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Abstract

Renormalization procedures for quantum field theories are today
reinterpreted using Hopf algebras and related function algebras. In-
tegral expressions for physical numbers are typically replaced by alge-
braic rules, presumably arising from the unknown correct mathemati-
cal formulation of particle physics. These notes introduce the impor-
tant Hopf algebras of trees, both commutative and noncommutative.

Whatever the correct mathematical language for the perturbative elec-
troweak theory and for QCD, we now know that renormalisation procedures
have a rigid algebraic structure. In principle, a physical quantity associated
to a large set of Feynman diagrams may be computed using a much smaller
set of diagrams, given the right physical constraints. In the first example,
in scalar field theory [1], a momentum loop in a Feynman graph is mapped
to a vertex of a planar rooted tree. The set of all unordered lists of pla-
nar rooted trees (forests) under admissible decompositions is a canonical
example of a Hopf algebra [2][3][4]. Along with related function algebras, it
was first studied in numerical analysis in [5]. In the work of Kreimer et al
[6][7][8], the trees are decorated by Feynman data to give a Hopf algebra for
the scalar theory.

A Hopf algebra H is first of all an algebra with a multiplication m :
H → H which is associative. For example, the formal rational sums of
forests (collections) of planar rooted trees is an algebra under the trivial
concatenation of forests, placing one forest beside the other. The identity
for this product is the empty tree, which will usually be denoted by the
symbol 1. A Hopf algebra is also a coalgebra, which is the dual notion in
a category theoretic [9] sense: the arrows in the axioms (given below) for
an algebra object in a category of algebras are all reversed, so that instead
of a multiplication there is a comultiplication ∆ : H → H ⊗ H, which is
coassociative. Finally, H has an antipode map S : H → H, which is needed
to define an inverse for a function f : H → C under the convolution product.

In the next section Hopf algebras are defined, and section 2 details the
special example of tree algebras along with associated function algebras. On
a first reading, one may skip the abstractions of section 1. In section 3 we
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define the important shuffle algebras and in section 4 introduce quantum
groups. In section 5 we find the special integrals that appear in hadron
phenomenology, and summarise the story in section 6.

1 Hopf Algebras

A Hopf algebra H is a bialgebra, meaning both an algebra and a coalge-
bra, with a special additional map S : H → H called the antipode, such
that m and ∆ are compatible. The algebra over the field F comes with
a multiplication m : H ⊗ H → H and a unit map η : F → H such that
associativity

H ⊗H ⊗H
m⊗IH //

IH⊗m

²²

H ⊗H

m

²²
H ⊗H m

// H

(1)

holds. Here IH denotes an identity map. The unit should satisfy m(a, η) =
m(η, a) = a for all a ∈ H, but in diagrams this is written

H ' H ⊗ F IH //

IH⊗η

²²

H

H ⊗H

m

::ttttttttttttt

(2)

for right multiplication, and similarly for the left. The coalgebra has a
coproduct ∆ : H → H ⊗H and a counit ε : H → F which is coassociative

H
∆⊗IH //

IH⊗∆

²²

H ⊗H

∆

²²
H ⊗H

∆
// H ⊗H ⊗H

(3)

The coproduct of an element a ∈ H is often written

∆(a) =
∑

i

a
(1)
i ⊗ a

(2)
i (4)

for some elements a
(1)
i and a

(2)
i in H. Compatibility of m and ∆ means that

∆(xy) = ∆(x)∆(y). (5)

Example 1.1 The group algebra CG of sums
∑

G agg with coefficients ag

in C, for G a finite group. Multiplication expands the product of sums in
the obvious way. The unit is the unit in G. Then ∆(g) = g⊗ g when g ∈ G,
and ε(g) = 1.
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In general, a grouplike element x ∈ H has

∆(x) = x⊗ x. (6)

The grouplike elements in CG give the group G. Now imagine applying the
product rule for derivatives to this coproduct. A primitive element x of H
has a coproduct

∆(x) = 1⊗ x + x⊗ 1. (7)

Interesting Hopf algebras contain both grouplike and primitive elements,
but a fundamental example with only primitives is the following.

