Title: Goldbach Conjecture – A Proof (?)

Author: Barry Foster

Abstract: The Goldbach Conjecture may be stated as follows:

Every even number greater than 4 can be written as the sum of two primes.

Examples:

We will call the two primes summing to a particular number a Goldbach Pair (GP) for that number.

Consider the following identity for positive even numbers (N,u,v)

$$N = (N-u) + (N-v) - (N-u-v) \qquad \{N > v > = u\}$$
(1)

Assume the even numbers 6, 8, ..., N-2 are GP's so that their component primes are >=3 and <N-3.

i.e.
$$(N-u), (N-v), (N-u-v) \text{ are GP's } {(N-u-v) >=6}$$

We must show N is also a GP.

We will restrict the terms we consider in (1) to those where:

$$2N > (N-u) + (N-v) > N$$
(2)
Assume $N = (A+B)$ {(A, B) prime; A>= N/2>=B}
From (1) (A+B) = (A+a) + (B+b) - (N-u-v) {(a, b) prime; B>a>=b}
Where (N-u) = (A+a)
(N-v) = (B+b)
(N-u-v) = (N-u) + (N-v) - N = a+b

Using N = 12 as an example the restrictions (2) allow the following representations for (1).

(i) (ii)	12	a+b 3+3 3+5	2	4	10	8	N-u-v 6 8
(i)		= 10 + = (7+3 = (7+3	3)+	·		- (3	3+3)
(ii)	12	= 10 + = (7+3 = (7+3	3) +		-	- (5	5+3)

And 12 is a GP as required.

Thus

This method may be used for any N apparently.