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In the present paper we develop the description of electromagnetic field in an anisotropic medium using 
the sedeonic wave equations based on sedeonic potentials and space-time operators.  

1. Introduction 
For a description of the electromagnetic field in the medium we widely used the equations obtained by 

averaging the Maxwell equations describing electromagnetic field in a vacuum [1]. The resulting system 
connects the vectors of electric field strength and induction ( E  and D ) and magnetic field strength and 
induction ( H  и B ):  
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where   is a volume density of electric charge, j is a volume density of electric current. The field 
strengths and inductions are connected by the following relations: 
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      (1.2) 

where P  is a vector of electric polarization, M  is a vector of magnetization. The equations (1.1) describe 
the electromagnetic field generated by free and bound charges and currents: 
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where volume densities of bound electric eb  and magnetic mb  charges, electric ebj  and magnetic mbj  
currents are expressed through the vectors P  and M  as follows: 
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However, expressions for the effective sources (1.4) do not account the electric and magnetic currents  
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associated with domain boundaries in ferroelectrics and ferromagnetic materials as well as vortex 
distributions of polarization and magnetization generated by vortex E  and H  fields.  

On the other hand, the averaging over a macroscopic volume of the medium in the equations (1.1) is 
not taken into account the fact that the speed of electromagnetic waves propagation in a medium n 
environment different from the speed of light in a vacuum. 

In this paper, we develop a phenomenological approach to the description of the electromagnetic field 
in a medium based on sedeonic wave equations for the potentials. The basic assumption is that the speed 
of electromagnetic waves propagation in an anisotropic medium is a tensor of the second rank, which 
completely determines all features of the electrodynamics of continuous media. 

2. Algebra of space-time sedeons 
The algebra of sedeons [2-5] encloses four groups of values, which are differed with respect to spatial 

and time inversion.  
 Absolute scalars ( )V and absolute vectors ( )V


 are not transformed under spatial and time inversion.  

 Time scalars ( )Vt  and time vectors ( )Vt


 are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  
 Space scalars ( )Vr  and space vectors ( )Vr


 are changed under spatial inversion and are not 

transformed under time inversion.  
 Space-time scalars ( )Vtr  and space-time vectors ( )Vtr


 are changed under spatial and time inversion. 

Here indexes t  and r  indicate the transformations ( t  for time inversion and r  for spatial inversion), 
which change the corresponding values. All introduced values can be integrated into one space-time 
sedeon V , which is defined by the following expression:  

V V V V V V V V       t t r r tr trV
   

 .    (2.1) 

Let us introduce a scalar-vector basis 0a , 1a
 , 2a

 , 3a
 , where the element 0a  is an absolute scalar unit 

( 10a ), and the values 1a
 , 2a

 , 3a
  are absolute unit vectors generating the right Cartesian basis. Further 

we will indicate the absolute unit vectors by symbols without arrows as 1a , 2a , 3a . We also introduce the 
four space-time units 0e , 1e , 2e , 3e , where 0e  is an absolute scalar unit ( 10e ); 1e  is a time scalar unit 
( 1 te e ); 2e  is a space scalar unit ( 2 re e ); 3e  is a space-time scalar unit ( 3 tre e ). Using space-time 
basis e  and scalar-vector basis a  (Greek indexes , 0,1, 2, 3  ), we can introduce unified sedeonic 
components V  in accordance with following relations: 

  00V V 0 0e a ,        
   01 02 03V V V V  0 1 2 3e a a a


,      
  10V Vt 1 0e a ,        

 11 12 13V V V V  t 1 1 2 3e a a a


,        (2.2) 
  20V Vr 2 0e a ,        
   21 22 23V V V V  r 2 1 2 3e a a a


,      
  30V Vtr 3 0e a ,        
   31 32 33V V V V  tr 3 1 2 3e a a a


.      

