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Abstract: The selection process of medical treatment options is a multi-criteria decision-making (MCDM) 

one, and single valued trapezoidal neutrosophic numbers (SVTNNs) are useful in depicting information and 

fuzziness in selection processes. Some comparison methods for SVTNNs have been developed and applied in 

MCDM problems. However, some defects exist in these comparison methods. Furthermore, few studies have 

been focused on the distance measurements for SVTNNs. Moreover, the previous MCDM methods under 

SVTNN environments assume that decision makers are perfectly rational. Nevertheless, in practical problems 

like the selection of medical treatment options, decision makers’ bounded rationality should be considered due 

to the complexity of human cognition. To address the above deficiencies, in this paper, an improved 

comparison method and several distance measurements for SVTNNs are defined. Furthermore, a novel 

MCDM method for medical treatment options selection is established based on an acronym in Portuguese of 

interactive and MCDM method (TODIM method) with SVTNNs to consider the risk preference of physicians. 

In addition, a numerical example of the selection of medical treatment options is provided in order to verify 

the proposed method and the influence of the parameter. Finally, a comparative analysis is conducted to 

demonstrate the feasibility of the proposed method. 

 

Keywords: single valued trapezoidal neutrosophic number; comparison method; distance measurement; 
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1 Introduction 

As a common but significant process in clinical medicine, the selection of medical treatment options is, 
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indeed, a multi-criteria decision-making (MCDM) problem, and it can be summarized as a physician makes 

the decision which medical treatment option is most probable for a particular patient considering several 

factors like the survival rate and the probability of a recurrence. Due to the complexity of human cognition, a 

lot of imprecise, uncertain, incomplete information which cannot be depicted by crisp values may exist in the 

selection problems of medical treatment options [1]. For instance, a physician may not sure how much the 

survival rate of a treatment option is. To handle fuzziness and uncertainty, fuzzy logic and fuzzy sets (FSs) are 

introduced. FSs were proposed by Zadeh [2] in 1965. After that, many extensions of FSs have been developed. 

For example, Turksen [3] extended FSs by utilizing an interval value to depict the degree of membership, and 

defined the interval valued fuzzy sets (IVFSs). On the basis of FSs and IVFSs, Atanassov and Gargov [4, 5] 

introduced the notion of non-membership, and presented the intuitionistic fuzzy sets (IFSs) and the interval 

valued intuitionistic fuzzy sets (IVIFSs). In some situations, people may be hesitant in selecting single values 

to express their preferences regarding an individual object. To deal with these situations, Torra [6] utilized 

several single values to reflect the degree of membership, and developed the hesitant fuzzy sets (HFSs). 

Moreover, all these extensions of FSs have been applied in decision-making [7-9] with further extensions still 

being developed [10, 11] and applied [12-16]. 

Neutrosophic sets (NSs), which were defined by Smarandache [17, 18], are important extensions of FSs. 

Unlike FSs and IFSs, NSs make use of the degrees of truth, indeterminacy, and falsity to describe fuzzy 

information in decision-making processes. Moreover, the values of these three degrees lie in ] 0,1 [  . It is 

obvious that NSs are difficult to be applied in actual decision-making problems. Therefore, Wang and 

Smarandache [19] defined the single valued neutrosophic sets (SVNSs) whose degrees of truth, indeterminacy, 

and falsity are between 0  and 1 . In addition, many other extensions of NSs have been proposed [20-22]. For 

instance, the simplified neutrosophic sets (SNSs) were developed by Ye [23], and the interval valued 
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neutrosophic sets (IVNSs) were defined by Wang and Smarandache [24]. Furthermore, NSs have been 

effectively applied in many fields, such as decision-making [25-30] and image segmentation [31, 32]. 

Recently, the above extensions of NS have been applied in medical decision-making problems to depict 

fuzzy information. Such as, SNSs are utilized by Ye [33] and SVNSs are used by Ye and Fu [34] to deal with 

medical decision-making problems. In some practical medical decision-making problems like the selection of 

medical treatment options, truth, indeterminacy, and falsity may exist simultaneously in evaluation 

information provided by physicians. These three factors can be accurately and fully depicted by the degrees of 

truth, indeterminacy, and falsity in NSs. However, SNSs and SVNSs are crisp sets. That is to say, they utilize 

crisp values to denote the degrees of truth, indeterminacy, and falsity, which may result in a loss of 

information. 

To overcome the above shortcoming, some researchers studied the extensions of NSs in the field of the 

continuous sets [35]. In particular, Deli and Subas [36] extended NSs into the domain of continuous sets, and 

defined the single valued trapezoidal neutrosophic numbers (SVTNNs). In SVTNNs, the degrees of truth, 

indeterminacy and falsity are trapezoidal fuzzy numbers rather than single values. Comparing to discrete sets, 

continuous sets like SVTNNs can depict more information and the fuzziness in decision-making processes. 

SVTNNs are more suitable to be utilized to represent the fuzzy information in medical decision-making 

problems like the selection of medical treatment options than the extensions of NSs in the domain of crisp sets 

like SNSs and SVNSs. Furthermore, the comparison method for SVTNNs has been defined in some studies. 

For instance, Ye [37] gave the definition of the score function, and presented a comparison method for 

SVTNNs. Other than the comparison method proposed by Ye [37], the comparison method for SVTNNs 

defined by Deli and Subas [36] utilized a different score function and introduced the notion of accuracy 

function. 
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Many kinds of continuous sets including SVTNNs have been widely used in solving decision-making 

method [38-43]. For example, Zhang and Jin [44] proposed a grey relational projection method for 

decision-making problems based on intuitionistic trapezoidal fuzzy number. Dong and Wan [45] developed a 

new method for decision-making problems in which the criteria values are triangular intuitionistic fuzzy 

numbers. SVTNNs are also an important kind of tools in constructing decision-making methods. As for 

decision-making methods with SVTNNs, Deli and Subas [36] presented a decision-making method based on 

the proposed aggregation operator with the parameter   of SVTNNs. Similarly, Ye [37] also constructed 

decision-making methods utilizing aggregation operators of SVTNNs, but the aggregation operators in Ref. 

[37] are the weighted arithmetic averaging operator and the weighted geometric averaging operator for 

SVTNNs. 

Distance measurements, which are important tools in decision-making, have been studied under various 

fuzzy environments. For instance, researchers have studied distance measurements of various FSs in the 

domain of crisp sets: distance measurements of FSs [46-49], distance measurements of IFSs [50-53], distance 

measurements of HFSs [54-57], distance measurements of NSs [58-60]. As for distance measurements of FSs 

in the domain of continuous sets, Önüt and Soner [61] and Chen [62] defined the Euclidean distance between 

two triangular fuzzy numbers. Fu [63] extended the distance defined by Önüt and Soner [61] and Chen [62] by 

introducing a parameter p, and developed a generalized distance measurement of triangular fuzzy numbers. 