Example 1.2 The universal enveloping algebra U(g) of a Lie algebra g.
Given a basis for g, the tensor algebra T (g) is the free algebra of all words
in the basis elements. Multiplication is given by concatenation of words and
the identity 1 is the empty word. The enveloping algebra is the quotient of
T (g) by the ideal generated by expressions

x⊗ y − y ⊗ x− [x, y]

where [x, y] is the Lie bracket. Unlike g, its enveloping algebra is associative.
Since all elements of g are primitive,

[∆(x),∆(y)] = [1⊗ x + x⊗ 1, 1⊗ y + y ⊗ 1]
= 1⊗ xy + xy ⊗ 1− yx⊗ 1− 1⊗ yx

= ∆([x, y]).

Given an algebra A with multiplication mA, functions f : H → A on a
Hopf algebra H have a natural convolution product [2] given by

f ? g(x) ≡ mA(f ⊗ g)∆(x) =
∑

∆(x)

f(x(1))g(x(2)). (8)

Here the terms in ∆(x) ∈ H ⊗H directly define f ? g. We are particularly
interested in the cases A = C, defining a dual Hopf structure, and A = H.
In the latter case, the antipode S : H → H is the convolution inverse of the
identity IH . Following (8), its axiom is

H ⊗H
S⊗IH // H ⊗H

m

²²
H ε

//

∆

OO

C η
// H

(9)

where ηε is the identity for the ? product. When A = C, the identity for
? is given by ε. In the simplest form of renormalization we usually require
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an additional dimensional regularization parameter δ, so elements of A are
Laurent series in C[δ−1, δ]].

A function f such that f(xy) = f(x)f(y) is known as a character when
A = C. Characters clearly satisfy f(1) = 1 and form a group, where the
antipode is used to define a ? inverse

f−1(x) ≡ fS(x). (10)

Since the convolution is associative, any vector space of functions under ?
defines a Lie algebra with bracket

[f, g] ≡ f ? g − g ? f. (11)

2 Commutative Trees and Forests

An undecorated planar rooted tree has a distinguished vertex, the root,
drawn at the bottom of the tree. The order |t| of a tree t is the number of
vertices. A tree is commutative when its diagram is equivalent to any other
tree obtained from it by permuting subtrees without altering the graph. So
there are eight commutative trees with four or fewer vertices:

•
t1
•
t2

•
•
t3

•
•

•
t4

,,,,
• •µµµµ •

t5

•
•
•

•
t6

• ••,,,, µµµµ •
t7

• •
•

,,,, µµµµ •
t8

•
• •,,,, µµµµ

· · ·

A forest of commutative rooted trees is an unordered list of such trees. The
product of two forests is their disjoint union. Considering each distinct
forest as a basis element, we can take arbitrary sums of forests over Q,
making forests into an algebra. The empty tree is the unit.

Such rooted commutative forests form a Hopf algebra. Since ∆(st) =
∆(s)∆(t), where st is a forest product, it is sufficient to define the comulti-
plication on trees. Define a subtree s of t to be a connected subgraph of t
containing the root. The set of edges in t that adjoin the top vertices of s
has the property that no pair of edges lies on a single path from the root of
t. These edges may be used to cut the tree t into a forest, by deleting the
special edges, and the forest includes s. Let t\s denote the remainder of the
forest besides s. The coproduct is given by

∆(t) =
∑

s

t\s⊗ s (12)

where the sum is over all possible subtrees, including the empty tree 1 and
the full tree t. Observe that ∆(1) = 1⊗ 1 is grouplike and

∆(•) = • ⊗ 1 + 1⊗ • (13)
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1 1⊗ 1
t1 1⊗ t1 + t1 ⊗ 1
t2 1⊗ t2 + t2 ⊗ 1 + t1 ⊗ t1
t3 1⊗ t3 + t3 ⊗ 1 + t1 ⊗ t2 + t2 ⊗ t1
t4 1⊗ t4 + t4 ⊗ 1 + 2t1 ⊗ t2 + t1t1 ⊗ t1
t5 1⊗ t5 + t5 ⊗ 1 + t1 ⊗ t3 + t3 ⊗ t1 + t2 ⊗ t2
t6 1⊗ t6 + t6 ⊗ 1 + 3t1 ⊗ t4 + 3t1t1 ⊗ t2 + t1t1t1 ⊗ t1
t7 1⊗ t7 + t7 ⊗ 1 + t1 ⊗ t3 + t2 ⊗ t2 + t1 ⊗ t4 + t1t2 ⊗ t1 + t1t1 ⊗ t2
t8 1⊗ t8 + t8 ⊗ 1 + t4 ⊗ t1 + 2t1 ⊗ t3 + t1t1 ⊗ t2

Table 1: Coproduct ∆(ti) on rooted trees

is primitive. The counit satisfies ε(1) = 1 and ε(t) = 0 for all t 6= 1. The
value of the coproduct on the first few trees is given in Table 1.

