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Abstract

Two matrices are said non-overlapping if one of them can not be
put on the other one in a way such that the corresponding entries
coincide. We provide a set of non-overlapping binary matrices and
a formula to enumerate it which involves the k-generalized Fibonacci
numbers. Moreover, the generating function for the enumerating se-
quence is easily seen to be rational.

1 Introduction

A string u over a finite alphabet Σ is said self non-overlapping (or equiv-
alently unbordered or bifix-free) if it does not contain proper prefixes which
are also proper suffixes. In other words, a string u ∈ Σ∗ is unbordered if
it can not be factorized as u = vu′v with v ∈ Σ+ and u′ ∈ Σ∗. Nielsen in
[13] provided the set X ⊂ Σn of all bifix-free strings by means of a recur-
sive construction. More recently, several researches [5, 7, 8, 9] have been
conducted in order to define particular subsets of X constituted by non-
overlapping (or cross-bifix-free) strings: two n length strings u, v ∈ X are
said non-overlapping if any non-empty proper prefix of u is different from
any non-empty proper suffix of v, and viceversa.

In [3] the notion of unbordered strings is generalized to the two dimen-
sional case by means of unbordered pictures which are rectangular matrices
over Σ by imposing that all possible overlaps between two copies of the same
picture are forbidden. In particular, the authors extend in two dimensions
the construction of unbordered strings proposed in [13] and describe an al-
gorithm to generate the set U of all the unbordered pictures of fixed size
m× n.

The aim of the present paper is to find a subset of unbordered matrices
which are non-overlapping. As well as the sets given in [5, 7, 8, 9] are non-
overlapping subsets (or cross-bifix-free subsets) of strings of X, in the same
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way the set we are going to present is a non-overlapping subset of matrices of
U . Roughly speaking two unbordered matrices A and B are non-overlapping
if all possible overlaps between A and B are forbidden. More precisely, we
can imagine to make a rigid movement of B on A such that B glides on
A. At the end of each slipping, which can be geometrically interpreted as a
translation in a given direction on the plane, a (non empty) common area
(in the sequel control window) is formed. This common area can be seen
as the usual intersection between the two rectangular arrays containing the
entries of A and B, which is, in turn, a rectangular array constituted by a
finite number of 1 × 1 cells of the discrete plane. Each cell of the control
window contains an entry of A and an entry of B. If in each cell of the
window the entry of A coincides with the entry of B, then such window
is said overlapping window and A and B overlapping matrices. On the
contrary, if for any translation we never find an overlapping window, A and
B are said non-overlapping matrices. For example, the unbordered matrices

A =

1 0 0 1 1
0 1 0 1 1
0 1 1 1 0

 and B =

0 1 1 0 0
1 1 0 0 0
1 0 1 1 1

 can be overlapped as in

Figure 1 where the control window is showed.

111

00 1 0 1 1
0 1 1 1 0

1 0 0 1 1
0

0 0
0 1

Figure 1: An example of overlap

Actually, a first attempt in order to generalize the concept of non-overlap
in two dimensions between two distinct matrices can be found in [4] where
the authors define a set of cross-bibifix-free square matrices over a finite
alphabet. For the sake of clearness, two square matrices are said to be
cross-bibifix-free when, essentially, they are non-overlapping only along the
direction of the main diagonal. Here, using a completely different approach,
we consider translations in any direction on the plane and matrices which can
be also rectangular matrices, even if they have only binary entries. In this
way the definition of non-overlapping set of matrices we are going to propose
seems to be very close to the natural generalization in two dimensions of the
concept of non-overlapping set of strings.

As it often happens, the extension to the bidimensional case of a typical
concept related to strings is carried on by taking into account matrices.
There are several cases in the literature where this process is occurred. For
example, in [10] a bidimensional variant of the string matching problem is
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considered for sets of matrices. Another interesting example is given by
the extension of classical finite automata for strings to the two-dimensional
rational automata for pictures introduced in [1]. Moreover, it is worth to
mention the problem of the pattern avoidance in matrices [11], which is a
typical topic in linear structures as permutations and words.