Distance measurements of trapezoidal intuitionistic fuzzy numbers have also been defined. Wan [64] gave the 

definition of Hamming distance and Euclidean distance between two trapezoidal intuitionistic fuzzy numbers 

based on Hausdorff metric. Furthermore, distance measurements have been applied in plenty of extant fuzzy 

decision-making methods [57, 58, 60, 65, 66]. 

An acronym in Portuguese of interactive and decision-making method named Tomada de decisao interativa 
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e multicritévio (TODIM method) has also been used in decision-making problems to consider the risk 

preference of decision makers. TODIM method was proposed by Gomes and Lima [67, 68] on the basis of 

prospect theory [69]. However, the TODIM method proposed by Gomes and Lima [67, 68] can only deal with 

crisp values. To overcome this deficiency, Krohling and Souza [70] originally extended TODIM method into 

fuzzy environments. On the basis of the fuzzy TODIM method developed by Krohling and Souza [70], many 

researchers have studied TODIM methods for decision-making problems under various fuzzy environments. 

For example, Lourenzutti and Krohling [71] established a decision-making method based on the proposed 

intuitionistic fuzzy TODIM method. Moreover, Li et al. [72] further extended TODIM method into interval 

valued intuitionistic fuzzy environments, and constructed an extended TODIM method for decision-making 

problems. TODIM methods for decision-making problems have also been proposed under various other 

discrete fuzzy set environments, like hesitant fuzzy environments [73], and multi-valued neutrosophic 

environments [74]. 

TODIM methods under fuzzy continuous set environments have been studied and applied in 

decision-making. For instance, Tseng et al. [75] proposed a triangular fuzzy number TODIM method for 

decision-making problems and applied it to evaluate green supply chain practices. Similarly, Tosun and Akyüz 

[76] utilized the triangular fuzzy number TODIM method to solve decision-making problems in the selection 

of supplier. Unlike the TODIM method proposed by Tseng et al. [75], Gomes et al. [77] combined Choquet 

integral with TODIM methods under triangular fuzzy number environments, and presented a decision-making 

method for decision-making problems where criteria are interdependent and the decision makers are bounded 

rational. Furthermore, a TODIM method under trapezoidal intuitionistic fuzzy number environments has been 

developed by Krohling et al. [78] to tackle decision-making problems. 

SVTNNs can comprehensively denote fuzzy, uncertain, and imprecise information in medical 
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decision-making problems like the selection of medical treatment options. Fuzzy TODIM method takes into 

account the risk preference of decision makers, and it is a significant vehicle in decision-making problems. 

However, few studies have been focused on the distance measurement of SVTNNs or the fuzzy TODIM 

method under SVTNN environments. In addition, the aforementioned comparison methods for SVTNNs have 

some drawbacks, i.e. some results obtained by these comparison methods may be not consistent with reality in 

some cases (the details will be discussed in Section 2). To overcome these deficiencies, this paper proposed an 

improved comparison method and several distance measurements for SVTNNs. Furthermore, TODIM method 

was extended to SVTNN environments, and a decision-making method for medical treatment options 

selection was constructed based on the TODIM method to take into consideration the risk preference of 

physicians. 

The structure of this paper is organized as follows. In Section 2, we introduce several relevant concepts of 

SVTNNs. In Section 3, an improved comparison method for SVTNNs is developed to overcome the 

deficiencies of the extant comparison method. Moreover, some distance measurements are presented in 

Section 3. In Section 4, a novel decision-making method for medical diagnosis problems with SVTNNs is 

constructed based on TODIM method. Furthermore, a numerical example for medical treatment options 

selection is given and the influence of the parameter is discussed in Section 5. Furthermore, a comparative 

analysis is provided in Section 5 to verify the feasibility of the proposed method. Finally, Section 6 concludes 

the paper. 

2 Preliminaries 

This section reviews some basic concepts of SVTNNs. And these concepts will be used in the reminder of 

this paper. 

Definition 1 [19]. Let X  be a space of points (objects), with a generic element in X  denoted by x . An 
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SVNS A  in X  is characterized by a truth-membership function ( )AT x , an indeterminacy-membership 

function ( )AI x  and a falsity-membership function ( )AF x . The functions ( )AT x , ( )AI x  and ( )AF x  are 

singleton subintervals/subsets in the real standard [0,1] . That is ( ) : [0,1]AT x X  , ( ) : [0,1]AI x X   and 

( ) : [0,1]AF x X  . Then, a simplification of A  is denoted by 

{ , ( ), ( ), ( )  | }A A AA x T x I x F x x X    .                         

It is a subclass of NSs. And the sum of ( )AT x , ( )AI x  and ( )AF x  satisfies that 

0 sup ( ) sup ( ) sup ( ) 3A A AT x I x F x     

Definition 2 [36, 37]. An SVTNN    1 2 3 4, , , , ,a a a a a T a    ,I a F a  is a special NS on the real number 

set R, whose truth-membership function  aT x , indeterminacy-membership function  aI x  and 

falsity-membership  aF x  are given as follows: 

 

       

   

       

1 2 1 1 2

2 3

4 4 3 3 4

,

,

,

0 .

a

x a T a a a a x a

T a a x a
T x

a x T a a a a x a

otherwise

    


 
 

   



                          

 

       

   

       

2 1 2 1 1 2

2 3

3 4 4 3 3 4

,

,

,

1 .

a

a x I a x a a a a x a

I a a x a
I x

x a I a a x a a a x a

otherwise

      


 
 

     



 and                 

 

       

   

       

2 1 2 1 1 2

2 3

3 4 4 3 3 4

,

,

,

1 .

a

a x F a x a a a a x a

F a a x a
F x

x a F a a x a a a x a

otherwise

      


 
 

     



                     

When 1 0a  ,        1 2 3 4, , , , , ,a a a a a T a I a F a  is called a positive SVTNN, denoted by 0a  . 

Similarly, when 4 0a  ,        1 2 3 4, , , , , ,a a a a a T a I a F a  is called a negative SVTNN, denoted by 

0a  . When 1 2 3 40 1a a a a      and    , ,T a I a    0,1F a  ,      1 2 3 4, , , , , ,a a a a a T a I a  F a  

is called a normalized SVTNN, which is used for this paper. It should be noted that 1a , 2a , 3a  and 4a  are 

not zero simultaneously. 



 

8 

 

Definition 3 [36, 37]. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  and  1 2 3 4, , , ,b b b b b      , ,T b I b F b  

be two SVTNNs and 0  , then 

(1)                  1 1 2 2 3 3 4 4, , , , , ,Fa b a b a b a b a b T a T b T a T b I a I b a F b        ; 

(2)                  1 1 2 2 3 3 4 4, , , , , ,Fa b a b a b a b a b T a T b I a I b I a I b a F b       

   F a F b ; 

(3)           1 2 3 4, , , ,1 1 , ,a a a a a T a I a F a
  

       ; and 

(4)         1 2 3 4, , , , ,1 1 ,1 1a a a a a T a I a F a
             . 