Consider the empty tree 1. Since ηε(1) = 1, the antipode axiom requires
S(1) · 1 = 1, so S(1) = 1. For the tree •, the antipode is applied to (13),

S(•) · 1 + • = 0,

giving S(•) = −•. The antipode for higher order trees follows. It looks the
same as ∆ (without the ⊗ insertions) except for a minus sign on the terms
with an even number of edge cuts [10][11][12].

Given this Hopf algebra T of forests, there is a convolution product on
functions f : T → C. After [5] we write G1 ⊂ G for the group of characters
under ? within the vector space G of all C linear functions on T . The other
special subset of G is G0, namely the functions f for which f(1) = 0, and
G0 is a sub Lie algebra.

The antipode in T defines the ? inverse of f ∈ G1 by (10). For the tree
t1,

f−1(•) + f(•) = 0. (14)

But this is only true for f ∈ G1. In general, physical quantities depend on
f(1) = λ 6= 0, 1. This scalar may be derived from some noncommutative
or even nonassociative structure. So instead of assuming a coproduct based
on primitive parts, we look in section 4 at Hopf algebras that are neither
commutative nor cocommutative.

The Lie algebra structure for characters on the space of C valued linear
functions on T is summarised in Table 2. We are motivated to find the
simplest nontrivial bracket, starting with the asymmetry in ∆(t4). This
term in [a, b] goes to zero if

a(t2) =
1
2
a(t1)2, (15)

known as the c(2) condition in numerical analysis. The ladder trees (ie. t1,
t2, t3, t5, · · · ) have left right symmetric coproducts. These cannot contribute
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() t1 t2 t4
a 1 x1 y1 w1

b 1 x2 y2 w2

a ? b 1 x1 + x2 y1 + y2 + x1x2 w1 + w2 + 2x1y2 + x1
2x2

b ? a 1 x1 + x2 y1 + y2 + x1x2 w1 + w2 + 2x2y1 + x1x2
2

[a, b] 0 0 0 2(x1y2 − x2y1) + x1x2(x1 − x2)

Table 2: Lie structure for characters

to [a, b]. Observe that if a(•) = b(•) for characters a, b on T , and [a, b] = 0,
then a(t) = b(t) for all t in T .

For any forest k create a tree B+(k) with n + 1 vertices by gluing all
trees in k above a new root vertex. That is, B+(t1) = t2 and we take
B+(1) = t1. Let Tn denote all trees with |t| = n. It is clear that B+(Tn)
contains all possible rooted trees of order n + 1, and that every tree in this
set is distinct. Thus B+ respects the grading of order and the inverse B−
sends trees of order n to forests of order n− 1.

Our first combinatorial quantity is σ(t), the symmetry factor of a com-
mutative tree. This is the number of permutations of vertices that fixes the
tree. For example, σ(t6) = 6 and σ(t8) = 2. Now let T1, T2, · · ·Tk be a
sequence of k trees. The integral tree factorial t! is defined recursively [11]
for t = B+(T1, · · · , Tk). Let |t| be the order of t. Take a ∈ G such that
a(•) = 1 and a : t 7→ 1/t!. Then a satisfies

a(t)|t| = a(T1)a(T2) · · · a(Tk). (16)

This function appears in the exact numerical solution to the following basic
problem. Let y = y(x) be a vector or scalar valued function of x. Consider
the autonomous ODE y′ = f(y) given an initial value of y. Solutions for
y that generalise Taylor series are sums over trees, known as B-series after
[5]. That is, given a : T → R in the convolution algebra, there is a power
series in h (the step in the x direction) indexed by commutative trees,

B(a, hf, y) = ya(1) +
∑

t∈T

h|t|

σ(t)
a(t)(f(t)(y)) (17)

where f(t) is the elementary differential associated to the tree t and the
function f . It is clear that B(ε, hf, y) = y. Let d : T → R be the function
such that d(•) = h−1 and d = 0 on all other trees including 1. Then
B(d, hf, y) = f . In the case a(t) = 1/t!, as in (16), B(a, hf, y) is the exact
series solution for the flow. The Taylor series is recovered when the set of
trees is reduced to an ordinal sequence: the corolla trees t1, t2, t4, t6, · · · ,
represent the numbers n ∈ {1, 2, 3, 4, · · · }, and for these trees, σ(t) = (n−1)!
and t! = n. For corollas, ∆(t) in Table 1 is given by the binomial coefficients,
ignoring the factor 1⊗t. A forest of corollas is precisely an integer partition.
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3 Shuffle and Stuffle Algebras

