Study on the development of neutrosophic triplet ring and neutrosophic triplet field

Mumtaz Ali, Mohsin Khan

Definition 1. Let (NTR, *, #) be a set together with two binary operations $*$ and $#$. Then NTR is called a neutrosophic triplet ring if the following conditions are holds.

- 1) (NTR, $*$) is a commutative neutrosophic triplet group with respect to $*$.
- 2) (NTR, #) is a semineutrosophic triplet monoid with respect to #.
- 3) $a \#(b * c) = (a \# b) * (a \# c)$ and $(b * c) \# a = (b \# a) * (c \# a)$ for all $a, b, c \in NTR$.

Example 1. Consider Z_{10} . Let $NTR = \{0, 2, 4, 6, 8\} \subseteq Z_{10}$. Define two operations $*$ and $#$ on *NTR* by the following way respectively:

- 1. $a * b = a \times b \pmod{10}$ for all $a, b \in NTR$.
- 2. $a \# b = \max(a, b)$ for all $a, b \in NTR$.

Then clearly $(NTR, *)$ is a commutative neutrosophic triplet group with respect to multiplication modulo 10, as *NTR* is well defined and associative. Also $(0,0,0), (2,6,8), (4,6,4), (6,6,6)$ and $(8,6,2)$ are neutrosophic triplets in *NTR* with respect to multiplication modulo 10. Clearly $a * b = b * a$ for all $a, b \in NTR$.

Now $(R, \#)$ is a semineutrosophic triplet monoid with respect to $#$. Since $max(0,0) = 0, max(0,2) = 2, max(2,4) = 4, max(4,6) = 6$ and $max(6,8) = 8$, that is for every $a \in NTR$, there exist at least one *neut*(*a*) in *NTR*.

Finally # is distributive over \ast . For instance

 $2\#(4*6) = (2\#4)*(2\#6)$ $2\#(4\times 6) = (2\#4)\times (2\#6)$ $2#4 = max(2, 4) \times max(2,6)$ $max(2, 4) = 4 \times 6$ $4 = 4$, and so on.

Thus for all $a, b, c \in NTR$, # is distributive over \ast . Therefore $(NTR, \ast, \#)$ is a neutrosophic triplet ring.

Definition. Let $(NT R, *, #)$ be a neutrosophic triplet ring and let $0 \neq a \in NTR$. If there exist a non-zero neutrosophic triplet $b \in NTR$ such that $b \# a = 0$. Then b is called left neutrosophic triplet zero divisors of a. Similarly a neutrosophic triplet $b \in NTR$ is called a right neutrosophic triplet zero divisor if $a \# b = 0$.

A neutrosophic triplet zero divisor is one which is left neutrosophic triplet zero divisor as well as right neutrosophic triplet zero divisor.

Theorem. Let *NTR* be a neutrosophic triplet ring and $a, b \in NTR$. If $b \# a = a \# b = 0$, then

- 1. $neut(a) \#neut(b) = neut(b) \#neut(a) = 0$ and
- 2. $anti(a) \# anti(b) = anti(b) \# anti(a) = 0.$

Proof 1. Let *NTR* be a neutrosophic triplet ring and $a, b \in NTR$ such that *b* is a neutrosophic triplet zero divisor of a. Then $a \# b = b \# a = 0$. Now consider

$$
neut(a) \#neut(b) = neut(a \# b)
$$

Or

$$
= neut(0), since a # b = 0.
$$

Or

 $= 0$, as *neut*(0) = 0.

Also

$$
neut(b) \#neut(a) = neut(b \# a)
$$

$$
= neut(0), \text{ as } b \# a = 0
$$

$$
neut(0) = 0.
$$

Hence $neut(a) \#neut(b) = neut(b) \#neut(a) = 0$.

2. The proof is similar to 1.

Definition. Let $(NTR, *, #)$ be a neutrosophic triplet ring and let S be a subset of NTR. Then S is called a neutrosophic triplet subring of NTR if $(S, *, #)$ is a neutrosphic triplet ring.

Definition. Let $(NTR, *, #)$ be a neutrosophic triplet ring and *I* is a subset of *NTR*. Then *I* is called a neutrosophic triplet ideal of *NTR* if the following conditions are satisfied.

- 1. $(I,*)$ is a neutrosophic triplet subgroup of $(NTR, #)$, and
- 2. For all $x \in I$ and $r \in NTR$, $x \# r \in I$ and $r \# x \in I$.

Theorem. Every neutrosophic triplet ideal is trivially a neutrosophic triplet subring but the converse is not true in general.

Remark. Let $(NTR, *, #)$ is a neutrosophic triplet ring and let $a \in NTR$. Then the following are true.