Furthermore, some comparison methods for SVTNNs are defined in order to compare two SVTNNs. 

Definition 4 [37]. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  be an SVTNN. The score function of a is 

defined as: 

          1 2 3 4

1
2

12
s a a a a a T a I a F a        .                 

Definition 5 [37]. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  and    1 2 3 4, , , , ,b b b b b T b    ,I b F b  be 

two SVTNNs. When    s a s b , a b ; when    s a s b , a b . 

However, a shortcoming exists in Definition 5, and it is illustrated in the following example. 

Example 1. Let  0.3,0.4,0.6,0.7 ,0.2,0.4,0.6a   and  0.6,0.7,0.8,0.9 ,0.1,0.8,0.5b   be two 

SVTNNs, it is clear that a b . However, according to Definitions 4 and 5,     0.2s a s b  , and a b , 

which does not conform to our intuition. 

Moreover, Deli and Subas [36] defined a novel score function and the accuracy function for SVTNNs, and 

they also presented a new comparison method for SVTNNs. 

Definition 6 [36]. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  be an SVTNN. The score function of a is 

defined as: 

          1 2 3 4

1
2

16
s a a a a a T a I a F a        ,                 
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and the accuracy function of a is defined as: 

          1 2 3 4

1
2

16
h a a a a a T a I a F a        .                 

Definition 7 [36]. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  and    1 2 3 4, , , , ,b b b b b T b    ,I b F b  be 

two SVTNNs. The comparison method for a and b can be defined as: 

1. When    s a s b , a b ; 

2. When    s a s b  and    h a h b , a b ; and 

3. When    s a s b  and    h a h b , a b . 

Example 2. Utilizing Definition 7 to compare a and b in Example 1, we can obtain that     0.15s a s b  , 

  0.3h a  ,   0.3375h b  . Therefore, it is true that a b . 

This comparison method solves the problem in Example 1. Nevertheless, another drawback exists in this 

comparison method and the following example presents the drawback. 

Example 3. Let  0.3,0.4,0.6,0.7 ,0.1,0.9,0a   and  0.1,0.4,0.5,0.6 ,0.1,0.6,0b   be two SVTNNs, it 

is clear that a b . However, according to Definitions 6 and 7,     0.15s a s b  ,     0.15h a h b   and 

a b , which is contradictory to our intuition. 

Lemma 1 (Minkowski’s inequality [56]) Let  1 2, , , nx x x  and  1 2, , , ny y y  be two sequences of real 

numbers, and 1 p  . Then 

1 1 1

1 1 1

p p p
n n n

p p p

i i i i

i i i

x y x y
  

     
       

     
   .                      

3 Comparison method and distance measurements for SVTNNs 

In this section, we propose the novel score and accuracy functions for SVTNNs. Subsequently, an improved 

comparison method for SVTNNs is defined on the basis of the score and accuracy functions. Moreover, 

several distance measurements for SVTNNs are defined based on the prior distance measurements under 
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various fuzzy environments. 

Definition 8. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  be an SVTNN. A score function  s a  of the 

SVTNN a can be defined as: 

 
     1 2 3 4

1 2

4 2

T a I a F aa a a a
s a

      
  

 
.                 (1) 

The bigger the value of  s a  is, the better the SVTNN a will be. 

Definition 9. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  be an SVTNN. An accuracy function  h a  of the 

SVTNN a can be defined as: 

              1 2 3 4 1 1
4

a a a a
h N T a I a T a F a I a

  
      .         (2) 

The bigger the value of  s a  is, the better the SVTNN a will be. 

According to the score and accuracy functions for SVTNNs, we can obtain the following comparison 

method. 

Definition 10. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  and      1 2 3 4, , , , , ,b b b b b T b I b  F b  be two 

SVTNNs. The comparison method for a and b can be defined as: 

(1) a b  if and only if 1 1a b , 2 2a b , 3 3a b , 4 4a b ,    T a T b ,    I a I b , and    F a F b ; 

(2) a b  if and only if a b  and b a  (i.e. 1 1a b , 2 2a b , 3 3a b , 4 4a b ,    T a T b , 

   I a I b , and    F a F b ); 

(3) When a b  and a b , a b ; 

(4) When neither a b  nor b a  exists and    s a s b , a b ; 

(5) When neither a b  nor b a  exists,    s a s b  and    h a h b , a b ; and 

(6) When a b ,    s a s b  and    h a h b , a b . 

It is obvious that a b  when a b . 

Example 4. Let  0.3,0.4,0.6,0.7 ,0.1,0.9,0a   and  0.1,0.4,0.5,0.6 ,0.1,0.6,0b   be two SVTNNs. 
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By applying the comparison method in Definition 10, since 0.3 0.1 , 0.4 0.4 , 0.6 0.5 , 0.7 0.6 , 

0.1 0.1 , 0.9 0.6  and 0 0 , neither b a  nor b a  exists. Furthermore,   0.175s a    and 

  0.02s b   . Here    s a s b , thus a b . 

As can be seen from Example 4, the improved comparison method overcomes the defect of the comparison 

method in Definition 7. 

In addition, we define several distance measurements for SVTNNs as follows. 

Definition 11. Let        1 2 3 4, , , , , ,a a a a a T a I a F a  and      1 2 3 4, , , , , ,b b b b b T b I b  F b  be two 

SVTNNs. The distances between a and b can be defined by the following equations: 

(1) The Hamming distance: 

       

           

           

           

        

1 1 1 2 2 3 3 4 4 1 1

2 2 3 3 4 4

1 1 2 2 3 3

1 1 2 2

3 3 4 4

1
, 2 2

24

2 2

2 2

2

2

d a b a b a b a b a b a T a bT b

a T a b T b a T a b T b a T a b T b

a I a b I b a I a b I b a I a b I b

a I a b I b a F a b F b a F a b F b

a F a b F b a F a b F b

         

     

     

     

   

４ ４　　

       (3) 

(2) The Euclidean distance: 

       

           

           

           

        

2 22 2 2

2 1 1 2 2 3 3 4 4 1 1

2 2 2

2 2 3 3 4 4

2 2 2

1 1 2 2 3 3

2 2 2

1 1 2 2

1 2
2 2

3 3 4 4

1
, 2 2

24

2 2

2 2

1

2

d a b a b a b a b a b a T a b T b

a T a b T b a T a b T b a T a b T b

a I a b I b a I a b I b a I a b I b

a I a b I b a F a b F b a F a b F b

a F a b F b a F a b F b


         


     

     

     

   

４ ４　　

      (4) 

(3) The Chebyshev distance: 
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       

           

           

           

        