A function with multiple arguments probably has noncommutative argu-
ments. For instance, the coordinates of a vector cannot be arbitrarily per-
muted. With trees, a noncommutative forest is what you think it is: an
ordered forest of trees which are no longer invariant under permutation
symmetries. As before, there is a unique empty forest and a unique forest
•. The two forests at n = 2 are t2 and ••. There are five forests at n = 3:

• • • • •
•

••
•

•
• •**** ···· •

•
•

The number of noncommutative forests is given by the Catalan number Cn.
The usual product and coproduct give a new Hopf algebra [14], called N . As
we will see, noncommutative forests are closely related to nonassociativity,
whereas commutative forests are required to describe permutations.

A decoration for a tree is an assignment of values from a finite set S
to each vertex. An important example is the mapping of trees with n + 1
vertices to decorations in S = {0, 1, · · · , n} such that each ordinal is only
used once. On commutative trees, the following monotonic labelings from
S make the collection of all decorated trees into a copy of the symmetric
group Sn [15]. A path upwards from the root is monotonically increasing.
At a given level, labels are also monotonic from right to left. For example,
the six trees of S3 are

•0
•1

2

3

•
•

•0
• ••3 12:::::

¥¥¥¥¥ •0
• •
•

2 1

3
:::::

¥¥¥¥¥ •0
• •

•
2 1

3
:::::

¥¥¥¥¥ •0
• •

•
3 1

2
:::::

¥¥¥¥¥ •0
•

• •

0

1

3 2:::::
¥¥¥¥¥

Note the appearance of the integral symmetry factors σ(t) from the last
section, where the number of allowed numberings of a tree is

α(t) ≡ |t|!
t!σ(t)

. (18)

As in example 1.1, there is a group algebra CSn for every symmetric
group Sn. We are also interested in a Hopf algebra for the union

∐
nCSn

of all symmetric group algebras [2][15]. Given two arbitrary words l1l2 · · · lu
and k1k2 · · · kv, the shuffle product is defined recursively by

(l1l2 · · · lu) t (k1k2 · · · kv) = l1(l2 · · · lu t k1 · · · kv) + k1(l1l2 · · · lu t k2 · · · kv).
(19)

The empty word 1 behaves as expected: w t 1 = 1tw = w for any word w.
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Example 3.1 ab t c = abc + acb + cab.

The simplest coproduct for shuffles is deconcatenation,

∆(l1l2 · · · lu) =
u∑

j=0

lj+1 · · · lu ⊗ l1 · · · lj . (20)

By definition, a permutation σ−1 ∈ Sn is a (p, q) shuffle for n = p + q if

σ(1) < σ(2) < · · · < σ(p), σ(p + 1) < σ(p + 2) < · · · < σ(p + q). (21)

In other words, once p out of n objects are selected, the permutation is
fixed. The shuffle sum Σp,q in CSn is the sum of all (p, q) shuffles. The
shuffle product is then written

l1 · · · lp t lp+1 · · · lp+q =
∑

shuffle

lσ(1) · · · lσ(p+q). (22)

Let σnσm denote the permutation in Sn+m which acts as σn ∈ Sn on the
first n objects and then as σm ∈ Sm on the remaining ones. The Malvenuto-
Reutenauer coproduct [15][16] depends on this result:

Theorem 3.2. For any σ ∈ Sn and any ordinal p ≤ n, there exist unique
permutations σp ∈ Sp and σq ∈ Sq such that

σ = (σpσq)Σp,q
−1. (23)

Example 3.3 ∆((231)) = 1⊗ (231) + (231)⊗ 1 + (1)⊗ (32) + (12)⊗ (3).