In Section 2 we formally define a set of binary matrices which are proved
to be non-overlapping matrices. The cardinality of this set is given in Section
3 where we also show that it is related to the well-known k-generalized
Fibonacci numbers.

2 A set of non-overlapping binary matrices

The definition of non-overlapping matrices given in the Introduction can
be formalized in terms of blocks matrices. Indeed, the control window we
have referred in the previous section is essentially a particular block whose
dimensions impose the ones of the other blocks of the partition of the matrix.

Definition 2.1 Let Mm×n be the set of all the matrices with m rows and
n columns. Two distinct matrices A,B ∈ Mm×n are said non-overlapping
if all the following conditions are satisfied by A and B:

• there do not exist two block partitions

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
such that A11, B22 ∈ Mr×s, with 1 ≤ r ≤ m − 1, 1 ≤ s ≤ n − 1, and
neither A11 = B22, nor A12 = B21, nor A21 = B12, nor A22 = B11.

• there do not exist two block partitions

A =

[
A11

A21

]
and B =

[
B11

B21

]
such that A11, B21 ∈ Mr×n, with 1 ≤ r ≤ m − 1, and neither A11 =
B21, nor A21 = B11.

• there do not exist two block partitions

A =
[
A11 A12

]
and B =

[
B11 B12

]
such that A11, B12 ∈ Mm×s, with 1 ≤ s ≤ n − 1, and neither A11 =
B12, nor A12 = B11.

3





1 1 0 ∗ ∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
1 1 1 ∗ ∗ ∗ ∗ 0 0 0


Figure 2: The structure of the matrices in S(3)6×10.

In other words, two distinct matrices are non-overlapping if any control
window is not an overlapping window. Therefore, we can also define a self
non-overlapping (or unbordered) matrix A ∈ Mm×n as a matrix such that
there does not exist a translation of A on itself such that we never find an
overlapping window. Clearly, this last definition can be easily deduced from
Definition 2.1 with A = B and suitably adapting the block partitions.

Definition 2.2 A set Sm×n ⊂ Mm×n is called non-overlapping if each
matrix of Sm×n is self non-overlapping and for any two matrices A,B ∈
Sm×n they are non-overlapping matrices.

Fixed the dimension m × n of the matrices, we now define a possible
non-overlapping set where the matrices have a particular structure involving
some of the entries on the frame of the matrix.

Definition 2.3 Let 3 ≤ k ≤
⌊
n
2

⌋
. We denote S(k)m×n ⊂Mm×n the set of the

matrices A = (ai,j) satisfying the following conditions:

• A1 = 1k−10w110k−1, where v1 = 0w11 is a binary string of length
n− 2k + 2 avoiding both 0k and 1k;

• for i = 2, . . . ,m − 1, Ai = wi0 = vi, where vi is a binary string of
length n avoiding both 0k and 1k;

• Am = 1kvm0k, where vm is a binary string of length n − 2k avoiding
both 0k and 1k.

(With A1, Ai and Am we denote the first, the i-th and the m-th row
of the matrix A.)

In other words, some entries on the frame of a matrix in S(k)m×n are fixed.

For example, the matrices in S(3)6×10 are represented in Figure 2 where the
generic entries ∗ ∈ {0, 1} are chosen so that the conditions of Definition 2.3

are satisfied. We note that for k = 2 and n odd the set S(2)m×n can not be
defined since the strings vi can not avoid both 00 and 11.
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Proposition 2.1 The set S(k)m×n ⊂ Mm×n is non-overlapping, for each k
with 3 ≤ k ≤

⌊
n
2

⌋
, m ≥ 2 and n ≥ 2k.