Then sedeon (2.1) can be written in the following expanded form: 

          00 01 02 03V V V V   0 0 1 2 3V e a a a a       
          10 11 12 13V V V V   1 0 1 2 3e a a a a      (2.3) 

              20 21 22 23V V V V   2 0 1 2 3e a a a a       
              30 31 32 33V V V V   3 0 1 2 3e a a a a .      

The sedeonic components V  are numbers (complex in general). Further we will omit units 0a  and 0e  for 
the simplicity. The important property of sedeons is that the equality of two sedeons means the equality of 
all sixteen components V .  
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Let us consider the multiplication rules for the basis elements na  and ke  (Latin indexes n, k = 1, 2, 3). 
The unit vectors na  have the following multiplication and commutation rules: 

2 1 n n na a a ,              (2.4) 

 n k k na a a a (for n k ),             (2.5) 

i1 2 3a a a ,  i2 3 1a a a ,  i3 1 2a a a ,                  (2.6) 

while the space-time units ke  satisfy the following rules: 
2 1 k k ke e e ,              (2.7) 

 n k k ne e e e (for n k ),             (2.8) 

i1 2 3e e e ,  i2 3 1e e e ,  i3 1 2e e e .                  (2.9) 

Here and further the value i  is imaginary unit 2( 1)i   . The multiplication and commutation rules for 
sedeonic absolute unit vectors na  and space-time units ke  can be presented for obviousness as the tables 
1 and 2.  

Table 1. Multiplication rules for absolute unit vectors na . 
 
 
 
 
 
 
 

Table 2. Multiplication rules for space-time units ke . 

 
 
 
 
 
 
 
 
Note that units ke  commute with vectors na : 

n k k na e e a               (2.10) 
for any n  and k . 

In sedeonic algebra we assume the Clifford multiplication of vectors. The sedeonic product of two 
vectors A


 and B


 can be presented in the following form: 

 AB A B A B     
    

.         (2.11) 

Here we denote the sedeonic scalar multiplication of two vectors (internal product) by symbol “  ” and 
round brackets 

  1 1 2 2 3 3A B A B A B A B   
 

,        (2.12) 

and sedeonic vector multiplication (external product) by symbol “ ” and square brackets 

     2 3 3 2 3 1 1 3 1 2 2 1A B i A B A B i A B A B i A B A B        
 

.     (2.13) 

Note that in sedeonic algebra the expression for the vector product differs from analogous expression in 
Gibbs vector algebra. For the transition from sedeons to the common used Gibbs-Heaviside vector 
algebra the change 

 1e  2e  3e  

1e  1 i 3e  i 2e  

2e  i 3e  1 i 1e  

3e  i 2e  i 1e  1 
 

 1a  2a  3a  

1a  1 i 3a  i 2a  

2a  i 3a  1 i 1a  

3a  i 2a  i 1a  1 
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curli A       


 A A      (2.14) 

should be made in all vector expressions. Here   and A  are Gibbs-Heaviside vectors. 

3. Sedeonic equations for electromagnetic field in crystals 
In crystals the speed of light is a tensor of the second rank ŝ . Therefore, the Einstein relation for 

energy and momentum of the electromagnetic field can be presented in the following sedeonic form: 

  ˆ ˆ 0i E sp i E sp  t r t re e e e  .     (3.1) 

Here the expression ŝp  is a convolution of the tensor with the vector. Let us introduce the operators  

,

.

t

x y z


 


  

   
  1 2 3a a a

           (3.2) 

Then sedeonic wave equation for the electromagnetic field in a crystal can be written as 

   ˆ ˆ =i s i s     1 2 1 2e e e e W J
 

  .     (3.3) 