Permutations in Sn are equivalently given by planar trees with binary
branchings on n+3 vertices, where the branchings are strictly ordered. Here
each vertex defines an area between the two edges above it. A permutation is
specified by numbering the n areas between leaves from 0 to n, and then re-
ordering the numbers using the vertex order. In particular, the two elements
of S2 are

•
(12)

•• •
•

,,,,,,,

µµµµµµµ

µµµµ

•
(21)

• ••
•

µµµµµµµ

,,,,,,,

,,,,

When the downward ordering of internal vertices on a tree is ignored, so
that S3 reduces to a set of 5 binary trees, the trees represent all possible
bracketings of words, where the number of letters is given by the leaves
on the binary tree. This collection of trees with n + 1 leaves is known as
the associahedron in dimension n − 1, since each vertex below the leaves
represents a bracketing of two letters. For instance, the bracketed word
(((ab)c)d) is one of the trees in the pentagon below.
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Theorem 3.4. The set of rooted binary associahedra trees is in bijection
with the set of noncommutative forests.

Proof: The algorithm for turning a binary tree into a forest goes as follows.
Draw a vertex inside each area that is bounded by edges of the binary tree.
So for S2, there are two vertices per tree. View all internal edges on the
tree as either left moving or right moving, going downwards. For each right
moving edge, connect the vertices in the adjoining two areas by an edge. ¦

An alternative to rooted binary trees with n+2 leaves/roots are chorded
polygons with n + 2 sides, given by the planar dual picture for the tree,
assuming that a root edge is selected on the polygon. The number of chords
in the diagram grades the set of trees with n + 1 leaves, making the associ-
ahedron into a polytope: a one chord diagram defines a face of codimension
1, and a diagram with the maximal number of chords defines a vertex.

ooooooooooo

OOOOOOOOOOO???????

ÄÄÄÄÄÄÄ

(((ab)c)d) (a(b(cd)))

((ab)(cd))

((a(bc))d) (a((bc)d))

The stuffle product is a generalisation of the shuffle, defined when there
exists an additional binary operation (li, lj) = lk on the letters of the alpha-
bet:

l1 · · · lp ∗ lp+1 · · · lp+q = l1(l2 · · · lp ∗ lp+1 · · · lp+q) + lp+1(l1 · · · lp ∗ lp+2 · · · lp+q)
(24)

+(l1, lp+1)(l2 · · · lp ∗ lp+2 · · · lp+q).

Both shuffle and stuffle products give relations between multiple polyloga-
rithms [17][18].

Example 3.5 x1x2 ∗ x3 = x1(x2 ∗ x3) + x3(x1x2) + (x1, x3)x2 = x1x2x3 +
x1x3x2 + x3x1x2 + x1(x2, x3) + (x1, x3)x2.

4 Quantum Algebras

Quantum Hopf algebras are neither commutative nor cocommutative. They
are defined in terms of a deformation parameter, ~ or q, in such a way that
there exists a limit q → 1, which is a universal enveloping algebra U(g).
Such deformations were originally introduced in the study of associators
[19], which underlie the algebra of multiple zeta values. An associator is a
non trivial arrow

φABC : A(BC) → (AB)C (25)
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for a category with nonassociative concatenation. In the last section we
saw that the list of all possible bracketings of words of length n is given
equivalently by binary rooted trees or noncommutative forests.

Consider in general two functions on T that do not commute under
pointwise multiplication. The respective values on • are E and F . Now
even ∆(t2) generates a term [E,F ] under the convolution Lie bracket. The
question is, what is the most general way to define [E, F ] in terms of further
generators and deformation parameters.

Let us use the canonical tree counit: ε(1) = 1 and ε = 0 for non grouplike
elements. Let f(1) = λ. The condition Sf · f(1) = 1 fixes Sf(1) = λ−1.
Then (14) implies that

Sf(•) = −λ−2f(•). (26)

This antipode no longer satisfies S2 = I, indicating a Hopf algebra that is
neither commutative nor cocommutative [2][4]. The canonical example is a
deformation of the universal enveloping algebra of sl2.

Recall that U(sl2) has generators H, E and F . It also contains the empty
word 1. The coproduct on generators is primitive. But in the deformation
algebra Uq(sl2) there is a grouplike element qH/2

∆(qH/2) = qH/2 ⊗ qH/2 (27)

which replaces H. The standard relations of sl2 are

[H,E] = 2E, [H,F ] = −2F, [E, F ] = H, (28)

when q = 1. In the deformation algebra [20][21],

[E,F ] =
qH/2 − q−H/2

q1/2 − q−1/2
. (29)

