Study on the development of neutrosophic triplet ring and neutrosophic triplet field

Mumtaz Ali, Mohsin Khan

Definition 1. Let (NTR, *, #) be a set together with two binary operations * and #. Then *NTR* is called a neutrosophic triplet ring if the following conditions are holds.

- 1) (NTR,*) is a commutative neutrosophic triplet group with respect to *.
- 2) (NTR,#) is a semineutrosophic triplet monoid with respect to #.
- 3) a #(b * c) = (a # b) * (a # c) and (b * c) # a = (b # a) * (c # a) for all $a, b, c \in NTR$.

Example 1. Consider Z_{10} . Let $NTR = \{0, 2, 4, 6, 8\} \subseteq Z_{10}$. Define two operations * and # on *NTR* by the following way respectively:

- 1. $a * b = a \times b \pmod{10}$ for all $a, b \in NTR$.
- 2. $a \# b = \max(a, b)$ for all $a, b \in NTR$.

Then clearly (NT *R*,*) is a commutative neutrosophic triplet group with respect to multiplication modulo 10, as *NTR* is well defined and associative. Also (0,0,0), (2,6,8), (4,6,4), (6,6,6) and (8,6,2) are neutrosophic triplets in *NTR* with respect to multiplication modulo 10. Clearly a*b=b*a for all $a,b \in NTR$.

Now (R, #) is a semineutrosophic triplet monoid with respect to #. Since $\max(0,0) = 0, \max(0,2) = 2, \max(2,4) = 4, \max(4,6) = 6$ and $\max(6,8) = 8$, that is for every $a \in NTR$, there exist at least one *neut*(*a*) in *NTR*.

Finally # is distributive over *. For instance

2#(4*6) = (2#4)*(2#6) $2\#(4\times6) = (2\#4)\times(2\#6)$ $2\#4 = \max(2,4)\times\max(2,6)$ $\max(2,4) = 4\times6$ 4 = 4, and so on.

Thus for all $a, b, c \in NTR$, # is distributive over *. Therefore (NTR, *, #) is a neutrosophic triplet ring.

Definition. Let (NTR, *, #) be a neutrosophic triplet ring and let $0 \neq a \in NTR$. If there exist a non-zero neutrosophic triplet $b \in NTR$ such that b#a = 0. Then *b* is called left neutrosophic triplet zero divisors of *a*. Similarly a neutrosophic triplet $b \in NTR$ is called a right neutrosophic triplet zero divisor if a#b=0.

A neutrosophic triplet zero divisor is one which is left neutrosophic triplet zero divisor as well as right neutrosophic triplet zero divisor.

Theorem. Let *NTR* be a neutrosophic triplet ring and $a, b \in NTR$. If b # a = a # b = 0, then

- 1. neut(a) # neut(b) = neut(b) # neut(a) = 0 and
- 2. anti(a) # anti(b) = anti(b) # anti(a) = 0.

Proof 1. Let *NTR* be a neutrosophic triplet ring and $a, b \in NTR$ such that *b* is a neutrosophic triplet zero divisor of *a*. Then a#b=b#a=0. Now consider

$$neut(a)#neut(b) = neut(a#b)$$

Or

$$= neut(0)$$
, since $a \# b = 0$.

Or

= 0, as neut(0) = 0.

Also

$$neut(b)$$
#neut(a) = neut(b#a)
= neut(0), as b#a = 0
 $neut(0) = 0$.

Hence neut(a) # neut(b) = neut(b) # neut(a) = 0.

2. The proof is similar to 1.

Definition. Let (NTR, *, #) be a neutrosophic triplet ring and let S be a subset of NTR. Then S is called a neutrosophic triplet subring of NTR if (S, *, #) is a neutrosphic triplet ring.

Definition. Let (NTR,*,#) be a neutrosophic triplet ring and I is a subset of NTR. Then I is called a neutrosophic triplet ideal of NTR if the following conditions are satisfied.

- 1. (I,*) is a neutrosophic triplet subgroup of (NTR, #), and
- 2. For all $x \in I$ and $r \in NTR$, $x \# r \in I$ and $r \# x \in I$.

Theorem. Every neutrosophic triplet ideal is trivially a neutrosophic triplet subring but the converse is not true in general.

Remark. Let (NTR, *, #) is a neutrosophic triplet ring and let $a \in NTR$. Then the following are true.