Proof. Given to matrices A,B ∈ S(k)m×n, we present two possible slip-
pings of B on A (without loss of generality A and B can be interchanged).

1. In the case represented in Figure 3 the obtained control window con-
tains, in its lower row, a string having k consecutive equal symbols.
If A and B would be overlapping matrices, then these k consecutive
equal symbols, belonging to the frame of B, should also appear in a

row vi of A, against the hypothesis that A ∈ S(k)m×n.

1 1 0

1 1 1

1 1 0

1 1 1

1 0 0
0
0
0
0
000

1 0 0
0
0
0
0
000A =

= B

Figure 3: The slipping of case 1: the grey entries are a forbidden sequence
of A.

2. Another possible slipping is pictured in Figure 4 where the control
window is non-overlapping (and then A and B are non-overlapping
matrices) since it presents certain cells where the fixed entries of A do
not coincide with the fixed entries of B. These fixed entries belong to
the frame of A and B.

1

=A

0 0 0
0

0
0
00

111

011 B=

01 1 0 0
0
0

0
0

001011

Figure 4: The slipping of case 2: the grey entry contains different values of
A and B.
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In general, given a control window of dimension r × s, with 1 ≤ r ≤ m
and 1 ≤ s ≤ n, we can refer to one of the two above cases depending on the
values of r and s. In particular we have:

• r = 1 :

– if 1 ≤ s ≤ 2k − 2, there exists a slipping as in case 2;

– if 2k − 1 ≤ s ≤ n− k, there exists a slipping as in case 1;

– if n− k + 1 ≤ s ≤ n, there exists a slipping as in case 2;

• 2 ≤ r ≤ m− 1 :

– if 1 ≤ s ≤ k, there exists a slipping as in case 2;

– if k + 1 ≤ s ≤ n, there exists a slipping as in case 1;

• r = m :

– if 1 ≤ s ≤ 2k − 1, there exists a slipping as in case 2;

– if 2k ≤ s ≤ n− k, there exists a slipping as in case 1;

– if n− k + 1 ≤ s ≤ n− 1, there exists a slipping as in case 2.

To complete the proof, if A = B, then it immediately follows from the

above argument that the matrices of S(k)m×n are self non-overlapping.
�

3 The enumeration of S(k)
m×n

In this section we are going to enumerate the set S(k)m×n. It is easy to
realize that its cardinality depends on the number of rows satisfying the
constraints of Definition 2.3.

We denote by Rn(0k, 1k) be the set of binary string starting with 0,
ending with 1 and avoiding k consecutive 0’s and k consecutive 1’s. Let
Zn(0k, 1k) be the set of binary strings ending with 0 and avoiding k consec-
utive 0’s and k consecutive 1’s. Moreover, let Bn(0k, 1k) the set of binary
strings avoiding k consecutive 0’s and k consecutive 1’s. We indicate with

r
(k)
n , z

(k)
n and b

(k)
n the cardinality of Rn(0k, 1k), Zn(0k, 1k) and Bn(0k, 1k),

respectively. It is straightforward that

|S(k)m×n| = r
(k)
n−2k+2 ·

(
z(k)n

)m−2
· b(k)n−2k (1)

where, referring to Definition 2.3, the term r
(k)
n−2k+2 counts the number of

strings v1, the terms z
(k)
n count the number of strings vi for i = 2, 3, . . . ,m−1,

and b
(k)
n−2k is the number of strings vm.
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3.1 The sequence r
(k)
n

Now we consider a possible recursive relation for r
(k)
n by means of a

recursive construction of Rn(0k, 1k). We first observe that R0(0
k, 1k) = {λ},

R1(0
k, 1k) = ∅ and Rj(0

k, 1k) is formed by all the binary strings of length j,

with 2 ≤ j ≤ k, starting with 0 and ending with 1. Then r
(k)
0 = 1, r

(k)
1 = 0

and r
(k)
j = 2j−2 for 2 ≤ j ≤ k. Clearly, if k = 2, then r

(k)
n = 0 in the case of

n odd and r
(k)
n = 1 if n is even (in this case Rn(0k, 1k) = {0101 . . . 01︸ ︷︷ ︸

n

}).

