
TOPOLOGY OF P VS NP

KOJI KOBAYASHI

Abstract. This paper describes about P vs NP by using topological ap-
proach. We modify computation history as “Problem forest”, and define spe-
cial problem family “Wildcard problem” and “Maximal complement Wildcard
problem” to simplify relations between every input.

“Problem forest” is directed graph with transition functions edges and com-
putational configuration nodes with effective range of tape. Problem forest
of DTM is two tree graph which root are accepting & rejecting configuration,
which leaves are inputs, trunks are computational configuration with effective
range of tape. This tree shows TM’s interpretation of symmetry and asym-
metry of each input. From the view of problem forest, some NTM inputs are
marged partly, and all DTM inputs are separated totally. Therefore NTM can
compute implicitly some type of partial (symmetry) overrap, and DTM have
to compute explicitly.

“WILDCARD (Wildcard problem family)” and “MAXCARD (Maximal com-
plement Wildcard problem family)” is special problem families that push NTM
branches variations into inputs. If “CONCRETE (Concrete Problem)” that
generate MAXCARD is in P-Complete, then MAXCARD is in PH, and these
inputs have many overrap. DTM cannot compute these overrap conditions im-
plicitly, and these conditions are necesarry to compute MAXCARD input, so
DTM have to compute these conditions explicitly. These conditions are over
polynomial size and DTM take over polynomial steps to compute these condi-
tions explicitly. That is, PH is not P, and NP is not P.

1. Problem forest

First, we describe about “Problem forest”.

Definition 1.1. In this paper, we limit problems as decision problems.
We use term as following;
TM : Turing Machine.
DTM : Deterministic Turing Machine.
NTM : Nondeterministic Turing Machine.
We use the term in book [Sisper] and [Ogihara] without notice.

“Problem forest” is special computation histories forest graph of whole inputs.
By using this forest graph, we can treat NTM problems as metric space based DTM
inputs.

Definition 1.2. We will use the term “Effective configuration” as configuration
with effective range of tape that reach head after the configuration. “Problem
forest” as the directed graph of TM computation. Problem forest edges are tran-
sition functions of TM, nodes are effective configuration, roots are accept or reject
outputs, leaves are inputs. “Effective history” as computation history with effective
configuration.

In this paper, we define NTM to simplify discussion;
1

TOPOLOGY OF P VS NP 2

NTM branch nondeterministicly to
NTM 3 M =

⋃
k

mk∈R | m ∈ DTM

and each independent mk compute input in parallel. k is base-n system which n
is number of nondeterministic transition functions that branch from same configu-
rations. Each symbols in k is choice of nondeterministic transition function.

From the view of Problem forest, DTM ability is symmetrization of asymmetry
input. That is, This tree shows DTM’s interpretation of symmetry and asymmetry
of each input. DTM remove asymmetry of each inputs as process and merge to
same (symmetry) configuration trunk, finally DTM compute all input characters
as processis and symmetry as accept or reject.

Theorem 1.3. DTM Problem forest is two tree graph that root is accepting or
rejecting configuration.

Proof. This is easily verified that every configurations yield only one configuration
by using one (deterministic) transition function, and TM finally halt accepting or
rejecting status. �

Theorem 1.4. All DTM inputs are separated totally. DTM have to compute ex-
plicitly any type of partial (symmetry) overrap.

Proof. It is trivial because every leaf and effective history different from another
leaf and histories. �

From the view of Problem forest, difference between NTM and DTM is nonde-
terministic transition functions. These functions branch input to several configura-
tions.

Theorem 1.5. NTM Problem forest is DAG that root is accepting or rejecting
configuration.

Proof. It is trivial because NTM branch several effective configurations by using
nondeterministic transition functions of mk and finally halt accepting or rejecting
status. �

Theorem 1.6. Some NTM inputs are marged partly. NTM can compute implicitly
some type of partial (symmetry) overrap.

Proof. It is trivial because some branched effective histories merge other branched
effective histories in branching mk. �

2. Wildcard problem

To simplify NTM overrap, we define special problem family “Wildcard problem”
which push NTM branches variations into inputs.

Definition 2.1. To define one problem as “Concrete Problem”, and all symbols in
concrete problem as “Concrete symbols”, we will use the term “Wildcard problem”
and as the special problem that have “Wildcard symbol” which mean one of concrete
symbols. “CONCRETE” and “WILDCARD” as class of these problems. “Wildcard
input” and “Concrete input” as input of WILDCARD and CONCRETE. Wildcard
input is disjunction of all concrete inputs that overwrite all wildcard symbol to
concrete symbol.

TOPOLOGY OF P VS NP 3

“Complement Wildcard problem” as the complement problem of Wildcard prob-
lem. “CoWILDCARD” as class of these problems. “CoWildcard input” as input
of CoWILDCARD. CoWildcard input is conjunction of all negation of concrete in-
puts that overwrite all wildcard symbol to concrete symbol.

