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Abstract The concepts of neutrosophic normal soft group, neutrosophic soft cosets, neutro-
sophic soft homomorphism are introduced and illustrated by suitable examples in this paper.
Several related properties and structural characteristics are investigated. Some of their basic
theorems are also established.
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Introduction

Classical mathematical tools may not be appropriate in dealing different uncertainties
appeared in several real life fields like economics, sociology, medical science, environ-
ment etc. While probability theory, theory of fuzzy set [1], intuitionistic fuzzy set [2] and
other mathematical tools are well known and often useful approaches to describe uncer-
tainty, each of these theories has it’s inherent difficulties as pointed out by Molodtsov [3].
In 1999, Molodtsov [3] introduced a novel concept of soft set theory which is free from the
parametrization inadequacy syndrome of different theories dealing with uncertainty. This
makes the theory very convenient and easy to apply in practice. The classical group theory
was extended over fuzzy set, intuitionistic fuzzy set and soft set by Rosenfeld [4], Mukherjee
and Bhattacharya [5], Sharma [6], Aktas et al. [7] and many others. In accordance of this,
several authors applied the theory of fuzzy soft sets, intuitionistic fuzzy soft sets to different
algebraic structures, for instance, Maji et al. [8–10], Dinda and Samanta [11], Ghosh et al.
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[12], Mondal and Roy [13], Chetia and Das [14], Basu et al. [15], Augunoglu and Aygun
[16], Yaqoob et al. [17], Varol et al. [18], Zhang [19].

As a generalisation of fuzzy set and intuitionistic fuzzy set theory, the neutrosophic set
theory makes description of the objective world more realistic, practical and very promis-
ing in nature. The concept of neutrosophic set (NS) was first introduced by Smarandache
[20]. Later, Maji [21] has combined this concept with the soft set theory. Consequently, the
notion of Neutrosophic soft set (NSS) theory has been innovated. Using this concept, several
mathematicians have produced their research works in different mathematical structures for
instance Sahin et al. [22], Broumi [23], Bera and Mahapatra [24], Maji [25], Broumi et al.
[26–33]. But, this concept has been redefined by Deli and Broumi [34]. Accordingly, Bera
and Mahapatra [35–38] have studied some algebraic structures upon this concept.

The motivation of the present paper is to extend the notion of neutrosophic soft groups
[35] along with investigation of some related properties and theorems. Section “Preliminar-
ies” gives some preliminary useful definitions related to it. In section “Neutrosophic Normal
Soft Groups”, the notion of neutrosophic normal soft groups (NNSG) is introduced. Sec-
tion “Neutrosophic Soft Cosets” deals with the neutrosophic soft cosets. Finally in section
“Neutrosophic Soft Homomorphism”, there has been studied about neutrosophic soft homo-
morphism.

Preliminaries

We recall some basic definitions related to fuzzy set, soft set, neutrosophic soft set, neutro-
sophic soft groups for the sake of completeness.

Definition 2.1 [39] 1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is continuous t-norm
if ∗ satisfies the following conditions:

(i) ∗ is commutative and associative.
(ii) ∗ is continuous.
(iii) a ∗ 1 = 1 ∗ a = a, ∀a ∈ [0, 1].
(iv) a ∗ b ≤ c ∗ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].
A few examples of continuous t-norm are a ∗ b = ab, a ∗ b = min{a, b}, a ∗ b =

max{a + b − 1, 0}.
2. A binary operation � : [0, 1] × [0, 1] → [0, 1] is continuous t-conorm (s-norm) if �

satisfies the following conditions:

(i) � is commutative and associative.
(ii) � is continuous.
(iii) a � 0 = 0 � a = a, ∀a ∈ [0, 1].
(iv) a � b ≤ c � d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].
A few examples of continuous s-norm are a�b = a+b−ab, a�b = max{a, b}, a�b =

min{a + b, 1}.
If for all a ∈ [0, 1], a ∗ a = a and a � a = a, then ∗ is called an idempotent t-norm and

� is called an idempotent s-norm. If ∗ and � are continuous t-norm and s-norm, respectively,
then for a, b, c ∈ [0, 1],
(i) (a ∗ b) ∧ (a ∗ c) = a ∗ (b ∧ c), (a ∗ b) ∨ (a ∗ c) = a ∗ (b ∨ c)
(ii) (a � b) ∧ (a � c) = a � (b ∧ c), (a � b) ∨ (a � c) = a � (b ∨ c)
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Definition 2.2 [20] A neutrosophic set (NS) on the universe of discourse U is defined as:

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U },
where T, I, F : U →]−0, 1+[ and −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

From philosophical point of view, the neutrosophic set (NS) takes the value from real
standard or nonstandard subsets of ]−0, 1+[. But in real life application in scientific and
engineering problems, it is difficult to use NS with value from real standard or nonstandard
subset of ]−0, 1+[. Hence we consider the NS which takes the value from the subset of [0, 1].
Definition 2.3 [3] Let U be an initial universe set and E be a set of parameters. Let P(U )

denote the power set of U . Then for A ⊆ E , a pair (F, A) is called a soft set over U , where
F : A → P(U ) is a mapping.

Definition 2.4 [21] Let U be an initial universe set and E be a set of parameters. Let P(U )

denote the set of all NSs ofU . Then for A ⊆ E , a pair (F, A) is called an NSS overU , where
F : A → P(U ) is a mapping.

This concept has been modified by Deli and Broumi [34] as given below.

Definition 2.5 [34] Let U be an initial universe set and E be a set of parameters. Let P(U )

denote the set of all NSs of U . Then, a neutrosophic soft set N over U is a set defined
by a set valued function fN representing a mapping fN : E → P(U ) where fN is called
approximate function of the neutrosophic soft set N . In other words, the neutrosophic soft set
is a parameterized family of some elements of the set P(U ) and therefore it can be written
as a set of ordered pairs,

N = {(e, {〈x, T fN (e)(x), I fN (e)(x), FfN (e)(x)〉 : x ∈ U }) : e ∈ E}
where T fN (e)(x), I fN (e)(x), FfN (e)(x) ∈ [0, 1], respectively called the truth-membership,
indeterminacy-membership, falsity-membership function of fN (e). Since supremum of each
T, I, F is 1 so the inequality 0 ≤ T fN (e)(x) + I fN (e)(x) + FfN (e)(x) ≤ 3 is obvious.

