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Abstract

In this paper, formulas giving a Kronecker commutation matrices
(KCMs) in terms of some matrices of particles physics and formulas
giving electric charge operators (ECOs) for fundamental fermions in
terms of KCMs have been reviewed. Physical meaning have been given
to the eigenvalues and eigenvectors of a KCM.

Introduction

The Kronecker or tensor commutation matrices (KCMs) are matrices which
commute Kronecker or tensor product of matrices. So, we can think of using
them where Kronecker product is used. Kronecker product is used in many
branches of physics and mathematics: in quantum information theory, op-
tics, matrix equations and algebraic Bethe ansatz.
One can remark that a wave function of two identical fermions is eigenfunc-
tion of a KCM associated to the eigenvalue -1 and a wave function of two
identical bosons is eigenfunction of a KCM associated to the eigenvalue -1.
So, it is natural to think to what are the meaning we can give to these
eigenvalues, their multiplicities and the eigenvectors associated, in particle
physics.
The KCMs have already relations with some matrices of the particle physics
and we can construct an electric charge operator (OCE) for fundamental
fermions by using a KCM. After the first section which will speak about
kronecker product and the mathematical definition of a KCM, in the second
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section we will review the expression of the KCMs in terms of some matrices
of particle physics, after that in the third section we will review the ECOs
built with the KCMs. Finally, in the fourth section we will give the eigenval-
ues of KCMs with their multiplicities and the eigenvectors associated, and
some examples giving their meaning in particle physics.

We will take as system of units the natural units ~ = c = 1 and as unit
of charge the charge of an electron e.

1 Kronecker Commutation Matrices

The Kronecker product of a matrix A = (Aij) ∈ Cm×n by other matrix B :

A⊗B =


A1

1 . . . A1
j . . . A1

n
...

...
...

Ai1 . . . Aij . . . Ain
...

...
...

Am1 . . . Amj . . . Amn

⊗B =


A1

1B . . . A1
jB . . . A1

nB
...

...
...

Ai1B . . . AijB . . . AinB
...

...
...

Am1 B . . . Amj B . . . Amn B


is not commutative. That is

A⊗B 6= B⊗A

K the Kronecker commutation matrix (KCM)

K (a⊗ b) = b⊗ a

with a, b are unicolumn matrices.

The KCM K2⊗2 commutes two row and unicolumn matrices

K2⊗2

(
a1
a2

)
⊗
(
b1
b2

)
=

(
b1
b2

)
⊗
(
a1
a2

)

K3⊗3

a1a2
a3

⊗
b1b2
b3

 =

b1b2
b3

⊗
a1a2
a3


and so on.

K2⊗2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , K3⊗3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
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2 KCMs and Matrices of Particle Physics

The KCMs K2⊗2 and K3⊗3 can be expressed respectively in terms of the
Pauli matrices (See, for example, [1]) and the Gell-Mann matrices [2] by the
following ways

K2⊗2 =
1

2
I2 ⊗ I2 +

1

2

3∑
i=1

σi ⊗ σi

where I2 =

(
1 0
0 1

)
the 2× 2 unit matrix and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
the Pauli matrices

K3⊗3 =
1

3
I3 ⊗ I3 +

1

2

8∑
i=1

λi ⊗ λi

where

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

,

λ4 =

 0 0 1
0 0 0
1 0 0

, λ5 =

 0 0 −i
0 0 0
i 0 0

, λ6 =

 0 0 0
0 0 1
0 1 0

, λ7 =

 0 0 0
0 0 −i
0 i 0


λ8 = 1√

3

 1 0 0
0 1 0
0 0 −2


are the Gell-Mann matrices or 3× 3 Gell-Mann matrices. A variant of this
last formula with other definition of the Gell-Mann matrices [3] have recently
application in optics. We say variant because this paper has expressed the
KCM K3⊗3 in terms of other Gell-Mann matrices, with its definition of the
Gell-Mann matrices.
As a generalization [4],

Kn⊗n =
1

n
In ⊗ In +

1

2

n2−1∑
i=1

Λi ⊗ Λi

where Λi’s are the n× n Gell-Mann matrices.