3 1 1 2 2 3 3 4 4 1 1

2 2 3 3 4 4

1 1 2 2 3 3

1 1 2 2

3 3 4 4

1
, max ,2 ,2 , , ,

24

2 ,2 , ,

,2 ,2 ,

, ,2 ,

2 ,

d a b a b a b a b a b a T a bT b

a T a b T b a T a b T b a T a b T b

a I a b I b a I a b I b a I a b I b

a I a b I b a F a b F b a F a b F b

a F a b F b a F a b F b

     

  

  

  

 

４ ４　　

        (5) 

(4) The generalized distance: 

       

           

           

           

        

4 1 1 2 2 3 3 4 4 1 1

2 2 3 3 4 4

1 1 2 2 3 3

1 1 2 2

1

3 3 4 4

1
, 2 2

24

2 2

2 2

1

2

p pp p p

p p p

p p p

p p p

p
p p

d a b a b a b a b a b a T a b T b

a T a b T b a T a b T b a T a b T b

a I a b I b a I a b I b a I a b I b

a I a b I b a F a b F b a F a b F b

a F a b F b a F a b F b


         


     

     

     

   

４ ４　　

     (6) 

where 1p  . Especially, when 1p  , the generalized distance in Eq. (6) reduces to the Hamming distance in 

Eq. (3); when 2p  , the generalized distance in Eq. (6) reduces to the Euclidean distance in Eq. (4); when 

p  , the generalized distance in Eq. (6) reduces to the Chebyshev distance in Eq. (5). 

Theorem 1. Let that a, b and c be three SVTNNs, then above distance measurements  ,kd a b   1,2,3,4k   

satisfy the following properties: 

(1)  0 , 1kd a b  ; 

(2)  , 0kd a b   if and only if a b ; 

(3)    , ,k kd a b d b a ; and 

(4)      , , ,k k kd a c d a b d b c  . 

Proof. Let        1 2 3 4, , , , , ,a a a a a T a I a F a ,        1 2 3 4, , , , , ,b b b b b T b I b F b  and  1 2 3, , ,c c c c

      4 , , ,c T c I c F c . The proof of the generalized distance measurements  4 ,d a b  is shown as follows. 

(1) According to Definition 2, 1 2 3 40 1a a a a     , 1 2 3 40 1b b b b     ,  ,T a      , 0,1I a F a  , 

and        , , 0,1T b I b F b  . Since 1p  , it holds that      1 1 4 4 1 1, , ,
p pp

a b a b a T a bT b  
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             4 4 1 1 1, , ,
p p p

a T a b T b a I a b I b a I a b I b a F a  ４ ４        1 4 4, 0,1
p p

b F b a F a b F b   , and 

               2 2 3 3 2 2 3 3 2 2 3 32 ,2 ,2 ,2 ,2 ,2 ,
p p p pp p

a b a b a T a b T b a T a b T b a I a b I b a I a b I b     

         2 2 3 32 ,2 0,2
p p

a F a b F b a F a b F b   . Therefore,  1 1 2 2 3 3 4 42 2
p p p

a b a b a b a b       

                   1 1 2 2 3 3 4 4 1 12 2
p p p p p

a T a bT b a T a b T b a T a b T b a T a b T b a I a b I b         

                   2 2 3 3 1 1 2 22 2 2
p p p p p

a I a b I b a I a b I b a I a b I b a F a b F b a F a b F b         ４ ４

          3 3 4 42 0,24
p p

a F a b F b a F a b F b    . Thus, according to Eq. (6),    4 , 0,1d a b  , i.e. the 

property (1) holds. 

(2) According to Definition 10, if a b , we have that 1 1a b , 2 2a b , 3 3a b , 4 4a b ,  T a   T b , 

   I a I b , and    F a F b . Thus,  4 , 0d a b  . 

If  4 , 0d a b  , we can obtain that    1 1 2 2 3 3 4 4 1 12 2a b a b a b a b a T a bT b         

                   2 2 3 3 4 4 1 1 2 22 2 2a T a b T b a T a b T b a T a b T b a I a b I b a I a b I b         

                   3 3 1 1 2 2 3 32 2 2a I a b I b a I a b I b a F a b F b a F a b F b a F a b F b         ４ ４

   4 4 0a F a b F b  . Hence, it is true that 1 1a b , 2 2a b , 3 3a b , 4 4a b . Moreover, according to 

Definition 2, 1a , 2a , 3a  and 4a  are not zero simultaneously, we have that  T a   T b ,    I a I b , 

and  F a   F b . Therefore, according to Definition 10, a b  holds. 

(3) It is clear that 1 1 1 1a b b a   , 2 2 2 22 2a b b a   , 3 3 3 32 2a b b a   , 4 4 4 4a b b a   , 

       1 1 1 1a T a bT b bT b a T a   ,        2 2 2 22 2a T a b T b b T b a T a   ,    3 32 a T a b T b 

   3 32 b T b a T a ,      4 4 4a T a b T b b T b    4a T a ,        1 1 1 1a I a b I b b I b a I a   , 

       2 2 2 22 2a I a b I b b I b a I a   ,        3 3 3 32 2a I a b I b b I b a I a   ,    4 4a I a b I b 

   4 4b I b a I a ,        1 1 1 1a F a b F b b F b a F a   ,        2 2 2 22 2a F a b F b b F b a F a   , 

       3 3 3 32 2a F a b F b b F b a F a    and        4 4 4 4a F a b F b b F b a F a   . Therefore, according 

to Eq. (6),    4 4, ,d a b d b a . 
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(4) According to Eq. (6), we have that    4 1 1 2 2 3 3 4 4

1
, 2 2

24

pp p p
d a c a c a b a b a c


        


                   1 1 2 2 3 3 4 4 1 12 2
p p p p p

a T a c T c a T a b T b a T a b T b a T a c T c a I a c I c          

                   2 2 3 3 4 4 1 1 2 22 2 2
pp p p p

a I a b I b a I a b I b a I a c I c a F a c F c a F a b F b         

        
1

3 3 4 42
p

pp

a F a b F b a F a c I c   . According to the Minkowski’s inequality in Lemma 1, 

    4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 1

1
, 2 2

24

p p p
d a c a b b c a b b c a b b c a b b c a T a


                 


                     1 1 1 2 2 2 2 3 3 3 32 2
p p p

bT b bT b c T c a T a b T b b T b c T c a T a b T b b T b c T c          

                     4 4 4 4 1 1 1 1 2 2 22
p p

a T a b T b b T b c T c a I a b I b b I b c I c a I a b I b b I b         

                     2 3 3 3 3 4 4 4 4 1 12
p p

c I c a I a b I b b I b c I c a I a b I b b I b c I c a F a b F b           

                   1 1 2 2 2 2 3 3 3 32 2
p p p

b F b c F c a F a b F b b F b c F c a F a b F b b F b c F c         

          
1

4 4 4 4 1 1 2 2 3 3 4 4 1

1
2 2

24

p
p p p p p

a F a b F b b F b c F c a b a b a b a b a T a


            


                 1 2 2 3 3 4 4 1 12 2
p p p p p

bT b a T a b T b a T a b T b a T a b T b a I a b I b       

                   2 2 3 3 4 4 1 1 2 22 2 2
p p p p p

a I a b I b a I a b I b a I a b I b a F a b F b a F a b F b          

         
1

3 3 4 4 1 1 2 2 3 3 4 4

1
2 2 2

24

p
p p p p p p

a F a b F b a F a b F b c b c b c b c c


            


                   1 1 2 2 3 3 4 4 1 12 2
p p p p p

c T c bT b c T c b T b c T c b T b c T c b T b c I c b I b         

                    2 2 3 3 4 4 1 1 2 22 2 2
pp p p p

c I c b I b c I c b I b c I c b I b c F c b F b c F c b F b         

            
1

3 3 4 4 4 42 , ,
p

p p

c F c b F b c F c b F b d a c d c b     . Thus, the generalized distance 

measurement satisfies the property that      4 4 4, , ,d a c d a b d b c  . 