Example 2.5.1 Let U = {h1, h2, h3} be a set of houses and E = {e1(beautiful), e2(wooden),
e3(costly)} be a set of parameters with respect to which the nature of houses are described.
Let

fN (e1) = {〈h1, (0.5, 0.6, 0.3)〉, 〈h2, (0.4, 0.7, 0.6)〉, 〈h3, (0.6, 0.2, 0.3)〉};
fN (e2) = {〈h1, (0.6, 0.3, 0.5)〉, 〈h2, (0.7, 0.4, 0.3)〉, 〈h3, (0.8, 0.1, 0.2)〉};
fN (e3) = {〈h1, (0.7, 0.4, 0.3)〉, 〈h2, (0.6, 0.7, 0.2)〉, 〈h3, (0.7, 0.2, 0.5)〉};

Then N = {[e1, fN (e1)], [e2, fN (e2)], [e3, fN (e3)]} is an NSS over (U, E). The tabular
representation of the NSS N is as (Table1):

Table 1 Tabular form of NSS N fN (e1) fN (e2) fN (e3)

h1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)

h2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)

h3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)
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Definition 2.5.2 [34] The complement of a neutrosophic soft set N is denoted by Nc and is
defined by:

Nc = {(
e,

{〈x, FfN (e)(x), 1 − I fN (e)(x), T fN (e)(x)〉 : x ∈ U
}) : e ∈ E

}

Definition 2.5.3 [34] Let N1 and N2 be two NSSs over the common universe (U, E). Then
N1 is said to be the neutrosophic soft subset of N2 if

T fN1 (e)(x) ≤ T fN2 (e)(x), I fN1 (e)(x) ≥ I fN2 (e)(x), FfN1 (e)(x) ≥ FfN2 (e)(x); ∀e ∈ E and x ∈ U.

We write N1 ⊆ N2 and then N2 is the neutrosophic soft superset of N1.

Definition 2.5.4 [34]

1. Let N1 and N2 be twoNSSs over the common universe (U, E). Then their union is denoted
by N1 ∪ N2 = N3 and is defined by:

N3 =
{(

e,
{
〈x, T fN3 (e)(x), I fN3 (e)(x), FfN3 (e)(x)〉 : x ∈ U

})
: e ∈ E

}

where T fN3 (e)(x) = T fN1 (e)(x) � T fN2 (e)(x), I fN3 (e)(x) = I fN1 (e)(x) ∗ I fN2 (e)(x),

FfN3 (e)(x) = FfN1 (e)(x) ∗ FfN2 (e)(x);
2. Let N1 and N2 be two NSSs over the common universe (U, E). Then their intersection is
denoted by N1 ∩ N2 = N3 and is defined by:

N3 =
{(

e,
{
〈x, T fN3 (e)(x), I fN3 (e)(x), FfN3 (e)(x)〉 : x ∈ U

})
: e ∈ E

}

where T fN3 (e)(x) = T fN1 (e)(x) ∗ T fN2 (e)(x), I fN3 (e)(x) = I fN1 (e)(x) � I fN2 (e)(x),

FfN3 (e)(x) = FfN1 (e)(x) � FfN2 (e)(x);
Definition 2.6 [35] 1. Let N1 and N2 be two NSSs over the common universe (U, E). Then
their ‘AND’ operation is denoted by N1 ∧ N2 = N3 and is defined by:

N3 =
{[

(a, b),
{
〈x, T fN3 (a,b)(x), I fN3 (a,b)(x), FfN3 (a,b)(x)〉 : x ∈ U

}]
: (a, b) ∈ E × E

}

where T fN3 (a,b)(x) = T fN1 (a)(x) ∗ T fN2 (b)(x), I fN3 (a,b)(x) = I fN1 (a)(x) � I fN2 (b)(x),

FfN3 (a,b)(x) = FfN1 (a)(x) � FfN2 (b)(x);
2.Let N1 and N2 be twoNSSs over the commonuniverse (U, E). Then their ‘OR’operation

is denoted by N1 ∨ N2 = N3 and is defined by:

N3 = {[(a, b), {〈x, T fN3 (a,b)(x), I fN3 (a,b)(x), FfN3 (a,b)(x)〉 : x ∈ U }] : (a, b) ∈ E × E}
where T fN3 (a,b)(x) = T fN1 (a)(x) � T fN2 (b)(x), I fN3 (a,b)(x) = I fN1 (a)(x) ∗ I fN2 (b)(x),

FfN3 (a,b)(x) = FfN1 (a)(x) ∗ FfN2 (b)(x);
Definition 2.7 [7] Let (F, A) be a soft set over the group G. Then (F, A) is called a soft
group over G if F(a) is a subgroup of G, ∀a ∈ A.
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Table 2 Tabular form of neutrosophic soft group N

fN (α) fN (β) fN (γ ) fN (δ)

e (0.65, 0.34, 0.14) (0.88, 0.12, 0.72) (0.72, 0.21, 0.16) (0.69, 0.31, 0.32)

a (0.71, 0.22, 0.78) (0.71, 0.19, 0.44) (0.84, 0.16, 0.25) (0.62, 0.32, 0.42)

b (0.75, 0.25, 0.52) (0.83, 0.11, 0.28) (0.69, 0.31, 0.39) (0.58, 0.41, 0.66)

c (0.67, 0.32, 0.29) (0.75, 0.21, 0.19) (0.79, 0.19, 0.41) (0.71, 0.27, 0.53)

Definition 2.8 [35] A neutrosophic set A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ G} over a
group (G, o) is called a neutrosophic subgroup of (G, o) if

(i)

⎧
⎨

⎩

TA(xoy) ≥ TA(x) ∗ TA(y)
IA(xoy) ≤ IA(x) � IA(y)
FA(xoy) ≤ FA(x) � FA(y); for x, y ∈ G.

(i i)

⎧
⎨

⎩

TA(x−1) ≥ TA(x)
IA(x−1) ≤ IA(x)
FA(x−1) ≤ FA(x); for x ∈ G.

AnNSS N over a group (G, o) is called a neutrosophic soft group if fN (e) is a neutrosophic
subgroup of (G, o) for each e ∈ E .

Example 2.8.1 Let us consider the Klein’s -4 group V = {e, a, b, c} and E = {α, β, γ, δ} be
the set of parameters. We define fN (α), fN (β), fN (γ ), fN (δ) as given by Table 2.

The t-norm (∗) and s-norm (�) are defined as a ∗ b = max{a + b − 1, 0}, a � b =
min{a + b, 1}; Then, N forms a neutrosophic soft group over (V, E).

Proposition 2.8.2 [35]AnNSS N over the group (G, o) is called a neutrosophic soft group iff
followings hold on the assumption that truth membership (T), indeterministic membership (I)
and falsity membership (F) functions of an NSS obey the idempotent t-norm and idempotent
s-norm disciplines.