Fixed k ≥ 3 and n ≥ k + 1, each string u ∈ Rn(0k, 1k) can be factorized
as u = u′0i1j , with 1 ≤ i, j ≤ k− 1, and u′ ∈ Rn−i−j(0

k, 1k). Denoting with
h = i+ j the length of the suffix 0i1j , it is 2 ≤ h ≤ 2k − 2.

If 2 ≤ h ≤ k, then i can assume the values 1, 2, . . . , h−1 and consequently
j = h− 1, h− 2, . . . , 1 for a total of h− 1 possibilities for the suffix 0i1j , for
each fixed h. Indeed, in this case, the suffix 0i1j contains neither 0k nor 1k.

If k + 1 ≤ h ≤ 2k − 2, in order to avoid the forbidden patterns i can
assume the values h − k + 1, h − k + 2, . . . , k − 1 and consequently j =
k− 1, k− 2, . . . , h− k+ 1 for a total of 2k− h− 1 possibilities for the suffix
0i1j , for each fixed h.

Therefore, for n ≥ k + 1,

r(k)n =
k∑

h=2

(h− 1)r
(k)
n−h +

2k−2∑
h=k+1

(2k − h− 1)r
(k)
n−h.

Summarizing:

r(k)n =



1 if n = 0

0 if n = 1

2n−2 if 2 ≤ n ≤ k

k∑
h=2

(h− 1)r
(k)
n−h +

2k−2∑
h=k+1

(2k − h− 1)r
(k)
n−h if n ≥ k + 1.

Note that the coefficients of r
(k)
n , for n ≥ k + 1, are the coefficients

of Smarandache Crescendo Pyramidal sequence (see sequence A004737 in
The On-line Encyclopedia of Integer Sequence). In Table 1 we list the first

numbers of the recurrence r
(k)
n for some fixed values of k.

Since the strings u ∈ Rn(0k, 1k) have been factorized with u = u′0i1j ,
where the suffix 0i1j has length at least 2, the first term in the recurrence

for r
(k)
n is r

(k)
n−2. In the following we provide another construction for the

strings u leading to a recurrence for r
(k)
n which involves also the term r

(k)
n−1.
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HHH
HHn
k

3 4 5 6 7 8

0 1 1 1 1 1 1
1 0 0 0 0 0 0
2 1 1 1 1 1 1
3 2 2 2 2 2 2
4 2 4 4 4 4 4
5 4 6 8 8 8 8
6 7 12 14 16 16 16
7 10 22 28 30 32 32
8 17 41 54 60 62 64
9 28 74 104 118 124 126
10 44 137 201 232 246 252
11 72 252 386 456 488 502
12 117 464 745 897 968 1000
13 188 852 1436 1762 1920 1992
14 305 1568 2768 3465 3809 3968
15 494 2884 5336 6812 7554 7904

Table 1: Sequences r
(k)
n for some fixed values of k.

Let R
(1i)
n (0k, 1k) be the subset of Rn(0k, 1k) of the strings ending with i ones,

with i = 1, 2, . . . , k − 1. Then Rn(0k, 1k) =
k−1⋃
i=1

R(1i)
n (0k, 1k).