Furthermore, as mentioned in Definition 11, when 1p  , the generalized distance in Eq. (6) reduces to the 

Hamming distance in Eq. (3); when 2p  , the generalized distance in Eq. (6) reduces to the Euclidean 

distance in Eq. (4); when p  , the generalized distance in Eq. (6) reduces to the Chebyshev distance in Eq. 
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(5). Since the generalized distance satisfies the properties (1)-(4), the Hamming distance  1 ,d a b , the 

Euclidean distance  2 ,d a b , and the Chebyshev distance  3 ,d a b  satisfy the properties (1)-(4). 

Therefore, Theorem 1 holds. 

4 The TODIM method with SVTNNs for medical treatment options selection 

Here we present a TODIM method for medical treatment options selection with SVTNNs. 

Assume there are m medical treatment options 1{ ,A A 2 ,A , }mA  which are evaluated by the physicians 

concerning n criteria 1{ ,C C 2 ,C , }nC . The evaluation values provided by the physicians are transformed 

into SVTNNs, and ijU  represents the evaluation value for the treatment options Ai  1,2, ,i m  under the 

criterion jC   1,2, ,j n . The decision matrix, which is transformed from the evaluation values provided 

by the physicians, can be denoted as U : 

11 12 1

21 22 2

1 2

n

n

m m mn

U U U

U U U
U

U U U

 
 
 
 
 
 

. 

Since each criterion has distinct weight, the weight vector of criteria is 
1 2( , , , )T

nw w w w , where 0jw   

 1,2, ,j n  and 
1

1
n

j

j

w


 . 

In the following part, the TODIM method to rank the medical treatment options and select the best one is 

proposed based upon the proposed comparison method and distance measurements. The procedure of the 

method is as follows: 

Step 1: Normalize the decision matrix. 

Benefit criterion and cost criterion may exist in an individual MCDM problem simultaneously. To unify all 

criteria, it is necessary to normalize the evaluation value under the cost criterion. It should be noted that 
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normalization is needless if all criteria are benefit ones. If the criterion 
jC  is a cost one, the evaluation value 

 1 2 3 4, , , , ,ij ij ij ij ij

ijU u u u u T u        ,ij ijI u F u  of the treatment option Ai under the criterion 
jC  should be 

normalized utilizing the following equation: 

     4 3 2 11 ,1 ,1 1 , , ,ij ij ij ij ij ij ij

ijN U U U U T u I u F u      ， .            (7) 

It is obvious that the normalized values 
ijN  are also SVTNNs. 

Step 2: Obtain score values. 

Utilizing the score function in Eq. (1), we can obtain the score value  ijs N   1,2, , ; 1,2, ,i m j n   

of the treatment option Ai concerning the criterion Cj. 

Step 3: Obtain accuracy values. 

Utilizing the accuracy function in Eq. (2), we can obtain the accuracy value  ijh N  

 1,2, , ; 1,2, ,i m j n   of the treatment option Ai concerning the criterion Cj. 

Step 4: Obtain distance matrices. 

The generalized distance measurement is utilized here seeing that the Hamming, Euclidean, and Chebyshev 

distance measurements are special cases of the generalized distance measurement. Based on the generalized 

distance in Definition 11, we can obtain the distance j

ird   1,2, , ; 1,2, , ; 1,2, ,i m r m j n    between 

two treatment options Ai and Ar concerning the criterion Cj. 

Step 5: Obtain partial dominance matrices. 

The distance matrix j  under the criterion Cj is composed of partial dominance degrees j

ir  

 1,2, , ; 1,2, , ; 1,2, ,i m r m j n    of the treatment option Ai over the treatment option Ar concerning 

the criterion Cj and j

ir  can be obtained by the following formula: 
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,                   (8) 

where 
j

ju

u





  and  maxu j    1,2, ,j n . The comparison relation between ijN  and rjN  can 

be obtained according to the comparison method in Definition 10 utilizing the score values and accuracy 

values. If ij rjN N  or ij rjN N , it represents a gain; if ij rjN N , it is breakeven; if ij rjN N  or 

ij rjN N , it represents a loss. The parameter t  in the situation where ij rjN N  or ij rjN N  is the decay 

factor of the loss and 0t  . 

Step 6: Obtain the final dominance matrix  . 

The final dominance matrix   is composed of dominance degrees. The dominance degree ir  

 1,2, , ; 1,2, ,i m r m   denotes the degree that the treatment option Ai is better than the treatment option 

Ar and can be obtained by: 

1

n
j

ir ir

j

   .                                         (9) 

Step 7: Calculate the global value of each treatment option. 

The global value i   1,2, ,i m  of the treatment option Ai can be obtained by: 

1
1 1

11
1 1

min

max min

m m

ir ir
i m

r r

i m m

ir ir
i mi m

r r

I I

I I


 

 

  
 

 
  

 


   
   

   

 

 
.                              (10) 

Step 8: Rank the treatment options. 

The treatment options can be ranked based on the global value of each treatment option. The bigger the 
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global value of an individual treatment option is, the better the option will be. 

5 A numerical example for medical treatment options selection 

In this section, a numerical example for medical treatment options selection with SVTNNs is used to 

demonstrate the applicability of the proposed method. 

We utilize the proposed method to tackle a selection problem of medical treatment options. Assume that a 

physician wants to find a medical treatment option for a particular patient with verruca plantaris. There are 

five medical treatment options: (1) 1A  is carbon dioxide laser; (2) 2A  is high frequency therapeutic 

instrument; (3) 3A  is microwave therapeutic instrument; (4) 4A  is cryotherapy; and (5) 5A  is apoxesis. 

They will be evaluated by the physician from the three aspects: (1) C1 is the probability of a cure; (2) C2 is 

severity of the side effects; and (3) C3 is cost. The weight vector of the three criteria is supposed as 

 0.4,0.3,0.3
T

. Furthermore, Table 1 shows the decision matrix U  which is transformed from the evaluation 

values of the physician. 