- 1. neut(a) and anti(a) is not unique in NTR with respect to *.
- 2. neut(a) and anti(a) is not unique in NTR with respect to #.

Theorem. Let (NTR, *, #) is a neutrosophic triplet ring. Then for any element *a* in a neutrosophic triplet ring NTR, one has 0#a = a#0 = 0.

Definition. Let *NTR* is a neutrosophic triplet ring and let $a \in NTR$. Then *a* is called nilpotent neutrosophic triplet if $a^n = 0$, for some positive integer n > 1.

Theorem. Let *NTR* is a neutrosophic triplet ring and let $a \in NTR$. If a is a nilpotent neutrosophic triplet. Then the following are true.

- 1. $(neut(a))^n = 0$ and
- 2. $(anti(a))^n = 0$.

Proof: 1:

Suppose that *a* is a nilpotent neutrosophic triplet in a neutrosophic triplet ring *NTR*. Then by definition $a^n = 0$ for some positive integer n > 1. Now we consider Left hand side of 1:

Since

$$(neut(a))^{n} = (neut(a)) # (neut(a))^{n-1}$$

$$= neut(a # a^{n-1})$$

$$= neut(a^{n})$$

$$= neut(0), \text{ by definition.}$$

$$= 0.$$

This completes the proof.

2: The proof of 2 is similar to 1.

Integral Neutrosophic triplet domain

Definition: Let (NTR, *, #) be a neutrosophic triplet ring. Then *NTR* is called a commutative neutrosophic triplet ring if a # b = b # a for all $a, b \in NTR$.

Definition: A commutative neutrosophic triplet ring *NTR* is called integral neutrosophic triplet domain if for all $a, b \in NTR$, a # b = 0 implies a = 0 or b = 0.

Theorem: Let *NTR* be an integral neutrosophic triplet domain. Then the following are true.

- 1. neut(a) # neut(b) = 0 implies neut(a) = 0 or neut(b) = 0 and
- 2. $\operatorname{anti}(a) \# \operatorname{anti}(b) = 0$ implies $\operatorname{anti}(a) = 0$ or $\operatorname{anti}(b) = 0$ for all $a, b \in NTR$.

Proof: 1.

Suppose that *NTR* is an integral neutrosophic triplet domain. Then for all $a, b \in NTR$, a # b = 0 implies a = 0 or b = 0. Consider neut(a) # neut(b). Then

```
neut(a) # neut(b) = neut(a # b)= neut(a # b)= neut(0), \text{ as } a # b = 0.neut(a) # neut(b) = 0
```

Which implies that either neut(a) = 0 or neut(b) = 0.

2: The proof is similar to 1.

Proposition: A commutative neutrosophic triplet ring *NTF* is an integral neutrosophic triplet domain if and only if whenever $a, b, c \in NTR$ such that a # b = a # c and $a \neq 0$, then b = c.

Proof: Suppose that NTR is an integral neutrosophic triplet domain and let $a, b, c \in NTR$. Since $a \neq 0$ and $a \in NTR$. *a* is not zero divisor then *a* is cancellable i.e.,

$$a # b = a # c \Rightarrow a # b - a # c = 0 \Rightarrow a # (b - c) = 0$$

Since $a \neq 0, b - c = 0 \Rightarrow b = c$.

 \leftarrow Let $a \in NTR$, such that $a \neq 0$, then by hypothesis *a* is cancellable. *a* is not a zero divisor. NTR is an integral neutrosophic triplet domain.

Neutrosophic Triplet Ring Homomorphism.

Definition: Let $(NTR_1, *, \#)$ and $(NTR_2, \bigoplus, \bigotimes)$ be two neutrosophic triplet rings. Let $f: NTR_1 \rightarrow NTR_2$ be a mapping. Then f is called neutrosophic triplet ring homomorphism if the following conditions are true.

- 1. $f(a * b) = f(a) \oplus f(b)$.
- 2. $f(a\#b) = f(a) \otimes f(b)$, for all $a, b \in NTR_1$.
- 3. f(neut(a)) = neut(f(a)).
- 4. f(anti(a)) = anti(f(a)).

Neutrosophic Triplet Field

Definition. Let (NTR,*,#) be a neutrosophic triplet set together with two binary operations * and #. Then (NTR,*,#) is called neutrosophic triplet field if the following conditions are holds.