“Maximal Complement Wildcard Problems” as part of complement wildcard
problem that value change false if any concrete symbol changed. “MAXCARD”
as class of these problems.

“Complement Maximal Complement Wildcard Problems” as the complement
problem of maximal complement wildcard problems. “CoMAXCARD” as class of
these problems. “CoMAXCARD input” as input of CoMAXCARD.

In this paper, we limit CONCRETE is in P-Complete to simplify discussion.

Theorem 2.2. WILDCARD and CoWILDCARD inputs make Hamming space
based CONCRETE inputs. Each WILDCARD and CoWILDCARD inputs are sub-
space of this Hamming space, and some inputs have (symmetry) overrap subspace.

Proof. It is trivial because CONCRETE inputs correspond to binary strings of
Hamming space and WILDCARD and CoWILDCARD inputs are projective space
that wildcard symbol as equivalence relation of concrete symbols. �

Theorem 2.3. WILDCARD ⊂ NP (based P complete CONCRETE).

Proof. Some of NTM can compute all WILDCARD by using nondeterministic
transition functions that decide every wildcard symbol on actual concrete symbol.
This NTM can compute polynomial time because CONCRETE is in P. Therefore
WILDCARD ⊂ NP . �

Corollary 2.4. CoWILDCARD ⊂ coNP (based P-Complete CONCRETE).

Theorem 2.5. MAXCARD ⊂ PH (based P-Complete CONCRETE).

Proof. We can compute MAXCARD following steps;
1) Compute input as CoWILDCARD.
2) Change one concrete symbols to wildcard symbols as universal, and compute

the changed input as WILDCARD.
3) If 1) reject then reject, else if 1) accept and 2) reject then reject, else 1) and

2) accept then accept. Therefore MAXCARD ⊂ PH. �

Corollary 2.6. CoMAXCARD ⊂ PH (based P-Complete CONCRETE).

Theorem 2.7. ∃V ∈ MAXCARD ∪ CoMAXCARD (V /∈ P)

Proof. (Proof by contradiction.) Assume to the contrary that
∀V ∈ MAXCARD ∪ CoMAXCARD (V ∈ P)
This imply
∀V ∈ MAXCARD (V ∈ P)
This means that DTM can compute all V in polynomial steps. That is, DTM

can merge every
v ∈ V
and remove
u,w /∈ V | u (v (w
in polynomial steps.
Mentioned above 2.2, these inputs like u, v, w have implicitly overrap subspace

each other which are based CONCRETE inputs.

TOPOLOGY OF P VS NP 4

u ⊃ (u ∩ v) ⊂ v
v ⊃ (v ∩ w) ⊂ w
Mentioned above 1.4, all DTM inputs are separated totally and DTM have to

treat explicitly any type of partial overrap. The other hand, mentioned above 1.6,
some NTM inputs are marged partly and NTM can treat implicitly some type of
partial overrap. That is, DTM have to compute these overraped subspace u, v, w
as point and treat overlap conditions explicitly.

Let think overrap granularity to estimate steps to compute overlap conditions
explicitly. MAXCARD inner (CoMAXCARD) inputs separate every CONCRETE
input.

∃v ∈ V ∈ MAXCARD (∀p, q ∈ v (∃u ⊂ v (p ∈ u, q /∈ u)))
If DTM do not compute every CONCRETE inputs p, q ∈ v in computing MAX-

CARD input v or CoMAXCARD input u, DTM cannot compute overlap conditions
of u, v explicitly and reject MAXCARD input v or accept CoMAXCAD input u
by mistake. Therefore DTM have to compute these CONCRETE inputs including
explicitly to compute MAXCARD.

However, some MAXCARD inputs have over polynomial CONCRETE inputs.
Therefore DTM cannot compute based all CONCRETE inputs including in polyno-
mial steps, and contradicting our assumption that ∀V ∈ MAXCARD∪CoMAXCARD (V ∈ P).

�

Theorem 2.8. P (PH

Proof. Mentioned above 2.7,
∃V ∈ MAXCARD ∪ CoMAXCARD (V /∈ P)
Mentioned above 2.5 and 2.6,
MAXCARD ∪ CoMAXCARD ⊂ PH
Therefore P (PH. �

Theorem 2.9. P (NP

Proof. Mentioned above 2.8
P (PH
and
(P = NP) ⇒ (NP = coNP) ⇒ (NP = PH)
therefore,
(P (PH) ∧ ((P = NP) ⇒ (NP = PH))
≡ ((P (NP) ∨ (NP (PH)) ∧ ((NP (PH) ⇒ (P (NP))
⇒ (P (NP) �

Michael Sipser, (translation) Kazuo OHTA, Keisuke TANAKA, Masayuki ABE, Hi-
roki UEDA, Atsushi FUJIOKA, Osamu WATANABE, “Introduction to the Theory
of COMPUTATION Second Edition (Japanese version)”, 2008
Mitsunori OGIHARA, “Hierarchies in Complexity Theory”, 2006

	1. Problem forest
	2. Wildcard problem