The potential of the electromagnetic field is 

e m m ei i A A    1 2 1 2W e e e e
 

 ,      (3.4) 

where e  is an electric scalar potential; m  is a magnetic scalar potential; eA


 is an electric vector 
potential; mA


 is a magnetic vector potential. A field source J  can be written as  

2 2ˆ ˆ ˆ ˆ4 4 4 4e m e mi s i s s j s j         1 2 2 1J e e e e
 

 ,    (3.5) 

where e  is a volume density of electric charge; ej


 is a volume density of electric current; m  is a 
volume density of magnetic charge; mj


 is a volume density of magnetic current. Thus, the 

inhomogeneous wave equation for the electromagnetic field in a crystal can be represented as follows: 

     
2 2

ˆ ˆ

ˆ ˆ ˆ ˆ4 4 4 4 .

e m m e

e m e m

i s i s i i A A

i s i s sj sj

 

     

        

   

1 2 1 2 1 2 1 2

1 2 2 1

e e e e e e e e

e e e e
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    (3.6) 

The equation (3.6) is a compact and universal relation, which can be represented either as a system of 
wave equations for the field potentials, either in the form of Maxwell's equations for the field strengths. 
Let us introduce the scalar and vector inductions of electromagnetic field: 

 
 
ˆ ,

ˆ ,

ˆ ˆ ,

ˆ ˆ .

s e e

s m m

s e e m

s m m e

d s A

b s A

D A s i s A
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    (3.7) 

Then 

   ˆ e m m e s s s si s i i A A d i b D iB           1 2 1 2 1 2 3 3e e e e e e e e
   

,   (3.8) 

and the equation (3.6) can be rewritten as  

    2 2ˆ ˆ ˆ ˆ ˆ4 4 4 4 .s s s s e m e mi s d i b D iB i s i s s j s j                1 2 3 3 1 2 2 1e e e e e e e e
    

 (3.9) 

From the equation (3.9) we obtain the Maxwell equations for inductions  
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This equation can be simplified. Taking into account the Lorentz gauge we can take scalar fields equal to 
zero 

ˆ+ ( ) = 0,

ˆ+ ( ) = 0.
s e e

s m m

d s A

b s A





  

   



          (3.11) 

In addition, we can take the magnetic charges and currents equal to zero ( 0m  , 0mj 


). Then (3.9) takes 
the following form 

    24 4e eˆ ˆ ˆi s D iB i s s j .        1 2 3 1 2e e e e e
   

    (3.12) 

Performing the action of the operator on the left side (3.12), and separating the values with different 
space-time properties, we obtain a system of first-order equations 
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        (3.13) 

This is the system of Maxwell equations for anisotropic matter. We can specify the relationship between 
the vectors of the induction on the one hand, and the magnetic and electric fields and vectors of 
polarization and magnetization on the other hand: 

4

4
s s s

s s s

D E P ,

B H M .





 

 

  

        (3.14) 

Then equations (3.13) can be represented as: 
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  (3.15) 

On the other hand, applying to the both sides of equation (3.9) operator  

 ˆi s  1 2e e


,      (3.16) 

we get wave equation for the inductions of electromagnetic field  

     
   2 2

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ4 4 4 4 .

s s s s

e m e m

i s i s d i b D iB

i s i s i s s j s j     

         

       

1 2 1 2 3 3

1 2 1 2 2 1

e e e e e e

e e e e e e

   

     (3.17) 

4. Field equations for isotropic medium 
For an isotropic medium the speed of light is a spherical tensor  

ˆ iks s ,      (4.1) 
where ik  is Kronecker symbol, s  is a modulus of light speed 
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cs
n

 ,       (4.2) 

n  is a refractive index, c  is the speed of light in a vacuum. Then for isotropic medium the equations 
(3.13) can be represented as  

 
 

24 ,

0,

4 ,

.

s e

s

s s e

s s

s D s

s B

i s B D s j

i s D B

 



  

  

      
     

 

 

   

  

     (4.3) 

Introducing new inductions 

1 ,

1 ,

e e m

m m e

D A i A
s

B A i A
s





       

       

   

         (4.4) 

the system (4.3) can be rewritten as 
 
 

4 ,

0,

1 4 ,
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e

e

D

B

i B D j
s s

i D B
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     (4.5) 

We can specify similar relationships between the vectors of the inductions, field strengths, polarization 
and magnetization: 

4

4

D E P,
B H M .