- 1. (NTR,*) is a commutative neutrosophic triplet group with respect to *.
- 2. (NTR, #) is a neutrosophic triplet group with respect to #.
- 3. a # (b * c) = (a # b) * (a # c) and (b * c) # a = (b # a) * (c # a) for all $a, b, c \in NTF$.

Example. Let X be a set and P(X) be the power set of X. Then $(P(X), \cup, \cap)$ is a neutrosophic triplet field if neut(A) = A and anti(A) = A for all $A \in P(X)$.

Proposition. A neutrosophic triplet field NTF has no neutrosophic triplet zero divisors.

Proof. Suppose that a neutrosophic triplet field *NTF* has neutrosophic triplet zero divisor say $0 \neq a, b$. Then by definition of neutrosophic triplet zero divisor, a # b = 0. This implies either a = 0 or b = 0 which clearly contradicts our supposition. Hence this shows that a neutrosophic triplet field *NTF* has no zero divisors.

Proposition. A neutrosophic triplet field NTF has always anti(a)'s for all $a \in NTF$.

Proof. The proof is straightforward.

Theorem. If *NTF* is a field and $a \in NTF$. Then a # 0 = 0.

Proof. Since (a # 0) * (a # 0) = a # (0 * 0), by commutative law.

Also 0 * 0 = 0. Thus (a # 0) * (a # 0) = a # 0 which implies a # 0 = 0.

Theorem. Every finite integral neutrosophic triplet domain NTD is a neutrosophic triplet field NTF.

Proof. Let NTD be a finite integral neutrosophic triplet domain. NTD is commutative ring with unity. To show that D is a neutrosophic triplet field NTF, it is enough to show that every non-zero element of NTD is a unit. Let the elements of NTD be labelled as

 $r_0 (= 0_{NTD})$ and $r_1 (= 1_{NTD}), r_2, ..., r_n$.

Let $r_i \in NTD$ such that $r_i \neq 0_{NTD} = r_0$. Thus consider the elements

 $r_i # r_0, r_i # r_1, \dots, r_i # r_n \in NTD$ and are distinct (: if $r_i # r_s = r_i # r_k \Rightarrow r_s = r_k$).

Now since $1_{NTD} \in NTD$, therefore there must be some *j* such that $r_i # r_j = r_j # r_i \Rightarrow r_j$ is inverse of r_i i.e. r_i is invertible or r_i is a unit. Thus *NTD* is a neutrosophic triplet field NTF.

Theorem. Every neurosophic triplet field NTF is an integral neutrosophic triplet domain NTD.

Proof. Let NTF be a neutrosophic triplet field. Then NTF is a commutative neutrosophic triplet ring with unity. To show that NTF is an integral neutrosophic triplet domain NTD, it is enough to show that every non-zero element is not a zero-divisor.

Now suppose that $a, b \in NTF$ such that $a \neq 0$ and a#b = 0. Consider a#b = 0, since $a \neq 0 \in NTF$. a#b = a#0 ($\because a\#0 = 0$) $\Rightarrow a\#b - a\#0 = 0 \Rightarrow a\#(b-0) = 0 \Rightarrow a \neq 0, b-0 = 0 \Rightarrow b = 0$. *a* is not a zero-divisor.

Theorem. If $f: NTR_1 \rightarrow NTR_2$ is a neutrosophic triplet ring homomorphism then

(1) If S is a neutrosophic triplet subring of NTR_1 , then f(S) is a neutrosophic triplet subring of NTR_2 .

(2) If U is a neutrosophic triplet ring of NTR_2 , then $f^{-1}(U)$ is a neutrosophic triplet subring of NTR_1 .

(3) If I is a neutrosophic triplet ideal of NTR_2 , then $f^{-1}(I)$ is a neutrosophic triplet ideal of NTR_1 .

(4) If f is onto, then f(I) is a neutrosophic triplet ideal of NTR_2 . (I is neutrosophic triplet ideal of NTR_1).

Proof. Given that $f: NTR_1 \rightarrow NTR_2$ is a neutrosophic triplet ring homomorphism.