- 1. *neut*(*a*) and *anti*(*a*) is not unique in *NTR* with respect to $*$.
- 2. *neut*(*a*) and *anti*(*a*) is not unique in *NTR* with respect to $#$.

Theorem. Let $(NTR, *, #)$ is a neutrosophic triplet ring. Then for any element a in a neutrosophic triplet ring *NTR*, one has $0 \# a = a \# 0 = 0$.

Definition. Let *NTR* is a neutrosophic triplet ring and let $a \in NTR$. Then *a* is called nilpotent neutrosophic triplet if $a^n = 0$, for some positive integer $n > 1$.

Theorem. Let *NTR* is a neutrosophic triplet ring and let $a \in NTR$. If a is a nilpotent neutrosophic triplet. Then the following are true.

- 1. $(new(a))^n = 0$ and
- 2. $(anti(a))^{n} = 0.$

Proof: 1:

Suppose that *a* is a nilpotent neutrosophic triplet in a neutrosophic triplet ring *NTR*. Then by definition $a^n = 0$ for some positive integer $n > 1$. Now we consider Left hand side of 1:

Since
$$
(neut(a))^{n} = (neut(a)) \# (neut(a))^{n-1}
$$

\n
$$
= neut(a \# a^{n-1})
$$
\n
$$
= neut(a^{n})
$$
\n
$$
= neut(0), \text{ by definition.}
$$
\n
$$
= 0.
$$

This completes the proof.

2: The proof of 2 is similar to 1.

Integral Neutrosophic triplet domain

Definition: Let $(NTR, *, #)$ be a neutrosophic triplet ring. Then *NTR* is called a commutative neutrosophic triplet ring if $a \# b = b \# a$ for all $a, b \in NTR$.

Definition: A commutative neutrosophic triplet ring *NTR* is called integral neutrosophic triplet domain if for all $a, b \in NTR$, $a \# b = 0$ implies $a = 0$ or $b = 0$.

Theorem: Let *NTR* be an integral neutrosophic triplet domain. Then the following are true.

- 1. *neut*(*a*) $\#$ *neut*(*b*) = 0 implies *neut*(*a*) = 0 or *neut*(*b*) = 0 and
- 2. anti (a) #anti $(b) = 0$ implies anti $(a) = 0$ or anti $(b) = 0$ for all $a, b \in NTR$.

Proof: 1.

Suppose that *NTR* is an integral neutrosophic triplet domain. Then for all $a, b \in NTR$, $a \# b = 0$ implies $a = 0$ or $b = 0$. Consider *neut*(*a*)#*neut*(*b*). Then

```
neut(a) # neut(b) = neut(a # b)
          = neut(a#b)
= neut(0), as a \# b = 0.
      neut(a) # neut(b) = 0
```
Which implies that either $neut(a) = 0$ or $neut(b) = 0$.

2: The proof is similar to 1.

Proposition: A commutative neutrosophic triplet ring NTF is an integral neutrosophic triplet domain if and only if whenever $a, b, c \in NTR$ such that $a \neq b = a \neq c$ and $a \neq 0$, then $b = c$.

Proof: Suppose that NTR is an integral neutrosophic triplet domain and let $a, b, c \in NTR$. Since $a \neq 0$ and $a \in NTR$. a is not zero divisor then a is cancellable i.e.,

$$
a \# b = a \# c \Rightarrow a \# b - a \# c = 0 \Rightarrow a \# (b - c) = 0
$$

Since $a \neq 0$, $b - c = 0 \Rightarrow b = c$.

 \Leftarrow Let $a \in NTR$, such that $a \neq 0$, then by hypothesis a is cancellable. a is not a zero divisor. NTR is an integral neutrosophic triplet domain.

Neutrosophic Triplet Ring Homomorphism.

Definition: Let $(NTR_1, *, #)$ and (NTR_2, \oplus, \otimes) be two neutrosophic triplet rings. Let $f: NTR_1 \rightarrow NTR_2$ be a mapping. Then f is called neutrosophic triplet ring homomorphism if the following conditions are true.

- 1. $f(a * b) = f(a) \bigoplus f(b)$.
- 2. $f(a \# b) = f(a) \otimes f(b)$, for all $a, b \in NTR_1$.
- 3. $f(\text{neut}(a)) = \text{neut}(f(a)).$
- 4. $f(anti(a)) = anti(f(a)).$

Neutrosophic Triplet Field

Definition. Let $(NTR, *, #)$ be a neutrosophic triplet set together with two binary operations $*$ and #. Then $(NTR, *, #)$ is called neutrosophic triplet field if the following conditions are holds.