The strings of R
(11)
n (0k, 1k) are obtained by the strings of Rn−j−1(0

k, 1k)
appending 0j1, for j = 1, 2, . . . , k − 1. So that∣∣∣R(11)

n (0k, 1k)
∣∣∣ = r

(k)
n−2 + r

(k)
n−3 + . . .+ r

(k)
n−k . (2)

The strings of R
(1i)
n (0k, 1k), with 2 ≤ i ≤ k − 1, can be obtained from

all the strings of Rn−1(0
k, 1k), appending one 1 at the end of each string,

excluding the strings in R
(1k−1)
n−1 (0k, 1k) since the forbidden pattern 1k would

appear. So,

k−1∑
i=2

∣∣∣R(1i)
n (0k, 1k)

∣∣∣ = r
(k)
n−1 −

∣∣∣R(1k−1)
n−1 (0k, 1k)

∣∣∣ . (3)

For what the last term is concerned, we observe that the strings of

R
(1k−1)
n−1 (0k, 1k) are obtained from the strings ofR

(11)
n−1−(k−2)(0

k, 1k) appending

1k−2. Clearly,
∣∣∣R(1k−1)

n−1 (0k, 1k)
∣∣∣ =

∣∣∣R(11)
n−k+1(0

k, 1k)
∣∣∣. The set R

(11)
n−k+1(0

k, 1k)

is obtained from the strings of Rn−k+1−(j+1)(0
k, 1k) appending 0j1, for

j = 1, 2, . . . , k − 1. Then,∣∣∣R(1k−1)
n−1 (0k, 1k)

∣∣∣ = r
(k)
n−k−1 + r

(k)
n−k−2 + . . .+ r

(k)
n−2k+1 . (4)
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Summarizing, since

r(k)n =
∣∣∣R(11)

n (0k, 1k)
∣∣∣+

k−1∑
i=2

∣∣∣R(1i)
n (0k, 1k)

∣∣∣ ,
from Equation (2), (3) and (4), we obtain:

r(k)n =
k∑

j=1

r
(k)
n−j −

2k−1∑
j=k+1

r
(k)
n−j , (5)

with initial conditions r
(k)
−i = 0, r

(k)
0 = 1, r

(k)
1 = 0.

We observe that the sequence r
(k)
n satisfies also a recurrence which is

used in the rest of the paragraph. The n-th term of such a recurrence is
given by the sum of the k − 1 preceding terms plus 0 or 1 or -1, depending
on n and k. The result is stated in the following proposition.

Proposition 3.1 Let r
(k)
−i = 0, r

(k)
0 = 1, r

(k)
1 = 0 be the initial conditions,

then

r(k)n =
k−1∑
j=1

r
(k)
n−j + d(k)n ,

where

d(k)n =


1 if (n mod k) = 0

−1 if (n mod k) = 1

0 if (n mod k) ≥ 2 .

Proof. We can proceed by induction. If n = 2, we have that r
(k)
2 =

r
(k)
1 + r

(k)
0 + r

(k)
−1 + . . .+ r

(k)
3−k + d

(k)
2 . Since k ≥ 3 and r

(k)
−1 = 0, then d

(k)
2 = 0

and r
(k)
2 = r

(k)
1 + r

(k)
0 = 1 which is the same value obtained by recurrence

(5). Suppose that r
(k)
s =

∑k−1
j=1 r

(k)
s−j + d

(k)
s for each s < n. We have, from

recurrence (5),

r(k)n = r
(k)
n−1 + . . .+ r

(k)
n−k+1 + r

(k)
n−k −

2k−1∑
k+1

r
(k)
n−j .

For the inductive hypothesis

r
(k)
n−k = r

(k)
n−k−1 + . . .+ r

(k)
n−2k+1 + d

(k)
n−k .

Then,

r(k)n = r
(k)
n−1 + . . .+ r

(k)
n−k−1 + d

(k)
n−k .

Since d
(k)
n−k = d

(k)
n , the thesis follows. �
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3.2 The sequences b
(k)
n and z

(k)
n

We give a recursive relation for b
(k)
n by means of a recursive construction

of the set Bn(0k, 1k). We first observe that B0(0
k, 1k) = {λ}, where λ is the

empty string, and Bj(0
k, 1k) is formed by all the binary strings of length j,

with 0 < j < k. Then b
(k)
j = 2j for 0 ≤ j < k.