T fN (e)(xoy
−1) ≥ T fN (e)(x) ∗ T fN (e)(y),

I fN (e)(xoy
−1) ≤ I fN (e)(x) � I fN (e)(y),

FfN (e)(xoy
−1) ≤ FfN (e)(x) � FfN (e)(y)); ∀x, y ∈ G,∀e ∈ E .

Proposition 2.8.3 [35] Let N be a neutrosophic soft group over the group G. Then for each
x ∈ G, followings hold.

(i) T fN (e)(x−1) = T fN (e)(x), I fN (e)(x−1) = I fN (e)(x), FfN (e)(x−1) = FfN (e)(x);
(ii) T fN (e)(eG) ≥ T fN (e)(x), I fN (e)(eG) ≤ I fN (e)(x), FfN (e)(eG) ≤ FfN (e)(x);

if T follows the idempotent t-norm and I, F follow the idempotent s-norm disciplines,
respectively. (eG being the identity element of G.)

Definition 2.9 [35] Let g be a mapping from a set X to a set Y . If M and N are two
neutrosophic soft sets over X and Y , respectively, then the image of M under g is defined
as a neutrosophic soft set g(M) = {[e, fg(M)(e)] : e ∈ E} over Y , where T fg(M)(e)(y) =
T fM (e)[g−1(y)], I fg(M)(e)(y) = I fM (e)[g−1(y)], Ffg(M)(e)(y) = FfM (e)[g−1(y)]; ∀y ∈ Y .
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The pre-image of N under g is defined as a neutrosophic soft set g−1(N ) =
{[e, fg−1(N )(e)] : e ∈ E} over X , where T fg−1(N )

(e)(x) = T fN (e)[g(x)], I fg−1(N )
(e)(x) =

I fN (e)[g(x)], Ffg−1(N )
(e)(x) = FfN (e)[g(x)]; ∀x ∈ X .

Neutrosophic Normal Soft Groups

In this section,we have defined the neutrosophic normal soft groups and some basic properties
related to it.

Unless otherwise stated, E is treated as the parametric set through out this paper and
e ∈ E , an arbitrary parameter.

Definition 3.1 A neutrosophic soft group N over the group (G, o) is called neutrosophic
normal soft group (briefly, NNSG) if fN (e) is a neutrosophic normal subgroup of (G, o) for
each e ∈ E i.e.,

⎧
⎨

⎩

T fN (e)(yoxoy−1) ≥ T fN (e)(x)
I fN (e)(yoxoy−1) ≤ I fN (e)(x)
FfN (e)(yoxoy−1) ≤ FfN (e)(x) for x ∈ fN (e), y ∈ G.

Definition 3.1.1 Aneutrosophic soft group N over the groupG is called abelian neutrosophic
soft group if ∀x, y ∈ G, ∀e ∈ E , the following triplet hold.

⎧
⎨

⎩

T fN (e)(xoy) = T fN (e)(yox)
I fN (e)(xoy) = I fN (e)(yox)
FfN (e)(xoy) = FfN (e)(yox).

Example 3.1.2 Define a mapping fM : N → NS(Z), where N be the set of natural number,
Z be the set of all integers and for any n ∈ N, as:

T fM (n)(x) =
{
0 if x is odd
2
n if x is even.

I fM (n)(x) =
{ 1

n if x is odd
0 if x is even.

FfM (n)(x) =
{
1 − 3

n if x is odd
0 if x is even.

Corresponding t-norm (∗) and s-norm (�) are defined as a ∗ b = min{a, b}, a � b =
max{a, b}; Then, M forms a neutrosophic normal soft group over [(Z,+),N].
Proposition 3.2 Let N be an NNSG over a group G. Then ∀x, y ∈ G, ∀e ∈ E,

(i) T fN (e)(yoxoy−1) = T fN (e)(x), I fN (e)(yoxoy−1) = I fN (e)(x), FfN (e)(yoxoy−1) =
FfN (e)(x);
(ii) N is an abelian neutrosophic soft group over G.

Proof

(i) T fN (e)(x) = T fN (e)[(y−1oy)oxo(y−1oy)]
= T fN (e)[y−1o(yoxoy−1)oy)]
= T fN (e)[y−1o(yoxoy−1)o(y−1)−1]
≥ T fN (e)(yoxoy

−1), by definition.
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Now from definition, T fN (e)(yoxoy−1) = T fN (e)(x);
The other two results hold in similar fashion.

(ii) T fN (e)(x) = T fN (e)(yoxoy
−1)

⇒ T fN (e)(xoy) = T fN (e)(yo(xoy)oy
−1), replacing x by xoy.

⇒ T fN (e)(xoy) = T fN (e)(yox)

Similarly, I fN (e)(xoy) = I fN (e)(yox), FfN (e)(xoy) = FfN (e)(yox);
Hence, N is an abelian neutrosophic soft group over G. ��

Theorem 3.3 Let N1 and N2 be two NNSGs over the group X. Then,

(i) N1 ∩ N2 is also NNSG over X.
(ii) N1 ∧ N2 is also NNSG over X.

Proof (i) Let N3 = N1 ∩ N2. Then for x, y ∈ X and e ∈ E ,

T fN3 (e)(yoxoy
−1) = T fN1 (e)(yoxoy

−1) ∗ T fN2 (e)(yoxoy
−1)

≥ T fN1 (e)(x) ∗ T fN2 (e)(x)

= T fN3 (e)(x)

I fN3 (e)(yoxoy
−1) = I fN1 (e)(yoxoy

−1) � I fN2 (e)(yoxoy
−1)

≤ I fN1 (e)(x) � I fN2 (e)(x)

= I fN3 (e)(x)

Similarly, FfN3 (e)(yoxoy−1) ≤ FfN3 (e)(x);
Hence, the 1st part is completed.
(ii) Let N3 = N1 ∧ N2. Then for x, y ∈ X and (a, b) ∈ E × E ;

T fN3 (a,b)(yoxoy
−1) = T fN1 (a)(yoxoy

−1) ∗ T fN2 (b)(yoxoy
−1)

≥ T fN1 (a)(x) ∗ T fN2 (b)(x)

= T fN3 (a,b)(x)

I fN3 (a,b)(yoxoy
−1) = I fN1 (a)(yoxoy

−1) � I fN2 (b)(yoxoy
−1)

≤ I fN1 (a)(x) � I fN2 (b)(x)

= I fN3 (a,b)(x)

Similarly, FfN3 (a,b)(yoxoy−1) ≤ FfN3 (a,b)(x);
This completes the final part. ��

Remark 3.3.1 Generally, union of two neutrosophic normal soft groups is not so. It is possible
if any one is contained in other.