 

 

  

         (4.6) 

Then equations (4.5) can be represented as 

   
   

4 4 ,

4 ,

4 1 14 4 ,

1 14 4 .

e

e

E P

H M

i H j E P i M
s s s

i E H M i P
s s

 



  

 

     

     

              

              

   

   

     

     

    (4.7) 

These equations coincide with widely used Maxwell equations if we take the following conditions:  

0,

0,

M

P

   
   

 

              (4.8) 

and in the following approximation: 

s c .         (4.9) 

Taking into account (4.8) and (4.9) we get 
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e
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    (4.10) 

that coincide with well known Maxwell’s equations [1,6]. 

5. Pointing theorem for anisotropic medium 

Let us multiply the equation (3.12) on the sedeon  s sD iB3e
 

 from the left. Then we get  

      24 4e eˆ ˆ ˆD iB i c D iB D iB i c cj .          3 1 2 3 3 1 2e e e e e e e
       

  (5.1) 

Separating the values with different space-time properties we obtain following expressions: 

         4s s s s s s s s s eˆ ˆ ˆi B B i D D B s D D s B i D s j                 1 1 1 1 1e e e e e
           

,  (5.2) 

         4s s s s s s s s s eˆ ˆ ˆi B D i D B B s B D s D i B s j                  2 2 2 2 2e e e e e
           

,  (5.3) 

   

24 4

s s s s s s s s

s s s s

s e s e

ˆ ˆi B B i D D B s D D s B

ˆ ˆB s D D s B

ˆ ˆB s i D s j ,  
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e e e e

e e

e e

         

     

  

  (5.4) 

   

24 4

s s s s s s s s

s s s s

s e s e

ˆ ˆi B D i D B B s B D s D

ˆ ˆB s B D s D

ˆ ˆD s i B s j ..  

              
                 

    

2 2 2 2

2 2

2 2

e e e e

e e

e e

         

     

  

  (5.5) 

It is clearly seen that the equation (5.2) is the Pointing theorem for anisotropic medium  

     2 21 0
8 4s s s s s e

i ˆ ˆD B c D B D c j
 

         
      

.    (5.6) 

6. Plane waves in dielectric crystals  
Let us consider the plane electromagnetic waves in homogeneous dielectric crystals. The equations (3.13) 
without sources take the following form: 

 
 

ˆ 0,

ˆ 0,

ˆ ,

ˆ .

s

s

s s

s s

s D

s B

i s B D

i s D B

  

  

     
     

 

 

  

  

      (6.1) 

Substituting in (6.1) the plane waves: 

 
 

0

0

exp ( ) ,

exp ( ) ,

s

s

D D i t i k r

B B i t i k r





  

  

  

             (6.2) 

we obtain: 
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0 0

0 0

ˆ ,

ˆ .

i isk B i D

i isk D i B





    
     

  

             (6.3) 

Here   is the frequency and k


 is a wave vector. Let us introduce a unit vector m  according the 
following relation: 

k m
c



  ,      (6.4) 

and normalized tensor of light speed ̂  according 

ˆˆ s
c

  ,       (6.5) 

which has the sense of inverse tensor of refractive index. Then we obtain 

0 0

0 0

ˆ ,

ˆ .

i m B D

i m D B





    
     

 

            (6.6) 

Excluding vector 0B


 we get 

   0 0 0ˆ ˆ ˆ ˆm m D D m m D       
      .    (6.7) 

In the principal axes of tensor ̂  this equation gives us the following system: 

           

            

            

2 2
0 0 0

2 2
0 0 0

2 2
0 0 0

1 0,

1 0,

1 0.