In order to consider the strings in Bn(0k, 1k) having length n ≥ k, we

denote by B
(0)
n (0k, 1k) and B

(1)
n (0k, 1k) the two subsets of Bn(0k, 1k) consti-

tuted by the strings ending with 0 and ending with 1, respectively. Let

|B(0)
n (0k, 1k)| = b

(k)
n,0 and |B(1)

n (0k, 1k)| = b
(k)
n,1, it is easy to realize that

b
(k)
n,0 = b

(k)
n,1 = b

(k)
n /2.

The set B
(0)
n (0k, 1k) can be generated from the strings in B

(1)
n−j(0

k, 1k)

followed by the suffix 0j , with 0 < j < k, so we have

b
(k)
n,0 =

k−1∑
j=1

b
(k)
n−j,1, for n ≥ k.

Analogously, the set B
(1)
n (0k, 1k) can be generated from the strings in

B
(0)
n−j(0

k, 1k) followed by the suffix 1j , with 0 < j < k, so we have

b
(k)
n,1 =

k−1∑
j=1

b
(k)
n−j,0, for n ≥ k.

Therefore, for n ≥ k,

b(k)n = b
(k)
n,0 + b

(k)
n,1 =

k−1∑
j=1

(
b
(k)
n−j,1 + b

(k)
n−j,0

)
=

k−1∑
j=1

b
(k)
n−j .

Summarizing:

b(k)n =


2n if 0 ≤ n ≤ k − 1

b
(k)
n−1 + b

(k)
n−2 + . . .+ b

(k)
n−k+1 if n ≥ k.

(6)

In Table 2 we list the first numbers of the recurrence b
(k)
n for same fixed

values of k.

Obviously the set B
(0)
n (0k, 1k) coincides with Z

(k)
n (0k, 1k), hence

z(k)n =


1 if n = 0

b
(k)
n / 2 if n ≥ 1.

(7)
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HHH
HHn
k

3 4 5 6 7 8

0 1 1 1 1 1 1
1 2 2 2 2 2 2
2 4 4 4 4 4 4
3 6 8 8 8 8 8
4 10 14 16 16 16 16
5 16 26 30 32 32 32
6 26 48 58 62 64 64
7 42 88 112 122 126 128
8 68 162 216 240 250 254
9 110 298 416 472 496 506
10 178 548 802 928 984 1008
11 288 1008 1546 1824 1952 2008
12 466 1854 2980 3586 3872 4000
13 754 3410 5744 7050 7680 7968
14 1220 6272 11072 13860 15234 15872
15 1974 11536 21342 27248 30218 31616

Table 2: Sequences b
(k)
n for some fixed values of k.

3.3 Generating functions and k-generalized Fibonacci num-
bers relation

The well-known k-generalized Fibonacci numbers {f (k)n }n≥0, can be de-
fined as

f (k)n =


2n if 0 ≤ n ≤ k − 1

f
(k)
n−1 + f

(k)
n−2 + . . .+ f

(k)
n−k if n ≥ k .

(8)

We recall that f
(k)
n is the number of length n binary strings avoiding

0k. The rational generating function f (k)(x) of the sequence
{
f
(k)
n

}
n≥0

(see

A000045 for k = 2, A000073 for k = 3, A000078 for k = 4 in The On-line
Encyclopedia of Integer Sequence) is given by

f (k)(x) =

1 +
k−1∑
i=1

xi

1−
k∑

i=1

xi

. (9)

Since the sequences (6) and (8) are very similar, it is worthwhile to find
a link between the two sequences. It is not difficult to show, by induction,
that

b(k)n =


1 if n = 0

2f
(k−1)
n−1 if n ≥ 1.

(10)
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Therefore,

z(k)n =


1 if n = 0

f
(k−1)
n−1 if n ≥ 1.