For example, let G = (Z,+), E = 3Z. Consider two neutrosophic soft groups N1 and
N2 over G as following. For x, n ∈ Z

T fN1 (3n)(x) =
{ 1

2 if x = 6kn, ∃k ∈ Z
0 others.

I fN1 (3n)(x) =
{
0 if x = 6kn, ∃k ∈ Z
1
5 others.

FfN1 (3n)(x) =
{
0 if x = 6kn, ∃k ∈ Z
1
4 others.
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and

T fN2 (3n)(x) =
{ 2

3 if x = 9kn, ∃k ∈ Z
0 others.

I fN2 (3n)(x) =
{
0 if x = 9kn, ∃k ∈ Z
1
6 others.

FfN2 (3n)(x) =
{ 1

2 if x = 9kn, ∃k ∈ Z
1 others.

Corresponding t-norm (∗) and s-norm (�) are defined as a ∗ b = min{a, b}, a � b =
max{a, b}. Then, obviously N1, N2 are normal over G.

Let N1 ∩ N2 = N3; Then for n = 1, x = 6, y = 9 we have,

T fN3 (3)(6 − 9) = T fN1 (3)(−3) � T fN2 (1)(−3) = max{0, 0} = 0

and

T fN3 (3)(6) ∗ T fN3 (3)(9)

= {T fN1 (3)(6) � T fN2 (3)(6)} ∗ {T fN1 (3)(9) � T fN2 (3)(9)}

= min

[
max

{
1

2
, 0

}
,max

{
0,

2

3

}]

= min

(
1

2
,
2

3

)

= 1

2

Hence T fN3 (3)(6 − 9) < T fN3 (3)(6) ∗ T fN3 (3)(9)
i.e., N1 ∪ N2 is not a neutrosophic soft group, here.
Now, if we define N2 over G as following:

T fN2 (3n)(x) =
{ 1

4 if x = 12kn, ∃k ∈ Z
0 others.

I fN2 (3n)(x) =
{ 1

2 if x = 12kn, ∃k ∈ Z
1 others.

FfN2 (3n)(x) =
{
0 if x = 12kn, ∃k ∈ Z
2
5 others.

Then, it can be easily verified that N2 ⊆ N1 and N1 ∪N2 is a neutrosophic normal soft group
over G.

Theorem 3.4 Let N be an NNSG over the group G. Suppose, N |eG = { fN (e)|eG : e ∈ E}
where, fN (e)|eG = {x ∈ G : T fN (e)(x) = T fN (e)(eG), I fN (e)(x) = I fN (e)(eG), FfN (e)(x) =
FfN (e)(eG)}, eG being the unit element of G. Then N |eG is a normal soft group over G,
on the assumption that truth membership (T), indeterministic membership (I) and falsity
membership (F) functions obey the t-norm and s-norm disciplines.
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Proof Since N is a neutrosophic soft group over G, then for x, y ∈ fN (e)|eG ;
T fN (e)(xoy

−1) ≥ T fN (e)(x) ∗ T fN (e)(y)

= T fN (e)(eG) ∗ T fN (e)(eG)

= T fN (e)(eG)

Further, T fN (e)(eG) = T fN (e){(xoy−1)o(xoy−1)−1}
≥ T fN (e)(xoy

−1) ∗ T fN (e)(xoy
−1)

= T fN (e)(xoy
−1)

Hence T fN (e)(xoy−1) = T fN (e)(eG);
Similar conclusion can be drawn in favour of indeterminacy(I) and falsity membership(F)

function.
Therefore, xoy−1 ∈ fN (e)|eG and so fN (e)|eG is a subgroup of G in classical sense for

each e ∈ E . Thus, N |eG is a soft group over G.
Next, since N is an NNSG over G then for each e ∈ E , fN (e) is a neutrosophic normal

subgroup over G.
Let x ∈ fN (e)|eG and y ∈ G. Then,

T fN (e)(yoxoy
−1) = T fN (e)(x) = T fN (e)(eG)

I fN (e)(yoxoy
−1) = I fN (e)(x) = I fN (e)(eG)

FfN (e)(yoxoy
−1) = FfN (e)(x) = FfN (e)(eG)

This shows that yoxoy−1 ∈ fN (e)|eG for x ∈ fN (e)|eG and y ∈ G.
Hence, fN (e)|eG is a normal subgroup of G in classical sense for each e ∈ E and so N |eG

is a normal soft group over G in combination of both.

Theorem 3.5 Let g : X → Y be an isomorphism in classical sense. If N is a normal
neutrosophic soft group over X, then g(N ) is so over Y .

Proof Let for z2 ∈ fg(N )(e), y ∈ Y there be exist z1 ∈ fN (e), x ∈ X so that y = g(x), z2 =
g(z1). Now,

T fg(N )(e)(yoz2oy
−1) = T fN (e)[g−1(yoz2oy

−1)]
= T fN (e)[g−1(y)og−1(z2)og

−1(y−1)], as g−1 is homomorphism.

= T fN (e)[g−1(y)og−1(z2)o(g
−1(y))−1], as g−1 is homomorphism.

= T fN (e)(xoz1ox
−1)

≥ T fN (e)(z1)

= T fN (e)[g−1(z2)]
= T fg(N )(e)(z2)

I fg(N )(e)(yoz2oy
−1) = I fN (e)[g−1(yoz2oy

−1)]
= I fN (e)[g−1(y)og−1(z2)og

−1(y−1)], as g−1 is homomorphism.

= I fN (e)[g−1(y)og−1(z2)o(g
−1(y))−1], as g−1 is homomorphism.

= I fN (e)(xoz1ox
−1)

≤ I fN (e)(z1)

= I fN (e)[g−1(z2)]
= I fg(N )(e)(z2)
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Similarly, Ffg(N )(e)(yoz2oy
−1) ≤ Ffg(N )(e)(z2);

This completes the proof. ��

Neutrosophic Soft Cosets

Definition 4.1 Let N be a neutrosophic soft group over the group G and x ∈ G be a fixed
element.

Then the set xoN = {xofN (e) : ∀e ∈ E} where,
xofN (e) = {〈g, TxofN (e)(g), IxofN (e)(g), FxofN (e)(g)〉 : ∀g ∈ G}

= {〈g, T fN (e)(x
−1og), I fN (e)(x

−1og), FfN (e)(x
−1og)〉 : ∀g ∈ G}

is called left neutrosophic soft coset of N in G.
Similarly, the right neutrosophic soft coset of N in G is

Nox = { fN (e)ox : ∀e ∈ E} where,
fN (e)ox = {〈g, T fN (e)(gox

−1), I fN (e)(gox
−1), FfN (e)(gox

−1)〉 : ∀g ∈ G}
Proposition 4.1.1 N is NNSG over G ⇔ left and right neutrosophic soft cosets are equal.