(1) If S is a neutrosophic triplet subring of NTR_1 , we need to show that f(S) is a neutrosophic triplet subring of NTR_2 . To do this, $f(S) \neq \emptyset$, (:: S is a neutrosophic triplet subring) and

 $f(0_{NTR1}) = 0_S$. Also let $a, b \in f(S) \Rightarrow \exists \dot{a}, \dot{b} \in S$ such that $f(\dot{a}) = a$ and $f(\dot{b}) = b$. Since S is neutrosophic triplet subring so for $\dot{a}, \dot{b} \in S \Rightarrow \dot{a} - \dot{b} \in S$ and $\dot{a}\#\dot{b} \in S$.

Consider
$$f(a - b) = f(a * (-b)) = f(a) \oplus f(-b) = f(a) - f(b), (\because f(-b) = -f(b)),$$

i.e., $f(a - b) = f(a) - f(b) = a - b \in f(S).$
Also $f(a \# b) = f(a) \otimes f(b) = a \otimes b \in f(S).$

f(S) is a neutrosophic triplet subring of NTR_2 .

(2) If U is a neutrosophic triplet subring of NTR_2 , then $f^{-1}(U)$ is a neutrosophic triplet subring of NTR_1 , so $f^{-1}(U) = \{r \in U \mid r \in NTR_1 \& f(r) \in U\}$. Clearly $f^{-1}(U) \neq \emptyset, \because U$ is a neutrosophic triplet subring. Let $a, b \in f^{-1}(U) \Rightarrow f(a), f(b) \in U$. Since U is a neutrosophic triplet subring of $NTR_2 \Rightarrow f(a) - f(b) \in U$ and $f(a) \# f(b) \in U$.

Now
$$f(a) - f(b) = f(a - b) \in U \Rightarrow a - b \in f^{-1}(U)$$
.

And
$$f(a)#f(b) = f(a \otimes b) \in U \Rightarrow a \otimes b \in f^{-1}(U)$$
.

 $f^{-1}(U)$ is a neutrosophic triplet subring of NTR_1 .

(3) If *I* is an ideal of NTR_2 , we need to show that $f^{-1}(I)$ is an ideal of NTR_1 . Since $f^{-1}(I) \neq \emptyset$, $\therefore I$ is an ideal of NTR_2 . Also let $a, b \in f^{-1}(I) \Rightarrow f(a), f(b) \in I$. Since *I* is an ideal of NTR_2 . $f(a) - f(b) \in I$ and $f(a) \# f(b) \in I$.

Now consider,

$$f(a) - f(b) = f(a - b) \in I \Rightarrow a - b \in f^{-1}(I)$$

and

$$f(a)#f(b) = f(a \otimes b) \in I \Rightarrow a \otimes b \in f^{-1}(I).$$

Let $f(r) \in NTR_2$ and $a \in f^{-1}(I) \Rightarrow f(a) \in I$. $f(r) \in NTR_2$ and since I is an ideal of NTR_2 .

$$f(a)#f(r) \in I \text{ and } f(r)#f(a) \in I,$$

 $f(a\otimes r) \in I \text{ and } f(r\otimes a) \in I,$
 $(a\otimes r) \in f^{-1}(I) \text{ and } (r\otimes a) \in f^{-1}(I).$

Hence $f^{-1}(I)$ is an ideal of NTR_1 .

(4) If f is onto, then f(I) is an ideal of NTR_2 , where I is an ideal of NTR_1 . Since $f(I) \neq \emptyset$. Let $a, b \in f(I) \Rightarrow \exists \dot{a}, \dot{b} \in I$ such that $f(\dot{a}) = a$ and $f(\dot{b}) = b$. Now since I is an ideal of NTR_1 , so for $\dot{a}, \dot{b} \in I \Rightarrow \dot{a} - \dot{b} \in I$. Consider,

$$a - b = f(\acute{a}) - f(\acute{b}) = f(\acute{a} - \acute{b}) \in f(I),$$
$$a - b \in f(I).$$

And let $a \in f(I)$ and let $t \in NTR_2 \Rightarrow \exists a \in I$ such that f(a) = a, also f is onto \Rightarrow for $t \in NTR_2 \exists r \in NTR_1$ such that f(r) = t.

Since *I* is an ideal of NTR_2 , so $\dot{a}\#r$ and $r\#\dot{a} \in I$. Now

 $t#a = f(r) \otimes f(a) = f(r \otimes a) \in f(I), t#a \in f(I)$. Similarly $a#t \in f(I)$. Hence f(I) is an ideal of NTR_2 .