3 KCMs and Charges of Fundamental Fermions

In this section we are going to construct ECOs for fundamental fermions in
using KCMs [5]. An ECO we are going to construct here can have charges
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of leptons and quarks, together as eigenvalues.
Let us recall at first that fundamental fermions have the quantum numbers
J3, the isospin and Y , the hypercharge. The electric charge Q of a fermion
is given by the Gell-Mann-Nishijima formula

Q = J3 +
Y

2
(1)

For the fermions of the standard model (SM) these quantum numbers
are given in the following table [6]

Q J3 Y

Neutral Leptons νeL, νµL, ντL 0 1/2 −1

Charged Leptons eL, µL, τL −1 −1/2 −1
eR, µR, τR −1 0 −2

Quarks u, c, t urL, ubL, ugL, crL, cbL, cgL, trL, tbL, tgL 2/3 1/2 1/3
urR, ubR, ugR, crR, cbR, cgR, trR, tbR, tgR 2/3 0 4/3

Quarks d, s, b drL, dbL, dgL, srL, sbL, sgL, brL, bbL, bgL −1/3 −1/2 1/3
drR, dbR, dgR, srR, sbR, sgR, brR, bbR, bgR −1/3 0 −2/3

A matrix relation of the Gell-Mann-Nishijima for eight leptons and quarks
of the SM of the same generation, for example eL, νeL, urL, ubL, ugL, drL, dbL,
et dgL has been proposed in [7].

Q =
1

2
σ0 ⊗ σ0 ⊗ σ3︸ ︷︷ ︸

Y

+
1

6

(
3∑
i=1

σi ⊗ σi

)
⊗ σ0︸ ︷︷ ︸

J3

(2)

The same ECO can be obtained from a relation between the following ECO

of leptons QL =

(
0 0
0 −1

)
and ECO of quarks QQ =

(
2/3 0
0 −1/3

)
QQ −QL =

2

3
I2

This leads to the following ECO (2), but in terms of the KCM K2⊗2.

Q = σ0 ⊗ σ0 ⊗QL +
1

3
(K2⊗2 + σ0 ⊗ σ0)⊗ σ0

or

Q = σ0 ⊗ σ0 ⊗QQ +
1

3
(K2⊗2 − σ0 ⊗ σ0)⊗ σ0

We can remark in these formulas that the eigenvalue +1 of the KCM K2⊗2
is associated to the charges of leptons whereas the eigenvalue -1 is associated
to the charges of quarks.
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For including more than eight fundamental fermions, let us construct an
ECO in terms of the KCM K3⊗3. For doing so, let us take the following

ECOs respectively of leptons and quarks, QL =

0 0 0
0 −1 0
0 0 −1

 whose diag-

onal is formed by the electric charge of a neutrino and the electric charges

of two charged leptons and QQ =

2/3 0 0
0 −1/3 0
0 0 −1/3

 whose diagonal is

formed by the electric charge of a quark u (a quark c (charm) or a quark
t (top)) and the electric charges of quark d, quark s (strange) or quark b
(bottom).

QQ −QL =
2

3
I3 (3)

Then we have an ECO for some fermions of the SM

Q = I3 ⊗ I3 ⊗QL +
1

3
(K3⊗3 + I3 ⊗ I3)⊗ I3

or

Q = I3 ⊗ I3 ⊗QQ +
1

3
(K3⊗3 − I3 ⊗ I3)⊗ I3

4 Eigenvalues of KCMs in Particle physics

The following relations give the eigenvalues of the KCMs with their multi-
plicities.

K2⊗2 ≡ diag(−1,+1,+1,+1︸ ︷︷ ︸
3 times

)

K3⊗3 ≡ diag(−1,−1,−1︸ ︷︷ ︸
3 times

,+1,+1,+1,+1,+1,+1︸ ︷︷ ︸
6 times

)

K4⊗4 ≡ diag(−1,−1,−1,−1,−1,−1︸ ︷︷ ︸
6 times

,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1︸ ︷︷ ︸
10 times

)

and so on.