(11)

The rational generating functions b(k)(x) and z(k)(x) for the sequence
(10) and (11), respectively, are

b(k)(x) = 2xf (k−1)(x) + 1

and
z(k)(x) = xf (k−1)(x) + 1 .

Similarly to the sequences b
(k)
n and z

(k)
n , also r

(k)
n can be expressed in

terms of k-generalized Fibonacci numbers as showed in the following propo-
sition.

Proposition 3.2

r(k)n =


1 if n = 0

f
(k−1)
n−1 +d

(k)
n

2 if n ≥ 1,

(12)

Proof. We can proceed by induction. If n = 1, then r
(k)
1 = (fk−10 +

d
(k)
1 )/2 = 0 which is the same value obtained by recurrence (5). Suppose

that r
(k)
s =

f
(k−1)
s−1 +d

(k)
s

2 for each s < n. We have, from Proposition 3.1,

r(k)n = r
(k)
n−1 + . . .+ r

(k)
n−k+1 + d(k)n .

For inductive hypothesis

r
(k)
n =

f
(k−1)
n−2 +d

(k)
n−1

2 + . . .+
f
(k−1)
n−k +d

(k)
n−k+1

2 + d
(k)
n

=
f
(k−1)
n−2 +...+f

(k−1)
n−k

2 +
2d

(k)
n +d

(k)
n−1+...+d

(k)
n−k+1

2

=
f
(k−1)
n−1 +d

(k)
n

2 +
d
(k)
n +d

(k)
n−1+...+d

(k)
n−k+1

2 .

Since
{
d
(k)
n

}
n≥0

=
{

1,−1, 0, 0, . . . , 0︸ ︷︷ ︸
k−2

, 1,−1, 0, 0, . . . , 0︸ ︷︷ ︸
k−2

, 1,−1, 0, . . .
}

and

∑k−1
i=0 d

(k)
n+i = 0 for each n ≥ 0, then the thesis follows. �

12



The rational generating function d(k)(x) of the sequence
{
d
(k)
n

}
n≥0

(see

sequences A049347 for k = 3, A219977 for k = 4, in The On-line Encyclo-
pedia of Integer Sequence) is given by

d(k)(x) =
1

1 +
k−1∑
i=1

xi

,

and, from Proposition 3.2, the generating function r(k)(x) of the sequence{
r
(k)
n

}
n≥0

can be easily obtained as

r(k)(x) =
xf (k−1)(x) + d(k)(x)− 1

2
.

Following the previous arguments, using (10), (11) and (12), recalling

that 3 ≤ k ≤
⌊
n
2

⌋
, m ≥ 2, n ≥ 2k, and noting that b

(k)
0 = 1 and r

(k)
2 = 1, the

cardinality of S
(k)
m×n given in (1) can be computed in terms of k-generalized

Fibonacci numbers and d
(k)
n as

|S(k)m×n| =


(
f
(k−1)
2k−1

)m−2
if n = 2k

f
(k−1)
n−2k−1 ·

(
f
(k−1)
n−2k+1 + d

(k)
n−2k+2

)
·
(
f
(k−1)
n−1

)m−2
if n > 2k .

Note that if k = 3 it is possible to derive a closed formula for (1) using
the following well-know closed formula for Fibonacci numbers (adapted to
our purposes)

f (2)n =
1√
5

(1 +
√

5

2

)n+2

−

(
1−
√

5

2

)n+2
 for n ≥ 0 .

For k > 3 it is possible to observe that the generating function for

the sequence
{
S(k)m×n

}
n>2k

is rational due to the fact that the Hadamard

product of rational generating functions is rational (see [12]). We recall that
the Hadamard product of two generating functions

A(x) = a0 + a1x+ a2x
2 + . . . and B(x) = b0 + b1x+ b2x

2 + . . .

is the generating function

(A ◦B)(x) = a0b0 + a1b1x+ a2b2x
2 + . . . .

