efficiency that 

completes the logical structure of classical thermodynamics2. The concept is based on the compound cyclic 

process of two Carnot heat engines (CHEs) combined in series (that is, with a heat reservoir (HR) common to 

both engines). The first engine, CHE1, interacts with HRs at temperatures T1 and T2 and the second engine, 

CHE2, interacts with HRs at temperatures T2 and T3 (T1 > T2  > T3) and operates in the reverse direction so as to 

act as a heat pump. We call such a device ‘Heat Multiplying Device’ (HMD). Here, HR at T1 is the boiler which 

is maintained at constant temperature by transferring heat obtained from burning the fuel. HR at T2 is the house 

to be heated so as to maintain it at a temperature suitable for comfortable living. HR at T3 is the surroundings. 

The compound cyclic process absorbs Q1 units of heat from the boiler at T1, (we have to pay for this heat by 

way of cost of fuel used to maintain the boiler at constant temperature T1),  Q3 units of heat from the atmosphere 

(surroundings) at T3 (we get this heat free of cost), and supplies the whole heat of (Q1 + Q3) units into the house 

at T2 with no work interaction involved and at no extra cost whatever. All processes are reversible.  

 

Several challenges appeared in the recent literature, highlighted by the several conferences5 and by Capeck and 

Sheehan6. However, most challenges are quantum mechanical in nature or are sophisticated in experiment. 

  

‘Thermal heating efficiency’ G, is defined as the ratio of heat supplied into the house (Q1 + Q3) by employing 

HMD to the heat Q1 obtained from burning the same amount of fuel inside the house. It is the efficiency of the 

HMD. We show in this article that the concept of thermal heating efficiency, or heat multiplication factor, is a 

myth. That is, that it is impossible to get any more heat into the house by the thermodynamic process using 

HMD than that which can be obtained by directly burning the fuel inside the house. Since this process is 

practical, we propose it as a test to validate the second law of thermodynamics. 

 

Analysis 

 

Q, T, W, S and η refer to heat, absolute temperature, work, entropy, and Carnot efficiency respectively, in this 

paper. 

There are two variants of HMD. Each follows a cycle which is a combination of two Carnot cycles. In both 

variants the first CHE interacts with HRs at the highest and the intermediate temperatures and runs in the 

forward direction as a heat engine. The second CHE interacts with HRs at the intermediate temperature and the 
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lowest temperature and runs in the reverse direction as a heat pump. In the first variant the cycle operates along 

two adiabats, say, S1 and S2 and in the second variant the cycle operates along three adiabats, S1, S2 and S3. In 

both cases there are three HRs where heat interaction occurs. The HR at the intermediate temperature is 

common to both CHEs. We analyze the two variants under case (i) and case (ii) below. We depict the different 

CHEs and their combinations in Fig. 1. The T-S diagrams of different CHEs and their combinations that we use 

in the analysis are depicted in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A schematic diagram depicting Combination of two CHEs proposed by Kelvin, to heat houses 

economically. CHE1 works in the clockwise direction as a heat engine and the other CHE works in the 

anticlockwise direction as a CHP. The combined cycle of CHE1 and CHP produces no net work interaction with 

surroundings. CHE3 interacts with HRs at T1 and T3. 

 

If we have three HRs, using any two we can operate a CHE. Thus we have three possible CHEs: CHE1, CHE2 

and CHE3. If we have four or more HRs we can operate more CHEs. With different values for each CHE we get 

variants of these CHEs. We consider several CHEs and their combinations in this analysis. To facilitate easy 

understanding we show them in Fig. 2 and list them below.  

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. T-S diagrams of Different CHEs  (the first six) and their combinations (last three) considered in this 

analysis are depicted individually here. ΔS1 = (S1 – S2), ΔS2 = (S2 – S3), ΔS'1 = (S'1 –S1), ΔS'2 = (S'1 -  S2).   

The CHEs and their combinations depicted in Fig. 2 are listed below. 
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1. CHE1 works along adiabats S1and S2, and along isotherms at T1 and T2, 

2.  CHE2 works along adiabats S1and S2, and along isotherms at T2 and T3, 

3. CHE'1 works along adiabats S1and S'1, and along isotherms at T'1 and T2,  

4. CHE'2 works along adiabats S1and S'1, and along isotherms at T2 and T3, 

5. CHE3 works along adiabats S1and S2, and along isotherms at T1 and T3. 

6. CHE3' works along adiabats S1and S'1, and along isotherms at T1 and T3 

7. Combination of  CHE1 and CHE2  (HMD-1) 

8. Combination of  CHE'1 and CHE'2 and (not useful as HMD) 

9. Combination of  CHE'1 and CHE2 (HMD-2) 

We note that CHE2 and CHE'2 work in the reverse direction, as CHPs.  

 

Necessary conditions for combination of two CHEs to produce a resultant HMD. 
 

CHE working at the higher temperatures operates in the clock-wise direction and the CHE working at the lower 

temperatures operates in the reverse direction as CHP. (ΔS1/ ΔS2) = 1. The HMD produces no net work 
interaction with the surroundings.  

 

It can be seen from Fig. 2 that only 7 satisfies both these conditions; 8 satisfies the second condition but not the 

first; 9 satisfies the first condition but not the second. Combination 8 is included because it would be useful later 

in our analysis. Let us now proceed forward with the analysis. We consider the combination 7 under case (i) 

below. 