Proof First suppose that N is an NNSG over G. Then,

xofN (e) = {〈g, TxofN (e)(g), IxofN (e)(g), FxofN (e)(g)〉 : ∀g ∈ G}
= {〈g, T fN (e)(x

−1og), I fN (e)(x
−1og), FfN (e)(x

−1og)〉 : ∀g ∈ G}
= {〈g, T fN (e)(gox

−1), I fN (e)(gox
−1), FfN (e)(gox

−1)〉 : ∀g ∈ G}
= {〈g, T fN (e)ox (g), I fN (e)ox (g), FfN (e)ox (g)〉 : ∀g ∈ G}
= fN (e)ox

Now, xoN = {xofN (e) : ∀e ∈ E} = { fN (e)ox : ∀e ∈ E} = Nox
Next suppose that xoN = Nox . Then,

TxofN (e)(g) = T fN (e)ox (g), IxofN (e)(g) = I fN (e)ox (g), FxofN (e)(g) = FfN (e)ox (g)

⇒ T fN (e)(x
−1og) = T fN (e)(gox

−1), I fN (e)(x
−1og) = I fN (e)(gox

−1), FfN (e)(x
−1og)

= FfN (e)(gox
−1)

⇒ T fN (e)(gox
−1) = T fN (e)(x

−1og), I fN (e)(gox
−1) = I fN (e)(x

−1og), FfN (e)(gox
−1)

= FfN (e)(x
−1og)

⇒ T fN (e)(xogox
−1) = T fN (e)(g), I fN (e)(xogox

−1) = I fN (e)(g), FfN (e)(xogox
−1)

= FfN (e)(g)

This shows that N is an NNSG over G.
Thus if N is NNSG over G then left and right neutrosophic soft cosets coincide. In that

case, we call only neutrosophic soft coset instead of left or right neutrosophic soft coset,
separately. ��
Example 4.1.2 Let G be a classical group. Then N = {〈e, fN (e)〉 : ∀e ∈ E} where,
fN (e) = {〈x, T fN (e)(x), I fN (e)(x), FfN (e)(x)〉 : ∀x ∈ G} with T fN (e)(x) = T fN (e)(eG),
I fN (e)(x) = I fN (e)(eG), FfN (e)(x) = FfN (e)(eG); (eG being identity element in G) is an
NNSG of G.
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In that case, we can get a neutrosophic soft coset.
For the sake of convenience, we use multiplication as a binary composition in rest of this

paper unless otherwise stated e.g., xoy = xy.

Theorem 4.2 Let N be an NNSG over the group G. � be the collection of all distinct
neutrosophic soft cosets of N in G. Then � is a group in classical sense under the law of
composition xNyN = (xy)N ∀x, y ∈ G.

Proof First we show that the composition is well defined in the sense that if xN = x ′N and
yN = y′N then xNyN = (x ′y′)N for x, y, x ′, y′ ∈ G.

Now, xN = x ′N implies x−1x ′ = fN (e1), e1 ∈ E and yN = y′N implies y−1y′ =
fN (e2), e2 ∈ E .
We show, (xy)N = (x ′y′)N i,e (xy)−1(x ′y′) ∈ N .

Now, (xy)−1(x ′y′) = y−1x−1x ′y′

= y−1 fN (e1)y
′

= y−1y′ fN (e1) [as y′N = Ny′]
= fN (e2) fN (e1)

= fN (e3) ∈ N , e3 ∈ E;
Hence, composition is well defined. Now,

(i) Clearly, closure axiom is satisfied.
(ii) xN [yNzN ] = xN (yz)N = x(yz)N and [xNyN ]zN = (xy)NzN = (xy)zN for

x, y, z ∈ G.

Now x(yz) = (xy)z, since G is a group and so (.) is associative.
(iii) eGNxN = (eGx)N = xN and xNeGN = (xeG)N = xN , for eG being unity in G.
(iv) Finally, x−1NxN = (x−1x)N = eGN = N and

xNx−1N = (xx−1)N = eGN = N .

��
Thus � is a group. This group is said to be the quotient group (or the factor group)of G

by N and is denoted by G/N .

Definition 4.3 Let G be a groupoid and N1, N2 be two NSSs over G. Then the neutrosophic
soft product of N1 and N2 is denoted by N1N2 and is defined as N1N2 = N3 where, for
(a, b) ∈ E × E and x ∈ G,

T fN3 (a,b)(x) =
{
maxx=yz[T fN1 (a)(y) ∗ T fN2 (b)(z)]
0 if x is not expressible as x = yz.

I fN3 (a,b)(x) =
{
minx=yz[I fN1 (a)(y) � I fN2 (b)(z)]
1 if x is not expressible as x = yz.

FfN3 (a,b)(x) =
{
minx=yz[FfN1 (a)(y) � FfN2 (b)(z)]
1 if x is not expressible as x = yz.

Theorem 4.4 Let N be an NNSG over the group G. Then there exists a natural homomor-
phism φ : G → G/N defined by φ(g) = gN, ∀g ∈ G in classical sense.
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Proof Let φ : G → G/N be given by φ(g) = g fN (e),∀e ∈ E .
We show that φ is homomorphism i.e., φ(gh) = φ(g)φ(h), ∀g, h ∈ G.
i.e., (gh) fN (e) = (g fN (e))(h fN (e)); Now for x ∈ G,

(g fN (e))(x) = 〈Tg fN (e)(x), Ig fN (e)(x), Fg fN (e)(x)〉
= 〈T fN (e)(g

−1x), I fN (e)(g
−1x), FfN (e)(g

−1x)〉;
(h fN (e))(x) = 〈T fN (e)(h

−1x), I fN (e)(h
−1x), FfN (e)(h

−1x)〉;
((gh) fN (e))(x) = 〈T fN (e)((gh)−1x), I fN (e)((gh)−1x), FfN (e)((gh)−1x)〉;

Then,

[(g( fN (e)))(h( fN (e)))](x) = 〈maxx=rs[Tg( fN (e))(r) ∗ Th( fN (e))(s)],
minx=rs[Ig( fN (e))(r) � Ih( fN (e))(s)],
minx=rs[Fg( fN (e))(r) � Fh( fN (e))(s)]〉

= 〈maxx=rs[T fN (e)(g
−1r) ∗ T fN (e)(h

−1s)],
minx=rs[I fN (e)(g

−1r) � I fN (e)(h
−1s)],

minx=rs[FfN (e)(g
−1r) � FfN (e)(h

−1s)]〉

Further, T fN (e)((gh)−1x) = T fN (e)(h
−1g−1x)