Consider the following n dimensional antisymmetric state and symmet-
ric state
Ψa = 1

2 (|ψ1〉 ⊗ |ψ2〉 − |ψ2〉 ⊗ |ψ1〉) antisymmetric state
Ψs = 1

2 (|ψ1〉 ⊗ |ψ2〉+ |ψ2〉 ⊗ |ψ1〉) symmetric state

Kn⊗nΨa = −Ψa

5



Kn⊗nΨs = +Ψs

Thus, these states are eigenfunctions of the KCM Kn⊗n.
Now, consider the case of two dimensional states. Then

K2⊗2 ≡ diag(−1,+1,+1,+1︸ ︷︷ ︸
3 times

)

For looking for the eigenvectors of a KCM we have used the method in [8].

The only antisymmetric and symmetric states from |1〉 =

(
1
0

)
, |2〉 =

(
0
1

)
are

|1〉 ⊗ |1〉
1√
2

[|1〉 ⊗ |2〉+ |2〉 ⊗ |1〉]
|2〉 ⊗ |2〉

 3 Symmetric states (4)

1√
2

[|1〉 ⊗ |2〉 − |2〉 ⊗ |1〉] 1 Antisymmetric state (5)

The symmetric states are the eigenvectors associated to the eigenvalues +1
whereas the antisymmetric state is the one associated to the eigenvalue -1.
We have four different eigenstates of the KCM K2⊗2. Therefore, they are
all we look for.
In particle physics, by using the Clebsch-Gordan coefficients or other meth-
ods we can have the following examples.
Example 1

Spin operators and matrices for two electrons [9]

|S = 1, Sz = +1〉 =
∣∣1
2 ,

1
2

〉 ∣∣1
2 ,

1
2

〉
|S = 1, Sz = 0〉 = 1√

2

(∣∣1
2 ,

1
2

〉 ∣∣1
2 ,−

1
2

〉
+
∣∣1
2 ,

1
2

〉 ∣∣1
2 ,

1
2

〉)
|S = 1, Sz = −1〉 =

∣∣1
2 ,−

1
2

〉 ∣∣1
2 ,−

1
2

〉
 Symmetrics, Triplet

|S = 0, Sz = 0〉 =
1√
2

(∣∣∣∣12 , 1

2

〉 ∣∣∣∣12 ,−1

2

〉
−
∣∣∣∣12 , 1

2

〉 ∣∣∣∣12 , 1

2

〉)
Antisymmetric, Singlet

where ∣∣∣∣12 ,ms1

〉 ∣∣∣∣12 ,ms2

〉
=

∣∣∣∣12 ,ms1

〉
⊗
∣∣∣∣12 ,ms2

〉
=

∣∣∣∣12 ,ms1 ,
1

2
,ms2

〉
with ms1 ,ms2 = −1

2 or +1
2 .

Example 2: Nucleon wave function (See, for example, [10])
From the rules for addition of angular momenta we know that the combina-
tion gives a total isospin of 1 or 0. We obtain a symmetric isotriplet:

I = 1, I3 = +1 |p〉 |p〉
I = 1, I3 = 0 1√

2
(|p〉 |n〉+ |n〉 |p〉)

I = 1, I3 = −1 |n〉 |n〉

 Symmetrics, isotriplet
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and an antisymmetric isosinglet:

I = 0, I3 = 0
1√
2

(|p〉 |n〉 − |n〉 |p〉) Antisymmetric, isosinglet

where |p〉 =
∣∣1
2 ,

1
2

〉
and |n〉 =

∣∣1
2 ,−

1
2

〉
.

Example 2: Combination of quark-quark (See, for example, [11])
One can construct combination of two quarks. Between up quark u and
down quark d there are four combinations which may be arranged as

2⊗ 2 = 3⊕ 1

I = 1, I3 = +1 |u〉 |u〉
I = 1, I3 = 0 1√

2
(|u〉 |d〉+ |d〉 |u〉)

I = 1, I3 = −1 |d〉 |d〉

 Symmetrics, Triplet

I = 0, I3 = 0
1√
2

(|u〉 |d〉 − |d〉 |u〉) Antisymmetric, Singlet

Now let us pass to the eigenvalues of the KCM K3⊗3.