 

Case (i): This is the first variant of HMD. We consider the combination of CHE1 and CHE2, keeping in mind 

that CHE2 operates as CHP. The T-S diagram of the combination is shown in Fig. 3 (7 in Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Two CHEs combined in series with HR at T2 common to both. Both operate between the same two 

adiabats S1and S2. CHE2 works as a CHP. The net work interaction with surroundings is zero. 

For the combined CHE1 and CHE2, Qs are related to Ts as: 

 

                                                                                                                     

 

    
  

  
 

  

  
 

  

  

                                                                                    

 

From Eq. (2) we get,  
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Thermal heating efficiency is the duel of Carnot efficiency 

 

We can see from Eqs. (5) and (6) why thermal heating efficiency is called the duel of Carnot efficiency. Neither 

G nor η13 is equal to one. Their values lie on either side of one on the number line. It may be surmised if either 

of them is equal to one the other would also be equal to one. In fact that is the truth. We made η less than one by 

definition! Therefore, we have to face the consequence of countenancing G > 1.  

 

  
       

   
   

  

  

                                                                      

 

Again, we find from Eq. 7 that G < 2. Therefore, values of G > 2 are based on irrational arguments. ηij, 

represents the efficiency of CHE interacting with HRs at temperatures Ti and Tj. 

 

η = ½ paradox 

 

Since η12 can have any value between 0 and 1, let us assume, η12 =1/2. Then we get,  

 

  

 
                                                                                           

 

Q3 = 0 = η23, is impossible as it violates the Kelvin’s postulate of second law. When Q3 = 0, G = 1. But, since Q3 

= 0 is impossible, G = 1 is impossible. If η12 ≠ ½, then ΔT1 = ΔT2 and η12 ≠ ½ will not be consistent. In other 

words, it is impossible to satisfy the conditions η12 ≠ ½ and W1 = W2 simultaneously. Therefore, for no value of 

η12 can we satisfy Eq. (5). Therefore, G ≥ 1 is a myth.   

 

Case (ii): This is the second variant of HMD. Let us consider the combination of CHE'1 and CHE2 keeping in 

mind that CHE2 operates as CHP. The T-S diagram of the combination is shown in Fig. 4(9 in Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. CHE1' and CHE2 are combined with HR at T2 common to both. CHE2 works as a CHP. The net work 

interaction with surroundings is zero. 
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For CHE1', CHE2', CHE3' (Fig. 2) the following relations between Qs and Ts apply. 

 

                                                                                                                   

 

                                                                                                                    

 

                                                                                                                   

 

For the combination of CHE1' and CHE2' (CHE 8 in Fig. 2) we have, 

 

                                                                                                                            

 

Now the question is: How are the Q's and Ts related for the combined CHEs: CHE1' and CHE2 shown in Fig. 4 

(9 in Fig. 2)?   

 

There is no way the Q's and Ts are related for this combination, because the combination does not have a unique 

value of efficiency either as a heat engine or as a HMD according to classical thermodynamics. 

 

However, Kelvin’s proposition1 and Jane’s advocacy of the method2 that offers heating efficiency greater than 

one, implicitly or explicitly suggest the relations: 

 

                                                                                                                            

 

  
    

  
    

 
  

 

  
     

  
    

  
  

  
    

  
                                                                             

 

 

However, in view of the fact that Eq (13) is inconsistent with Eqs.  (9) to (12), Eq.  (14) is also inconsistent with 

Eqs (9) to (12). If Eqs (9) to (12) are in accordance with the second law, then Eqs (13) and (14) violate the 

second law. Conversely, if Eqs (13) and (14) are in accordance with the second law then, Eqs (9) to (12) violate 

the second law. 

 

Note that Eq. (14) would be true only if : 

 

  
    

  
    

 
  

 

  
     

  
    

  
  

  
    

  
                                                                             

 

But Eq. (15) would be true only if S'2 = S2. Eq and Eq (14) would be true only if S'2 ≠ S2. Therefore, it is 

impossible to satisfy Eqs (14) and (15) simultaneously. Therefore either Eq. (14) is true or Eq. (15) is true but 

not both. If Eq (15) is true, then heat multiplication is a myth, on the other hand, if Eq. (14) is true then second 

law is a myth.  

 

Therefore, this process of deriving economic advantage out of Kelvin’s thermodynamic process can be a very 

practical candidate to test the validity of the second law of thermodynamics. 

 

Note: In literature, we find the theoretical analysis follows Fig. 3 but numerical examples follow Fig. 4. See for 

example [1]: T1 = 1000K, T2 = 298K, T3 = 273K and G = 10.9. 

 

Disproportionation of heat 

 

We have another interesting aspect of this HMD cycle. Since all the processes are reversible, the HMD cycles 

when operate in the reverse direction lead to disproportionation of heat. That is, a given quantity of heat of Q 
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units from a HR at certain temperature T, is transferred to two HRs. Q1units of heat to HR at a temperature T1 

(higher than T) and Q2 units of heat to HR at a temperature T2 (lower than T), where Q = (Q1 + Q2) with no 

other change elsewhere. 

 

Just as heat multiplication is a myth, disproportionation of heat is also a myth! Many a standard result in 

thermodynamics depends on disproportionation of heat, including Clausius theorem. 
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