Table 1. The decision matrix transformed from the evaluation values of the experts 

 C1 C2 C3 

A1  0.3,0.4,0.5,0.7 ,0.5,0.4,0.3   0.4,0.5,0.7,0.8 ,0.5,0.3,0.7   0.2,0.3,0.8,0.9 ,0.9,0.1,0.5  

A2  0.2,0.5,0.6,0.9 ,0.8,0.2,0.4   0.2,0.4,0.6,0.8 ,0.1,0.2,0.3   0.3,0.4,0.7,0.8 ,0.5,0.3,0.8   

A3  0.3,0.5,0.8,0.8 ,0.7,0.2,0.5    0.1,0.2,0.5,0.7 ,0.2,0.5,0.8   0.4,0.5,0.6,0.7 ,0.8,0.2,0.6   

A4  0.3,0.5,0.8,0.8 ,0.7,0.2,0.5    0.2,0.3,0.7,0.8 ,0.9,0.8,0.7   0.2,0.3,0.4,0.6 ,0.5,0.4,0.2   

A5  0.4,0.6,0.7,0.8 ,0.3,0.5,0.6   0.3,0.5,0.7,0.9 ,0.9,0.7,0.5    0.3,0.4,0.5,0.6 ,0.9,0.3,0.6   

5.1 The steps of the proposed method 

Step 1: Normalize the decision matrix. 

Since the criterion C1 is a benefit one while the criteria C2 and C3 are cost ones, the decision matrix needs to 
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be normalized utilizing Eq. (7). Table 2 lists the normalized decision matrix. 

Table 2. The normalized decision matrix 

 C1 C2 C3 

A1  0.3,0.4,0.5,0.7 ,0.5,0.4,0.3   0.2,0.3,0.5,0.6 ,0.5,0.3,0.7   0.1,0.2,0.7,0.8 ,0.9,0.1,0.5  

A2  0.2,0.5,0.6,0.9 ,0.8,0.2,0.4   0.2,0.4,0.6,0.8 ,0.1,0.2,0.3   0.2,0.3,0.6,0.7 ,0.5,0.3,0.8   

A3  0.3,0.5,0.8,0.8 ,0.7,0.2,0.5    0.3,0.5,0.8,0.9 ,0.2,0.5,0.8   0.3,0.4,0.5,0.6 ,0.8,0.2,0.6   

A4  0.3,0.5,0.8,0.8 ,0.7,0.2,0.5    0.2,0.3,0.7,0.8 ,0.9,0.8,0.7   0.4,0.6,0.7,0.8 ,0.5,0.4,0.2   

A5  0.4,0.6,0.7,0.8 ,0.3,0.5,0.6   0.1,0.3,0.5,0.7 ,0.9,0.7,0.5    0.4,0.5,0.6,0.7 ,0.9,0.3,0.6   

Step 2: Obtain score values. 

Utilizing Eq. (1), we can obtain the score value of an individual treatment option concerning each criterion, 

and these score values are shown in Table 3. 

Table 3. The score value of each treatment option concerning each criterion 

 C1 C2 C3 

A1 0.095 0.04 0.27 

A2 0.275 0.1 0.0225 

A3 0.24 -0.188 0.18 

A4 0.24 -0.1 0.1562 

A5 -0.0937 0 0.1925 

Step 3: Obtain accuracy values. 

Utilizing Eq. (2), we can obtain the accuracy value of each treatment option concerning each criterion. 
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Table 4. The accuracy value of each treatment option concerning each criterion 

 C1 C2 C3 

A1 0.057 -0.056 0.198 

A2 0.242 -0.16 -0.0945 

A3 0.144 -0.375 0.126 

A4 0.144 0.34 0.1125 

A5 -0.2188 0.272 0.2475 

Step 4: Obtain distance matrices. 

Here for ease of computation, we assume that 1p  . Utilizing Eq. (6), the distance matrix Dj  1,2,3j   

concerning the criterion Cj can be obtained as: 

1

0 0.1208 0.145 0.145 0.145

0.1208 0 0.0717 0.0717 0.1833

0.145 0.0717 0 0 0.1475

0.145 0.0717 0 0 0.1475

0.145 0.1833 0.1475 0.1475 0

D

 
 
 
 
 
 
 
 

, 2

0 0.1 0.1825 0.175 0.1092

0.1 0 0.1958 0.2417 0.1608

0.1825 0.1958 0 0.1758 0.2058

0.175 0.2417 0.1758 0 0.115

0.1092 0.1608 0.2058 0.115 0

D

 
 
 
 
 
 
 
 

, 

and 3

0 0.1271 0.1313 0.1796 0.1513

0.1271 0 0.0942 0.1567 0.1242

0.1313 0.0942 0 0.1333 0.0925

0.1796 0.1567 0.1333 0 0.1383

0.1513 0.1242 0.0925 0.1383 0

D

 
 
 
 
 
 
 
 

. 

Step 5: Obtain partial dominance matrices. 

Utilizing Eq. (8) (Suppose 1t   [79]), the partial dominance matrix j   1,2,3j   concerning the 

criterion jC  can be obtained as: 

1

0 0.5496 0.6021 0.6021 0.2408

0.2198 0 0.1693 0.2708 0.1732

0.2408 0.4233 0 0 0.2429

0.2408 0.4233 0 0 0.2429

0.6021 0.677 0.6702 0.6702 0

   
 
 
   
 

 
     

, 
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2

0 0.5774 0.234 0.2291 0.181

0.1732 0 0.2424 0.2693 0.2197

0.78 0.8079 0 0.7656 0.8283

0.7638 0.8975 0.2297 0 0.6191

0.6032 0.7322 0.2485 0.1857 0

 
 
 
      
 
   
   

, and 

3

0 0.1953 0.1984 0.2321 0.213

0.6509 0 0.5603 0.7226 0.6433

0.6614 0.1681 0 0.2 0.5553

0.7737 0.2168 0.6667 0 0.6791

0.71 0.193 0.1666 0.2037 0

 
 
    
    
 
   
  

. 

Step 6: Obtain the final dominance matrix. 

Utilizing Eq. (9), the final dominance matrix   can be obtained as: 

0 0.9317 0.1697 0.1408 0.6348

0.2578 0 0.1486 0.2841 0.1529

1.2006 1.0632 0 0.5656 1.1407

1.12966 1.104 0.437 0 1.0553

1.9154 1.2162 0.1922 0.2178 0

   
 
    

      
 
    
     

. 

Step 7: Calculate the global value of each treatment option. 

The global value i  of the treatment option Ai can be obtained as: 1 1  , 2 0.9298  , 3 0  , 

4 0.0229  , and 5 0.1274  . 

Step 8: Rank the treatment options. 

Since 1 2 5 4 3        , the ranking order of the five treatment options is 1 2A A 5 4 3A A A . 

Thus, the best treatment option is 1A . 