13





1 1 1 0 ∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
1 1 1 1 ∗ ∗ ∗ 0 0 0


Figure 5: The structure of the matrices expanding S(3)6×10.

4 Conclusions and further developments

A set of non-overlapping strings is often referred as a non-overlapping
code or cross-bifix-free code. We refer to [8] for an exhaustive list of refer-
ences on the subject. The properties of string codes have been object of deep
research in the last fifty years (see for example [6]). Extending the definition
of a string code, a two dimensional code is defined (see [2]) as a set X of
matrices over a finite alphabet Σ if any matrix over Σ has at most one tiling

decomposition with elements of X. In this sense, the set S(k)m×n can be seen
as a two-dimensional code. It should be worth to study the properties of

S(k)m×n and to investigate if they have similarities with the usual properties
of string codes.

As well as in the linear case, an interesting line of research could take
into consideration the construction of a non-overlapping set N of matrices
having fixed dimension m×n which is also non-expandable, that is, for each
A ∈ U\N there exists a matrix B ∈ N such that A and B are overlapping

matrices. It is not difficult to see that a matrix A ∈ S(k)m×n and a matrix

B ∈ S(k
′)

m×n are overlapping matrices, for each k, k′ with k 6= k′ and 3 ≤
k, k′ ≤

⌊
n
2

⌋
.

Actually, there exist matrices in U which can be added in S(k)m×n in order
to keep the non-overlapping property. An example is constituted by the set
of the matrices of the form showed in Figure 5 which are non-overlapping

with the matrices in S(3)6×10. Such matrices are obtained by adding at the

beginning of the first and last row an entry 1 in the matrices in S(3)6×10 and
deleting an entry of that rows chosen among the ones with index j, with
k < j < n − k. We can extend this process obtaining the following family
of sets.

Definition 4.1 Let 3 ≤ k ≤
⌊
n
2

⌋
and let 0 ≤ h ≤ n − 2k. We denote

S(k,h)m×n ⊂ Mm×n the set of the matrices A = (ai,j) satisfying the following
conditions:

• A1 = 1h1k−10w110k−1, where v1 = 0w11 is a binary string of length

14



n− 2k + 2− h avoiding both 0k and 1k;

• for i = 2, . . . ,m − 1, Ai = wi0 = vi, where vi is a binary string of
length n avoiding both 0k and 1k;

• Am = 1h1kvm0k, where vm is a binary string of length n − 2k − h
avoiding both 0k and 1k.

Note that, in the case h = 0, the set S(k,h)m×n coincides with S(k)m×n. The
following proposition can be easily proved.

Proposition 4.1 The set S(k,h)m×n ∪ S
(k,h+1)
m×n is non-overlapping, for each k

with 3 ≤ k ≤
⌊
n
2

⌋
, 0 ≤ h < n− 2k, m ≥ 2 and n ≥ 2k.

On the contrary, the set S(k,h)m×n ∪ S
(k,h+j)
m×n , with j ≥ 2, does not maintain

the non-overlapping property since an overlap is possible by means of a

slipping of the last row of a matrix A ∈ S(k,h)m×n on the first row of a matrix

B ∈ S(k,h+j)
m×n .

Clearly, the matrices in the set we have defined have fixed dimensions
m × n. If matrices of different dimensions are considered in the same set,
the definition of non-overlapping matrices should be slightly revised moving
from Definition 2.1 and taking care to the case when one matrix is a proper
submatrix of another one. In this direction, a further analysis could examine

under which conditions on m,n and k the set
⋃

m,n,k

S(k)m×n is still a non-

overlapping set or a two dimensional code. For this purpose, a first easy

result should be the following: fixed k and n, the set S(k)m×n∪S
(k)
m′×n, with m <

m′, is not non-overlapping since each matrix A ∈ S(k)m×n can be completely

overlapped on a matrix B ∈ S(k)m′×n having the block partition B =

[
B1

A

]
.
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