= T fN (e)(h
−1g−1rs), [putting x = rs]

= T fN (e)(h
−1(g−1rsh−1)h)

= T fN (e)(g
−1rsh−1), [as N is NNSG ]

≥ T fN (e)(g
−1r) ∗ T fN (e)(sh

−1)

Hence, T fN (e)((gh)−1x) = maxx=rs[T fN (e)(g
−1r) ∗ T fN (e)(h

−1s)];
Similarly, I fN (e)((gh)−1x) = minx=rs[I fN (e)(g

−1r) � I fN (e)(h
−1s)];

FfN (e)((gh)−1x) = minx=rs[FfN (e)(g
−1r) � FfN (e)(h

−1s)];
This shows that, [(gh) fN (e)](x) = [(g fN (e))(h fN (e))](x) ⇒ φ(gh) = φ(g)φ(h). ��

Lemma 4.5 Let N be a neutrosophic soft group over a finite group G. Define, ∀e ∈ E,

H = {g ∈ G : T fN (e)(g) = T fN (e)(eG); I fN (e)(g) = I fN (e)(eG); FfN (e)(g) = FfN (e)(eG)}
K = {x ∈ G : Nx = NeG} i,e {x ∈ G : T fN (e)x (g) = T fN (e)eG (g); I fN (e)x (g) =

I fN (e)eG (g); FfN (e)x (g) = FfN (e)eG (g); ∀g ∈ G} where eG is the unity in G.
If ∗ is idempotent t-norm and � is idempotent s-norm, then H and K are subgroups of G.

Further H = K.

Proof Let g, h ∈ H . Then,

T fN (e)(gh) ≥ T fN (e)(g) ∗ T fN (e)(h)

= T fN (e)(eG) ∗ T fN (e)(eG)

= T fN (e)(eG)
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Hence, T fN (e)(gh) ≥ T fN (e)(eG).

Further, T fN (e)(gg
−1) ≥ T fN (e)(g) ∗ T fN (e)(g)

i.e., T fN (e)(eG) ≥ T fN (e)(g)

Thus, T fN (e)(eG) ≥ T fN (e)(g). Putting ‘gh’ instead of g, T fN (e)(eG) ≥ T fN (e)(gh).
Therefore,

T fN (e)(gh) = T fN (e)(eG) (1)

Next, I fN (e)(gh) ≤ I fN (e)(g) � I fN (e)(h)

= I fN (e)(eG) � I fN (e)(eG)

= I fN (e)(eG)

Hence, I fN (e)(gh) ≤ I fN (e)(eG)

Further, I fN (e)(gg
−1) ≤ I fN (e)(g) � I fN (e)(g)

i.e., I fN (e)(eG) ≤ I fN (e)(g)

Thus, I fN (e)(eG) ≤ I fN (e)(g). Putting ‘gh’instead of g, I fN (e)(eG) ≤ I fN (e)(gh).
Hence,

I fN (e)(gh) = I fN (e)(eG) (2)

In a similar way,

FfN (e)(gh) = FfN (e)(eG) (3)

So by (1), (2), (3) it follows that, gh ∈ H for g, h ∈ H .
Now since G is finite, so H is a subgroup of G.
We finally show that H = K . Let k ∈ K . Then for g ∈ G,

T fN (e)k(g) = T fN (e)eG (g), I fN (e)k(g) = I fN (e)eG (g), FfN (e)k(g) = FfN (e)eG (g);
⇒ T fN (e)(gk

−1) = T fN (e)(geG
−1), I fN (e)(gk

−1) = I fN (e)(geG
−1), FfN (e)(gk

−1)

= FfN (e)(geG
−1);

⇒ T fN (e)(gk
−1) = T fN (e)(g), I fN (e)(gk

−1) = I fN (e)(g), FfN (e)(gk
−1) = FfN (e)(g);

⇒ T fN (e)(k
−1) = T fN (e)(eG), I fN (e)(k

−1) = I fN (e)(eG), FfN (e)(k
−1) = FfN (e)(eG);

(putting g = eG)

This shows that k−1 ∈ H ⇒ k ∈ H as H is a subgroup of G.
Hence,

K ⊆ H (4)

Next, let h ∈ H .
Then ∀g ∈ G, T fN (e)h(g) = T fN (e)(gh−1) and T fN (e)eG (g) = T fN (e)(geG−1) =

T fN (e)(g).

Now, T fN (e)(gh
−1) ≥ T fN (e)(g) ∗ T fN (e)(h), by proposition (2.8.3)

= T fN (e)(g) ∗ T fN (e)(eG)

≥ T fN (e)(g) ∗ T fN (e)(g), by proposition (2.8.3)

= T fN (e)(g)
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Also, T fN (e)(g) = T fN (e)(gh
−1h)

≥ T fN (e)(gh
−1) ∗ T fN (e)(h)

= T fN (e)(gh
−1) ∗ T fN (e)(eG)

≥ T fN (e)(gh
−1) ∗ T fN (e)(gh

−1), by proposition (2.8.3)

= T fN (e)(gh
−1)

This shows that T fN (e)(gh−1) = T fN (e)(g). Similar conclusion can be drawn in case of
indeterminacy(I) and falsity(F) membership functions.

Thus, h ∈ K and so

H ⊆ K (5)

Hence by (4) and (5), H = K and so K is also a subgroup of G. ��

Theorem 4.5.1 Let N be an NNSG over the group G. Let θ : G → G be a homomorphism.
Then θ leaves invariant the set

H = {
x ∈ G : T fN (e)(x) = T fN (e)(e); I fN (e)(x) = I fN (e)(e); FfN (e)(x) = FfN (e)(e)

}
.

Also θ induces a homomorphism θ of the neutrosophic soft coset of N defined by θ(Nx) =
Nθ(x), on the assumption that ∗ is idempotent t-norm and � is idempotent s-norm.

Proof By lemma (4.5), H is a subgroup of G in classical sense.
First we show that θ is well defined.
For x, y ∈ G, let Nx = Ny. We are to prove that Nθ(x) = Nθ(y).

Then, T fN (e)x (x) = T fN (e)y(x); T fN (e)x (y) = T fN (e)y(y), ∀e ∈ E .

⇒ T fN (e)(eG) = T fN (e)(xy
−1) = T fN (e)(yx

−1)

Similar result can be brought in case of indeterminacy(I) and falsity(F)membership functions.
Thus xy−1, yx−1 ∈ H .

Again, since θ(H) = H so θ(xy−1), θ(yx−1) ∈ H .
This implies T fN (e)(θ(xy−1)) = T fN (e)(θ(yx−1)) = T fN (e)(eG) and so on for I, F.