- 1. $(NTR, *)$ is a commutative neutrosophic triplet group with respect to $*$.
- 2. $(NTR, #)$ is a neutrosophic triplet group with respect to $#$.
- 3. $a \# (b * c) = (a \# b) * (a \# c)$ and $(b * c) \# a = (b \# a) * (c \# a)$ for all $a, b, c \in NTF$.

Example. Let X be a set and $P(X)$ be the power set of X. Then $(P(X), \cup, \cap)$ is a neutrosophic triplet field if $neut(A) = A$ and $anti(A) = A$ for all $A \in P(X)$.

Proposition. A neutrosophic triplet field *NTF* has no neutrosophic triplet zero divisors.

Proof. Suppose that a neutrosophic triplet field *NTF* has neutrosophic triplet zero divisor say $0 \neq a, b$. Then by definition of neutrosophic triplet zero divisor, $a \# b = 0$. This implies either $a = 0$ or $b = 0$ which clearly contradicts our supposition. Hence this shows that a neutrosophic triplet field NTF has no zero divisors.

Proposition. A neutrosophic triplet field *NTF* has always *anti*(*a*)'s for all $a \in NTF$.

Proof. The proof is straightforward.

Theorem. If *NTF* is a field and $a \in NTF$. Then $a \# 0 = 0$.

Proof. Since $(a \# 0) * (a \# 0) = a \# (0 * 0)$, by commutative law.

Also $0 * 0 = 0$. Thus $(a # 0) * (a # 0) = a # 0$ which implies $a # 0 = 0$.

Theorem. Every finite integral neutrosophic triplet domain NTD is a neutrosophic triplet field NTF.

Proof. Let NTD be a finite integral neutrosophic triplet domain. NTD is commutative ring with unity. To show that D is a neutrosophic triplet field NTF , it is enough to show that every nonzero element of NTD is a unit. Let the elements of NTD be labelled as

 $r_0 (= 0_{\text{NTD}})$ and $r_1 (= 1_{\text{NTD}})$, r_2 , , , , , r_n .

Let $r_i \in NTD$ such that $r_i \neq 0_{NTD} = r_0$. Thus consider the elements

 $r_i \# r_0, r_i \# r_1, \ldots, r_i \# r_n \in NTD$ and are distinct $(\because if \ r_i \# r_s = r_i \# r_k \Rightarrow r_s = r_k).$

Now since $1_{NTD} \in NTD$, therefore there must be some j such that $r_i \# r_j = r_j \# r_i \Rightarrow r_j$ is inverse of r_i i.e. r_i is invertible or r_i is a unit. Thus NTD is a neutrosophic triplet field NTF.

Theorem. Every neurosophic triplet field NTF is an integral neutrosophic triplet domain NTD .

Proof. Let NTF be a neutrosophic triplet field. Then NTF is a commutative neutrosophic triplet ring with unity. To show that NTF is an integral neutrosophic triplet domain NTD , it is enough to show that every non-zero element is not a zero-divisor.

Now suppose that $a, b \in NTF$ such that $a \neq 0$ and $a \neq b = 0$. Consider $a \neq b = 0$, since $a \neq 0$ $NTF. a#b = a#0$ (\because $a#0 = 0$) \Rightarrow $a#b - a#0 = 0$ \Rightarrow $a#(b - 0) = 0$ \Rightarrow $a \neq 0, b - 0 = 0$ \Rightarrow $b = 0$. *a* is not a zero-divisor.

Theorem. If $f: NTR_1 \rightarrow NTR_2$ is a neutrosophic triplet ring homomorphism then

(1) If S is a neutrosophic triplet subring of NTR_1 , then $f(S)$ is a neutrosophic triplet subring of NTR_2 .

(2) If U is a neutrosophic triplet ring of NTR_2 , then $f^{-1}(U)$ is a neutrosophic triplet subring of NTR_1 .

(3) If *I* is a neutrosophic triplet ideal of NTR_2 , then $f^{-1}(I)$ is a neutrosophic triplet ideal of NTR_1 .

(4) If f is onto, then $f(I)$ is a neutrosophic triplet ideal of NTR_2 . (I is neutrosophic triplet ideal of \textit{NTR}_1).

Proof. Given that $f: NTR_1 \rightarrow NTR_2$ is a neutrosophic triplet ring homomorphism.