K3⊗3 ≡ diag(−1,−1,−1︸ ︷︷ ︸
3 times

,+1,+1,+1,+1,+1,+1︸ ︷︷ ︸
6 times

)

The only antisymmetric and symmetric states from |1〉 =

1
0
0

, |2〉 =

0
1
0


and |3〉 =

0
0
1

 are

|1〉 ⊗ |1〉
1√
2

[|1〉 ⊗ |2〉+ |2〉 ⊗ |1〉]
|2〉 ⊗ |2〉
1√
2

[|1〉 ⊗ |3〉+ |3〉 ⊗ |1〉]
1√
2

[|2〉 ⊗ |3〉+ |3〉 ⊗ |2〉]
|3〉 ⊗ |3〉


6 Symmetric states (6)

1√
2

[|1〉 ⊗ |2〉 − |2〉 ⊗ |1〉]
1√
2

[|1〉 ⊗ |3〉 − |3〉 ⊗ |1〉]
1√
2

[|2〉 ⊗ |3〉 − |3〉 ⊗ |2〉]

 3 Antisymmetric states (7)

Like the case of the KCM K2⊗2, the symmetric states are the eigenvectors
associated to the eigenvalues +1 whereas the antisymmetric states are the
ones associated to the eigenvalues -1.
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Example 1: Combination of quark-quark (See, for example, [11])
We can combine any two of the quarks u, d and s. There are nine such
combinations which may be arranged as

3⊗ 3 = 6⊕ 3̄

From two quarks we can obtain a sextet (the symmetric combinations);

I = 1, I3 = 1 |u〉 |u〉
I = 1, I3 = −1 |d〉 |d〉
I = 1, I3 = 0 |s〉 |s〉
I = 1, I3 = 0 1√

2
(|u〉 |d〉+ |d〉 |u〉)

I = 1, I3 = −1
2

1√
2

(|d〉 |s〉+ |s〉 |d〉)
I = 1, I3 = 1

2
1√
2

(|u〉 |s〉+ |s〉 |u〉)


Symmetrics, Sixtet

and a triplet (the antisymmetric combinations):

I = 0, I3 = 0 1√
2

(|u〉 |d〉 − |d〉 |u〉)
I = 0, I3 = −1

2
1√
2

(|d〉 |s〉 − |s〉 |d〉)
I = 0, I3 = 1

2
1√
2

(|u〉 |s〉 − |s〉 |u〉)

 Antisymmetrics, Triplet

Comparing the four examples above respectively with (4), (5), (6) and
(7) we can see that the eigenvalues +1 of the KCMs K2⊗2 and K3⊗3 are as-
sociated to the spin 1 or isospin 1 whereas the eigenvalues -1 are associated
to spin 0 or isospin 0 from the combinations of states with spin 1

2 .

We would like to make rremark the following combinations of color states
[12].

From the color states |R〉, |B〉 and |G〉 we can combine two any colors.
Then we obtain a sextet (the symmetric combinations);

|R〉 |R〉
|G〉 |G〉
|B〉 |B〉
1√
2

(|R〉 |G〉+ |G〉 |R〉)
1√
2

(|G〉 |B〉+ |B〉 |G〉)
1√
2

(|B〉 |R〉+ |R〉 |B〉)


Symmetrics, Sixtet

which are eigenvectors of the KCM K3⊗3 associated to the eigenvalue +1
and a triplet (the antisymmetric combinations):

1√
2

(|R〉 |G〉 − |G〉 |R〉)
1√
2

(|G〉 |B〉 − |B〉 |G〉)
1√
2

(|B〉 |R〉 − |R〉 |B〉)

 Antisymmetrics, Triplet

which are eigenvectors of the KCM K3⊗3 associated to the eigenvalue -1.
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5 Conclusion

Expression of a KCM in terms of the generalized Gell-Mann matrices have
been reviewed. We have also reviewed that an ECO in terms of a KCM
for leptons and quarks together has been constructed. For such ECO the
eigenvalues +1 are associated to charges of leptons whereas the eigenvalues
-1 are associated to the charges of quarks. For two electrons, nucleon wave
function, combination of quarks u and d and combination of any two quarks
from the quarks u, d, and s the spin or isospin +1 is the physical meaning of
the eigenvalues +1 of the KCMs K2⊗2 and K3⊗3, the spin or isospin 0 is the
physical meaning of the eigenvalue -1 of these KCMs. Then the symmetric
states and antisymmetric states are respectively the associated eigenvectors.
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