Now, T fN (e)θ(x)(g) = T fN (e)(gθ(x−1)), for g ∈ G

= T fN (e)(gθ(y−1yx−1))

= T fN (e)(gθ(y−1)θ(yx−1))

≥ T fN (e)(gθ(y−1)) ∗ T fN (e)(θ(yx−1))

= T fN (e)(gθ(y−1)) ∗ T fN (e)(eG)

≥ T fN (e)(gθ(y−1)) ∗ T fN (e)(gθ(y−1)), by proposition (2.8.3)

= T fN (e)(gθ(y−1))

= T fN (e)θ(y)(g)

Hence, T fN (e)θ(x)(g) ≥ T fN (e)θ(y)(g). Similarly, T fN (e)θ(x)(g) ≤ T fN (e)θ(y)(g) holds good.
Thus,

T fN (e)θ(x)(g) = T fN (e)θ(y)(g) (6)
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Next, I fN (e)θ(x)(g) = I fN (e)(gθ(x−1)) f or g ∈ G

= I fN (e)(gθ(y−1yx−1))

= I fN (e)(gθ(y−1)θ(yx−1))

≤ I fN (e)(gθ(y−1)) � I fN (e)(θ(yx−1))

= I fN (e)(gθ(y−1)) � I fN (e)(eG)

≤ I fN (e)(gθ(y−1)) � I fN (e)(gθ(y−1))

[by proposition (2.8.3), I fN (e)(eG) ≤ I fN (e)(gθ(y−1))]
= I fN (e)(gθ(y−1))

= I fN (e)θ(y)(g)

Thus, I fN (e)θ(x)(g) ≤ I fN (e)θ(y)(g). Similarly, I fN (e)θ(x)(g) ≥ I fN (e)θ(y)(g) holds good.
Thus,

I fN (e)θ(x)(g) = I fN (e)θ(y)(g) (7)

Similarly, also

FfN (e)θ(x)(g) = FfN (e)θ(y)(g) (8)

Therefore, fN (e)θ(x) = fN (e)θ(y),∀e ∈ E ⇒ Nθ(x) = Nθ(y).
Hence, θ is well defined.
Next we show θ is a homomorphism. For x, y ∈ G we are to prove that,

θ(Nx)(Ny) = θ(Nx)θ(Ny)

⇔ θ(Nxy) = θ(Nx)θ(Ny)

⇔ Nθ(xy) = Nθ(x)Nθ(y)

⇔ Nθ(xy) = Nθ(x)θ(y) (9)

As θ is homomorphism, so θ(xy) = θ(x)θ(y) holds ⇒ (9) holds ⇒ θ is a homomorphism.
��

Corollary 4.5.2 Thus θ defined above is an automorphism if θ is an automorphism and G
is finite.

Proof Since G is finite, it is easy to verify that θ is of finite order. Let the order of θ is k.
Then θk = I , the identity mapping.

We now prove that θ is one-to-one. For x, y ∈ G suppose Nθ(x) = Nθ(y). We like to
bring N (x) = N (y).

Now, θ [Nθ(x)] = θ [Nθ(y)]
⇒ Nθ(θ(x)) = Nθ(θ(y))

⇒ Nθ2(x) = Nθ2(y)

Iterating this, Nθk(x) = Nθk(y)

⇒ N (x) = N (y), as θk = I

Hence, θ is one-to-one i.e., θ is automorphism. ��
Corollary 4.5.3 With the hypothesis as in theorem (4.5.1), θ is an automorphism of G if θ

is an automorphism and H = {eG} in classical sense.
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Proof Let θ(x) = θ(y) for x, y ∈ G. We show that x = y.

Now, Nθ(x) = Nθ(y)

⇒ θ(Nx) = θ(Ny)

⇒ Nx = Ny, as θ is one-one.

⇒ T fN (e)x (y) = T fN (e)y(y); I fN (e)x (y) = I fN (e)y(y); FfN (e)x (y) = FfN (e)y(y)

⇒ T fN (e)(yx
−1) = T fN (e)(eG); I fN (e)(yx

−1) = I fN (e)(eG); I fN (e)(yx
−1)

= I fN (e)(eG)

⇒ yx−1 ∈ H = {eG}
⇒ yx−1 = eG

⇒ x = y

��

Neutrosophic Soft Homomorphism

In this section, first we define an NSS function, then define image and pre-image of an
NSS under an NSS function. In continuation, we introduce the notion of neutrosophic soft
homomorphism along with some of it’s properties.

If M be an NSS over U with respect to the parameter set E , we write (M, E), an NSS
over U.

Definition 5.1 Let ϕ : U → V and ψ : E → E be two functions where E is the parameter
set for each of the crisp sets U and V . Then the pair (ϕ, ψ) is called an NSS function from
U to V . We write, (ϕ, ψ) : U → V.

Definition 5.2 Let (M, E), (N , E) be two NSSs defined overU, V , respectively and (ϕ, ψ)

be an NSS function from U to V . Then,
(1) The image of (M, E) under (ϕ, ψ), denoted by (ϕ, ψ)(M, E), is an NSS over V and

is defined by:
(ϕ, ψ)(M, E) = (ϕ(M), ψ(E)) = {〈ψ(a), fϕ(M)〉 : a ∈ E} where ∀b ∈ ψ(E),∀y ∈ V,

T fϕ(M)(b)(y) =
{
maxϕ(x)=y maxψ(a)=b [T fM (a)(x)], if x ∈ ϕ−1(y)
0, otherwise.

I fϕ(M)(b)(y) =
{
minϕ(x)=y minψ(a)=b [I fM (a)(x)], if x ∈ ϕ−1(y)
1. otherwise.

Ffϕ(M)(b)(y) =
{
minϕ(x)=y minψ(a)=b [FfM (a)(x)], if x ∈ ϕ−1(y)
1, otherwise.

(2) The pre-image of (N , E) under (ϕ, ψ), denoted by (ϕ, ψ)−1(N , E), is an NSS over
U and is defined by:

(ϕ, ψ)−1(N , E) = (ϕ−1(N ), ψ−1(E)) where ∀a ∈ ψ−1(E),∀x ∈ U,

T f
ϕ−1(N )

(a)(x) = T fN [ψ(a)](ϕ(x))

I f
ϕ−1(N )

(a)(x) = I fN [ψ(a)](ϕ(x))

Ff
ϕ−1(N )

(a)(x) = FfN [ψ(a)](ϕ(x))

If ψ and ϕ is injective (surjective), then (ϕ, ψ) is injective (surjective).
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Example 5.2.1 Let E = N (the set of natural no.) be the parametric set and G = (Z,+) be
the group of all integers. Define a mapping fM : N → NS(Z) where, for any n ∈ N and
x ∈ Z,

T fM (n)(x) =
{
0 if x = 2k − 1, k ∈ Z
1
n if x = 2k, k ∈ Z.