(1) If S is a neutrosophic triplet subring of NTR_1 , we need to show that $f(S)$ is a neutrosophic triplet subring of NTR_2 . To do this, $f(S) \neq \emptyset$, $(\because S \text{ is a neutrosophic triplet subring})$ and

 $f(0_{\text{NTR1}}) = 0_s$. Also let $a, b \in f(S) \Rightarrow \exists \dot{a}, \dot{b} \in S$ such that $f(\dot{a}) = a$ and $f(\dot{b}) = b$. Since S is neutrosophic triplet subring so for \acute{a} , $\acute{b} \in S \Rightarrow \acute{a} - \acute{b} \in S$ and $\acute{a} \# \acute{b} \in S$.

Consider
$$
f(\dot{a} - \dot{b}) = f(\dot{a} \cdot (-\dot{b})) = f(\dot{a}) \oplus f(-\dot{b}) = f(\dot{a}) - f(\dot{b}), (\because f(-\dot{b}) = -f(\dot{b})),
$$

i.e., $f(\dot{a} - \dot{b}) = f(\dot{a}) - f(\dot{b}) = a - b \in f(S).$
Also $f(\dot{a} \# \dot{b}) = f(\dot{a}) \otimes f(\dot{b}) = a \otimes b \in f(S).$

 $f(S)$ is a neutrosophic triplet subring of NTR_2 .

(2) If U is a neutrosophic triplet subring of NTR_2 , then $f^{-1}(U)$ is a neutrosophic triplet subring of NTR_1 , so $f^{-1}(U) = \{r \in U \mid r \in NTR_1 \& f(r) \in U\}$. Clearly $f^{-1}(U) \neq \emptyset$, ∵ U is a neutrosophic triplet subring. Let $a, b \in f^{-1}(U) \Rightarrow f(a), f(b) \in U$. Since U is a neutrosophic triplet subring of $NTR_2 \Rightarrow f(a) - f(b) \in U$ and $f(a) \# f(b) \in U$.

Now
$$
f(a) - f(b) = f(a - b) \in U \Rightarrow a - b \in f^{-1}(U)
$$
.

And $f(a)$ # $f(b) = f(a \otimes b) \in U \Rightarrow a \otimes b \in f^{-1}(U)$.

 $f^{-1}(U)$ is a neutrosophic triplet subring of NTR_1 .

(3) If *I* is an ideal of NTR_2 , we need to show that $f^{-1}(I)$ is an ideal of NTR_1 . Since $f^{-1}(I) \neq \emptyset$, ∴ *I* is an ideal of NTR_2 . Also let $a, b \in f^{-1}(I) \Rightarrow f(a), f(b) \in I$. Since *I* is an ideal of NTR_2 . $f(a) - f(b) \in I$ and $f(a) \# f(b) \in I$.

Now consider,

$$
f(a) - f(b) = f(a - b) \in I \Rightarrow a - b \in f^{-1}(I)
$$

and

$$
f(a)\# f(b) = f(a\otimes b) \in I \Rightarrow a\otimes b \in f^{-1}(I).
$$

Let $f(r) \in NTR_2$ and $a \in f^{-1}(I) \Rightarrow f(a) \in I$. $f(r) \in NTR_2$ and since I is an ideal of NTR_2 .

$$
f(a) \# f(r) \in I \text{ and } f(r) \# f(a) \in I,
$$

$$
f(a \otimes r) \in I \text{ and } f(r \otimes a) \in I,
$$

$$
(a \otimes r) \in f^{-1}(I) \text{ and } (r \otimes a) \in f^{-1}(I).
$$

Hence $f^{-1}(I)$ is an ideal of NTR_1 .

(4) If f is onto, then $f(I)$ is an ideal of NTR_2 , where I is an ideal of NTR_1 . Since $f(I) \neq \emptyset$. Let $a, b \in f(I) \Rightarrow \exists \phi, b \in I$ such that $f(\phi) = a$ and $f(b) = b$. Now since I is an ideal of NTR_1 , so for \acute{a} , $\acute{b} \in I \Rightarrow \acute{a} - \acute{b} \in I$. Consider,

$$
a - b = f(\acute{a}) - f(\acute{b}) = f(\acute{a} - \acute{b}) \in f(I),
$$

$$
a - b \in f(I).
$$

And let $a \in f(I)$ and let $t \in NTR_2 \Rightarrow \exists \ a \in I$ such that $f(\hat{a}) = a$, also f is onto \Rightarrow for $t \in I$ $NTR_2 \exists r \in NTR_1 \text{ such that } f(r) = t.$

Since *I* is an ideal of NTR_2 , so $\acute{a} \#r$ and $r \# \acute{a} \in I$. Now

 $t \# a = f(r) \otimes f(a) = f(r \otimes a) \in f(I), t \# a \in f(I).$ Similarly $a \# t \in f(I)$. Hence $f(I)$ is an ideal of NTR_2 .