5.2 The influences of the parameter 

In this subsection, we investigate and discuss the influences of the parameter t in Eq. (8) and p in the 

generalized distance measurement in Eq. (6) in detail. 

Firstly, the influence of t on the shape of the prospect value function is verified and discussed. Fig. 1 depicts 

the prospect value functions using different values of t , i.e. 1t   [79] and 2.5t   [70]. It can be seen from 
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Section 5.1 that the score values of two SVTNNs in the decision matrix are same if and only if these two 

SVTNNs are same. That is to say, the disparity between any two SVTNNs in this numerical example can be 

reflected by the difference between their score values. Thus, in Fig. 1, the horizontal axis is the difference 

between any two score values concerning the same criterion and the vertical axis is the corresponding partial 

dominance degrees. 
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Fig. 1. Prospect value functions using 1t   and 2.5t   

As presented in Fig. 1, the shape of the prospect value function in the third quadrant is influenced by the 

value of the parameter t while that in the first quadrant is immune to the value of t. Moreover, the partial 

dominance obtained by 2.5t   is bigger than the corresponding partial dominance obtained by 1t   when 

the difference of score values is negative. The reason for this phenomenon is given as follows. The value of t 

denotes the degree that the losses are attenuated when 1t  . The greater the value of t is, the bigger the 

degree that the losses are attenuated will be. Thus, it is reasonable that the shape of the prospect value function 

when 1t   is deeper than that when 2.5t  . 

Secondly, we investigate the influence of the parameter t on the ranking order of the treatment options by 

obtaining the ranking orders with different values of t. As the value of t changes from 0.001 to 50, the 

corresponding ranking order of the treatment options can be obtained. Table 5 lists the value of t, the 
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corresponding global values, and the ranking order of the treatment options. 

Table 5. Ranking orders of the treatment options with different values of t 

t  global value i  Ranking order 

0.001t   

1 1  , 2 0.9013   

3 0.0005  , 4 0  , 5 0.114   

1 2 5 3 4A A A A A  

0.01t   

1 1  , 2 0.9016   

3 0.0002  , 4 0  , 5 0.1139   

1 2 5 3 4A A A A A  

0.1t   

1 1  , 2 0.905   

3 0  , 4 0.0025  , 5 0.1153   

1 2 5 4 3A A A A A  

0.5t   

1 1  , 2 0.9177   

3 0  , 4 0.0129  , 5 0.1215   

1 2 5 4 3A A A A A  

1t   

1 1  , 2 0.9298   

3 0  , 4 0.0229  , 5 0.1274   

1 2 5 4 3A A A A A  

20t   

1 1  , 2 0.9977   

3 0  , 4 0.0786  , 5 0.1604   

1 2 5 4 3A A A A A  

24t   

1 1  , 2 0.9998   

3 0  , 4 0.0803  , 5 0.1614   

1 2 5 4 3A A A A A  

25t   

1 0.9998  , 2 1   

3 0  , 4 0.0806  , 5 0.1616   

2 1 5 4 3A A A A A  

50t   

1 0.9945  , 2 1   

3 0  , 4 0.0845  , 5 0.1633   

2 1 5 4 3A A A A A  

As shown in Table 5, the ranking order of the treatment options may be different when the value of t 
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changes. When 0.01t   the ranking orders are same and the best treatment option is 1A  and the worst one 

is 4A . The ranking orders are same when t changes from 0.1 to 24. The best treatment option when 

0.1 24t   is same to that when 0.01t   while the worst one when 0.1 24t   is different from that 

when 0.01t  . And when 0.1 24t  , 3A  is the worst treatment option. Moreover, the best treatment 

option becomes 2A  and the worst one remains 3A  when 25t  . The reason for these differences is 

provided as follows. From Eq. (8), we can see that the losses are amplified when 1t   and they are 

attenuated when 1t  . When 0.01t  , the losses are amplified, and eventually the global value of 4A  

becomes smaller than that of 3A . When 0.1 1t  , the losses are amplified but the degree of amplification is 

smaller than the degree when 0.01t  , which makes the global value of 4A  become bigger than that of 3A . 

When 1 24t  , the losses are attenuated, and the global value of 4A  remains bigger than that of 3A . 

When 25t  , the losses are attenuated and the degree of attenuation is bigger than the degree when 

1 24t  , which makes the global value of 2A  becomes bigger than that of 1A . Thus, it is reasonable that 

the value of t influences the ranking order of the treatment options. 

Thirdly, we explore the influence of the parameter p on the final ranking order of the treatment options with 

different values of p. Table 6 shows the value of p, the corresponding global values (suppose 1t  ). 

Table 6. Global values of treatment options with different values of p 

p  global value i  Ranking order 

1p   

1 1  , 2 0.905   

3 0  , 4 0.0025  , 5 0.1153   

1 2 5 4 3A A A A A  

2p   

1 1  , 2 0.9260   

3 0  , 4 0.0010  , 5 0.1134   

1 2 5 4 3A A A A A  
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3p   
1 1  , 2 0.9282   

3 0  , 4 0.0048  , 5 0.1014   

1 2 5 4 3A A A A A  

6p   
1 1  , 2 0.9393   

3 0  , 4 0.0227  , 5 0.0686   

1 2 5 4 3A A A A A  

p   
1 1  , 2 0.9051   

3 0  , 4 0.0284  , 5 0.1231   

1 2 5 4 3A A A A A  

As presented in Table 6, the ranking order of the treatment options remains same when the value of p 

changes. In other words, the ranking order of the treatment options is unacted on the value of the parameter p. 

The best treatment option is 1A  and the worst one is 3A . 

In generally, the parameter t in Eq. (8) influences the shape of the prospect function in the third quadrant. 

Furthermore, the parameter t may influence the ranking order obtained by the proposed method while the 

parameter p in the generalized distance measurement in Eq. (6) cannot. The proposed method can be deemed 

as a flexible one considering the influence of t. 

5.3 Comparative analysis 

We conduct a comparative analysis to verify and discuss the feasibility of the proposed method in this 

subsection. Two cases are included in this comparative analysis. In the first case, the proposed method is 

compared to the method that was outlined in Ref. [78] using trapezoidal intuitionistic fuzzy information. In 

the second case, the proposed method is compared to the methods that were proposed by Deli and Subas [36] 

under SVTNN environments. 

Case 1: comparative analysis under trapezoidal intuitionistic fuzzy environments. 

Krohling et al. [78] take into account the risk preference of decision makers, and developed a MCDM 

method for problems with trapezoidal intuitionistic fuzzy information based on fuzzy TODIM method. The 
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proposed method and the method proposed by Krohling et al. [78] are utilized to solve MCDM problems in 

Ref. [78]. Table 7 lists the ranking orders of the proposed TODIM method and the method proposed by 

Krohling et al. [78] when 1t   and 2.5t  . 