I fM (n)(x) =
{ 1

2n if x = 2k − 1, k ∈ Z
0 if x = 2k, k ∈ Z.

FfM (n)(x) =
{
1 − 1

n if x = 2k − 1, k ∈ Z
0 if x = 2k, k ∈ Z.

Corresponding t-norm (∗) and s-norm (�) are defined asa∗b = min{a, b},a�b = max{a, b};
Then, (M,N) forms a neutrosophic soft group over (Z,+).

Now, let ϕ(x) = 3x + 1 and ψ(x) = x2 be two functions defined on Z. Then, we have an
NSS function (ϕ, ψ)(M,N) = (ϕ(M), ψ(N)) = (ϕ(M),N2) as follows:

For any a ∈ N2, y ∈ 3Z + 1, we have

T fM (a)(x) =
{
0 if x = 6k − 2, k ∈ Z
1√
a

if x = 6k + 1, k ∈ Z.

I fM (a)(x) =
{

1√
2a

if x = 6k − 2, k ∈ Z

0 if x = 6k + 1, k ∈ Z.

FfM (a)(x) =
{
1 − 1√

a
if x = 6k − 2, k ∈ Z

0 if x = 6k + 1, k ∈ Z.

Theorem 5.3 Let (N , E) be a neutrosophic soft group over a group G1 and (ϕ, ψ) be a
neutrosophic soft homomorphism from G1 to G2. Then (ϕ, ψ)(N , E) is a neutrosophic soft
group over G2.

Proof Let b ∈ ψ(E) and y1, y2 ∈ G2. For ϕ−1(y1) = φ or ϕ−1(y2) = φ, the proof is
straight forward.

So, we assume that there exists x1, x2 ∈ G1 such that ϕ(x1) = y1, ϕ(x2) = y2. Then,

T fϕ(N )(b)(y1y2) = maxϕ(x)=y1 y2 maxψ(a)=b [T fN (a)(x)]
≥ maxψ(a)=b [T fN (a)(x1x2)]
≥ maxψ(a)=b [T fN (a)(x1) ∗ T fN (a)(x2)]
= maxψ(a)=b [T fN (a)(x1)] ∗ maxψ(a)=b [T fN (a)(x2)]

T fϕ(N )(b)(y
−1
1 ) = max

ϕ(x)=y−1
1

maxψ(a)=b [T fN (a)(x)]
≥ maxψ(a)=b [T fN (a)(x

−1
1 )]

≥ maxψ(a)=b [T fN (a)(x1)]
Since, this inequality is satisfied for each x1, x2 ∈ G1 satisfying ϕ(x1) = y1, ϕ(x2) = y2 so
we have,

T fϕ(N )(b)(y1y2)

≥ (maxϕ(x1)=y1maxψ(a)=b [T fN (a)(x1)]) ∗ (maxϕ(x2)=y2maxψ(a)=b [T fN (a)(x2)])
= T fϕ(N )(b)(y1) ∗ T fϕ(N )(b)(y2)
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Also, T fϕ(N )(b)(y
−1
1 ) ≥ (maxϕ(x1)=y1maxψ(a)=b [T fN (a)(x1)]) = T fϕ(N )(b)(y1)

Similarly, we can show that

I fϕ(N )(b)(y1y2) ≤ I fϕ(N )(b)(y1) � I fϕ(N )(b)(y2), I fϕ(N )(b)(y
−1
1 ) ≥ I fϕ(N )(b)(y1);

Ffϕ(N )(b)(y1y2) ≤ Ffϕ(N )(b)(y1) � Ffϕ(N )(b)(y2), Ffϕ(N )(b)(y
−1
1 ) ≥ Ffϕ(N )(b)(y1);

This completes the proof. ��

Theorem 5.4 Let (M, E) be a neutrosophic soft group over a group G2 and (ϕ, ψ) be a
neutrosophic soft homomorphism from G1 to G2. Then (ϕ, ψ)−1(M, E) is a neutrosophic
soft group over G1.

Proof For a ∈ ψ−1(E) and x1, x2 ∈ G1, we have,

T f
ϕ−1(M)

(a)(x1x2) = T fM [ψ(a)](ϕ(x1x2))

= T fM [ψ(a)](ϕ(x1)ϕ(x2))

≥ T fM [ψ(a)](ϕ(x1)) ∗ T fM [ψ(a)](ϕ(x2))

= T f
ϕ−1(M)

(a)(x1) ∗ T f
ϕ−1(M)

(a)(x2)

T f
ϕ−1(M)

(a)(x
−1
1 ) = T fM [ψ(a)]

(
ϕ

(
x−1
1

))

= T fM [ψ(a)]
(
ϕ(x1)

−1)

≥ T fM [ψ(a)](ϕ(x1))

= T f
ϕ−1(M)

(a)(x1)

In a similar fashion, the following inequalities also hold.

I f
ϕ−1(M)

(a)(x1x2) ≤ I f
ϕ−1(M)

(a)(x1) � I f
ϕ−1(M)

(a)(x2),

I f
ϕ−1(M)

(a)

(
x−1
1

)
≤ I f

ϕ−1(M)
(a)(x1);

Ff
ϕ−1(M)

(a) (x1x2) ≤ Ff
ϕ−1(M)

(a)(x1) � Ff
ϕ−1(M)

(a)(x2),

Ff
ϕ−1(M)

(a)

(
x−1
1

)
≤ Ff

ϕ−1(M)
(a)(x1);

Thus, the theorem is completed. ��

Theorem 5.5 Let (N , E) be a normal neutrosophic soft group over a group X and (ϕ, ψ) be
a neutrosophic soft epimorphism from X to Y . Then (ϕ, ψ)(N , E) is a normal neutrosophic
soft group over Y .

Proof It is similar to the proof of theorem (5.3). ��

Theorem 5.6 Let (M, E) be a normal neutrosophic soft group over a group Y and (ϕ, ψ)

be a neutrosophic soft homomorphism from G1 to G2. Then (ϕ, ψ)−1(M, E) is a normal
neutrosophic soft group over X.

Proof It is similar to the proof of theorem (5.4). ��
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Conclusion

Here, the theoretical point of view of normal neutrosophic soft group has been discussed.
Along with, we also have defined the neutrosophic soft cosets and neutrosophic soft homo-
morphism. These are illustrated by proper examples and some related theorems have been
developed in each part. These concept will bring a new opportunity in research and develop-
ment of NSS theory.
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