yy y zz z x xx x yy y y xx x zz z z

xx x yy y x xx x zz z y yy y zz z z

xx x zz z x zz z yy y y yy y xx x z

m m D m m D m m D

m m D m m D m m D

m m D m m D m m D

     

     

     

    

    

    

   (6.8) 

The determinant of this system should be zero: 

           

            

           

2 2

2 2

2 2

1

1

1

yy y zz z xx x yy y xx x zz z

xx x yy y xx x zz z yy y zz z

xx x zz z zz z yy y yy y xx x

m m m m m m

m m m m m m

m m m m m m

     

     

     

 

 

 

 = 0.  (6.7) 

After simplification of (6.7) we obtain the following equation: 

      222 2 1 0xx x yy y zz zm m m      .          (6.8) 

The solution of this equation is 

     22 2 1 0xx x yy y zz zm m m      .      (6.9) 

If the wave propagates along the x-axis then 

 2 1 0xx xm   ,      (6.7) 

and 

1
x xx

xx

m 


    ,     (6.8) 

where ik  is the tensor of dielectric permeability. 
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Let us consider the wave propagating along the arbitrary Z direction. In this case the wave vector m  has 
only z-component and 0D


 has only x and y components. From (6.7) we have 

        
       

2 2

2 2

1 0,

1 0.

yz z zz z x xz z yz z y

yz z xz z x xz z zz z y

m m D m m D

m m D m m D

   

   

   

   
   (6.9) 

The determinant of this system should be zero and we obtain the following equation: 

       22 2 21 1 0zz z zz z yz z xz zm m m m             
.   (6.10) 

The expression (6.10) splits into two equations for the ordinary and the extraordinary waves: 

 

     

2

22 2

1 0,

1 0.

zz z

zz z yz z xz z

m

m m m



  

   
      

    (6.11) 

For the ordinary wave we have  
1

z
zz

m


  ,       (6.12) 

and for the extraordinary wave we get  

     22 2

1
z

zz yz xz

m
  

 
 

.      (6.13) 

If the Z direction coincides with one of principal axes of tensor ̂ , then the speed of propagation for 
ordinary and the extraordinary waves are the same. 

7. Concluding remarks 
Thus, we have developed the description of electromagnetic field in an anisotropic medium using the 

sedeonic wave equations based on sedeonic potentials and space-time operators. The central assumption 
of this theory is the hypothesis that the electromagnetic phenomena in the environment are defined by 
dependence of propagation velocity of the electromagnetic wave from the properties of the medium. This 
allowed the use of sedeonic algebra formalism to obtain the Maxwell equations and Poynting theorem, as 
well as to describe the propagation of waves in crystals. 

Acknowledgements 
Author is very thankful to Galina Mironova for help and moral support. Special thanks to  

Sergey Mironov for helpful discussions and criticism. 

References 
1. L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous media, Pergamon Press, Oxford, 1960. 
2. V.L. Mironov, S.V. Mironov, Reformulation of relativistic quantum mechanics equations with non-

commutative sedeons, Applied Mathematics, 4(10C), 53-60 (2013). 
3. V.L. Mironov, S.V. Mironov, Sedeonic equations of gravitoelectromagnetism, Journal of Modern 

Physics, 5(10), 917-927 (2014). 
4. S.V. Mironov, V.L. Mironov, Sedeonic equations of massive fields, International Journal of 

Theoretical Physics, 54(1), 153-168 (2015). 
5. V.L. Mironov, S.V. Mironov, "Space-Time Sedeons and Their Application in Relativistic Quantum 

Mechanics and Field Theory", Institute for physics of microstructures RAS, Nizhny Novgorod, 2014. 
Available at http://vixra.org/abs/1407.0068 

6. M.E. Kansu, An analogy between macroscopic and microscopic systems for Maxwell’s equations in 
higher dimensions, The European Physics Journal Plus, 128, 149 (2013). 