Table 7. The ranking orders of different methods  

Method Ranking order 

The best 

treatment 

option(s) 

The worst 

treatment 

option(s) 

Method 1  1t 
[78]

 
2 5 4 3 1A A A A A  2A  1A  

Method 2  2.5t 
[78]

 
2 5 4 3 1A A A A A  2A  1A  

The proposed method 

 1t   2 1 3 4 5A A A A A  2A  5A  

The proposed method 

 2.5t   2 1 4 3 5A A A A A  2A  5A  

From Table 7, the best treatment option of these four methods is 2A  while the worst ones are different. 1A  

is the worst treatment option of the method proposed by Krohling et al. [78] when 1t   and 2.5t   while 

5A  is the worst one of the proposed method when 1t   and 2.5t  . Furthermore, the ranking orders of the 

method proposed by Krohling et al. [78] when 1t   and 2.5t   are same while the proposed method 

obtains two different ranking orders when 1t   and 2.5t  . The reasons for these differences are illustrated 

as follows. the comparison methods and distance measurements utilized in the MCDM method proposed by 

Krohling et al. [78] and the proposed MCDM method are greatly distinct even though both of these two 

MCDM methods consider the risk preference of decision makers. Furthermore, the proposed method makes 

use of the intuitionistic fuzzy index 1      besides the degrees of membership   and 

non-membership   while the method proposed by Krohling et al. [78] only utilizes   and  . It is 

reasonable that these two MCDM methods may obtain different ranking order when the value of t is same. 
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The ranking order of the proposed method meets decision makers’ actual preferences better compared to that 

of the method proposed by Krohling et al. [78]. Moreover, as presented in Section 5.2, the value of t may 

influence the ranking order of the proposed method. When 1t  , the losses are attenuated. However, the 

degrees of attenuation are different when 1t   and 2.5t  . Therefore, the ranking orders of the proposed 

method are different when 1t   and 2.5t  . The ranking orders of the method proposed by Krohling et al. 

[78] are same when 1t   and 2.5t  . It is because that the difference between the degrees of attenuation 

when 1t   and 2.5t   is not big enough to make the ranking orders become distinct. 

Overall, the proposed method can be effectively used to solve MCDM problems under trapezoidal 

intuitionistic fuzzy environments, and the ranking orders obtained by the proposed method are closer to 

decision makers’ actual preferences than those obtained by the extant trapezoidal intuitionistic fuzzy methods 

like the method proposed by Krohling et al. [78]. 

Case 2: comparative analysis under SVTNN environments. 

Deli and Subas [36] constructed a MCDM method by utilized a single valued trapezoidal neutrosophic 

weighted aggregation operator with the parameter   and the comparison method in Definition 7. The 

proposed method and the method proposed by Deli and Subas [36] are utilized to solve the selection problem 

of medical treatment options (a MCDM problem) in Section 5.1. Table 8 lists the ranking orders of the 

proposed TODIM method  1t   and the method proposed by Deli and Subas [36]. 

Table 8. The ranking orders of different methods under SVTNN environments 

Method Ranking order 

The best 

treatment 

option(s) 

The worst 

treatment 

option(s) 

Method 3  1  [36]
 

1 4 5 2 3A A A A A  1A  3A  

Method 4  2  [36]
 

4 1 5 2 3A A A A A  4A  1A  
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The proposed 

method 
1 2 5 4 3A A A A A  1A  3A  

From Table 8, the best treatment option of the method proposed by Deli and Subas [36] when 2   is 4A  

while the worst one is 1A . 1A  is the best treatment option of the method proposed by Deli and Subas [36] 

when 1   and the proposed TODIM method while 3A  is the worst treatment option of these two methods. 

Furthermore, different ranking orders of the other three treatment options (i.e. 2 4 5, ,A A A ) are obtained by 

these two methods. The reasons for the differences are that the aggregation operator calculates the weighted 

arithmetic average value of elements when 1   while the aggregation operator obtains the weighted 

arithmetic average value of the square values of elements when 2  . It is clear that the aggregation operator 

with 2   enlarges the differences between treatment options while the aggregation operator with 1   

does not. Thus, different ranking orders are obtained by these two methods. Moreover, in practice, decision 

makers are bounded rational, it is indispensable to consider their risk preference in decision-making process. 

The proposed TODIM method takes into account the decision makers’ bounded rationality while the methods 

proposed by Deli and Subas [36] assume that the decision makers are perfectly rational. Therefore, the ranking 

orders of the three methods are different. In addition, it is true that the proposed method is effective in tackling 

the selection problems of medical treatment options with SVTNNs. 

Generally speaking, the proposed method is applicable and feasible to tackle MCDM problems like the 

selection problems of medical treatment options under trapezoidal intuitionistic fuzzy environments and 

SVTNN environments. However, the extant trapezoidal intuitionistic fuzzy methods cannot solve MCDM 

problems under SVTNN environments. From this perspective, the proposed method is a flexible one. 

Furthermore, the proposed method overcomes the shortcomings exist in the prior MCDM methods with 

SVTNNs, and its ranking order better corresponds with decision makers’ real preferences than those obtained 

by the previous MCDM methods. 
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6 Conclusion 

SVTNNs can be used to reflect fuzzy information in the selection of medical treatment options. Moreover, 

TODIM methods under fuzzy environments can be utilized to construct MCDM methods to consider the risk 

preference of decision makers. In this paper, an improved comparison method for SVTNNs was proposed to 

overcome the deficiencies of the prior comparison methods. Furthermore, we developed several distance 

measurements for SVTNNs. Subsequently, a TODIM method for the selection problems of medical treatment 

options with SVTNNs was constructed on the basis of the proposed comparison method and distance 

measurements. In addition, a numerical example for medical treatment options selection was provided to 

illustrate the process of the proposed method and the influence of the parameter was discussed. Finally, a 

comparative analysis was conducted to verify and discuss the feasibility of the proposed method. 

The prominent characteristics of this paper are that the proposed method for medical treatment options 

selection utilizes SVTNNs, which can depict much information and fuzziness in selection processes. 

Moreover, the comparison method utilized in the proposed method cover the defects of the extant comparison 

methods. Furthermore, the proposed method for medical treatment options selection extends TODIM method 

to SVTNN environments, and considers the risk attitude of physicians which makes the decision-making 

results closer to physicians’ actual preferences than the previous methods. 

There are two directions for future research: first, the proposed MCDM method can be applied to solve 

practical issues in other fields, such as purchasing decision-making, and tourism destination selection. Second, 

the proposed MCDM method does not take into consideration the interrelationships among criteria. It would 

be interesting to improve the proposed method by introducing independent aggregation operators. 
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1.an improved comparison method and several distance measurements for SVTNNs are

defined. 

2.a novel MCDM method for medical treatment options selection is established based on

TODIM method with SVTNNs.

3. a example of the selection of medical treatment options is provided in order to verify the

proposed method and the influence of the parameter.