The coproducts

∆(E) = E ⊗ qH/2 + 1⊗E, ∆(F ) = F ⊗ 1 + q−H/2 ⊗ F (30)

give the antipode rules S(E) = −Eq−H/2 and S(F ) = −qH/2F . Compare
this to (26). A traditional power series expression for qH/2 introduces a
small parameter ~

qH/2 = 1 +
~H
2

+ · · · (31)

The expression (29), as a function of H, is known as a q-number, since when
H is replaced by n ∈ N it generalises to quantum factorials [n]! and quantum
binomials (also known as Gaussian polynomials). The noncommutativity of
E and qH/2 (or F and qH/2) defines the quantum plane, with respect to
which the quantum exponential

expq(x) ≡
∞∑

n=0

qn(n−1)/4

[n]!
xn (32)
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obeys expq(qH/2 +E) = expq(qH/2) expq(E). Such Hopf algebras also have a
braiding operator R ∈ H⊗H [19][22], which actually defines a braid diagram
crossing in a category containing H ⊗H. Interesting categories, known as
ribbon fusion categories, have both braidings and tree bracketing operations.

5 Multiple Zeta Values and Brown’s Integrals

The basic argument for the special functions of QFT is a noncommutative
list of ordinals n1, n2, · · · , nm. Such a list is represented in many ways: as
a noncommutative forest of corolla trees or as a word in two letters a and b,
where for example 3, 4, 2 7→ a2ba3bab. Here the root of the corolla takes the
label b while all leaves are assigned the letter a.

A multiple zeta value (MZV) is given by

ζ(n1, n2, · · · , nm) ≡
∑

k1<k2<···<km

1
k1

n1k2
n2k3

n3 · · · km
nm

, (33)

whenever the sum is defined, or more generally by an abstract symbol
ζ(n1, n2, · · · , nm) obeying certain algebraic relations. The word represen-
tation of the argument gives directly the iterated integral for an MZV. For
example,

ζ(3, 1) =
∫ 1

0

dz

z

∫ 1

0

dz

z

∫ 1

0

dz

1− z

∫ 1

0

dz

1− z
. (34)

The number m is the depth of the MZV, while the weight equals
∑

i ni. The
multiple polylogarithms have an additional set z1, · · · , zk of arguments,

Ln1,n2,··· ,nm(z1, · · · , zm) ≡
∑

k1<k2<···<km

z1
k1 · · · zm

km

k1
n1k2

n2k3
n3 · · · km

nm
. (35)

In particular, L1(z) = − ln(1 − z) and Ln1,··· ,nm(1) = ζ(n1, · · · , nm). The
integral representation uses the G functions [17][18], given by

Ln1,··· ,nm(z1, · · · , zm) = (−1)mGn1,··· ,nm(
1
z1

,
1

z1z2
, · · · ,

1
z1z2 · · · zm

; 1). (36)

An additional argument y replaces the 1 on the right hand side of (36). The
variable y appears in our final elementary set of functions,

gk(y) ≡ lnk y

k!
, (37)

which give the terms of

z = elog z =
∞∑

k=0

lnk z

k!
. (38)
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For m = 1, the classical polylogarithm obeys the shuffle algebra coprod-
uct

∆(Ln(y)) = Ln(y)⊗ 1 + 1⊗ Ln(y) +
n−1∑

k=1

Ln−k(y)⊗ gk(y). (39)

Multiple polylogarithms obey both a shuffle and stuffle algebra.

Example 5.1 The smallest shuffle on words in two letters, which start with
a and end with b, is ab t ab. This gives

ζ(2) t ζ(2) = 2ζ(2, 2) + 4ζ(3, 1).

Example 5.2 The stuffle product of example 3.5 gives

Ln1,n2(x1, x2) ∗ Ln3(x3) = Ln1,n2,n3(x1, x2, x3) + Ln1,n3,n2(x1, x3, x2)

+Ln3,n1,n2(x3, x1, x2) + Ln1,n2+n3(x1, x2x3) + Ln1+n3,n2(x1x3, x2).

A generalisation of the shuffle and stuffle products was analysed by
Brown in [23]. Here the associahedra are used to tile the real points of
a moduli space, and a large class of period integrals are obtained using the
dihedral coordinate systems associated to the polygon chords. In particular,
for a given set of chords ij, integrals are written as

I(aij) =
∫ ∏

ij

uij
aijω (40)

for integral aij , where the Laurent polynomials are in the cross ratio variables

uij ≡ (zi − zj+1)(zi+1 − zj)
(zi − zj)(zi+1 − zj+1)

(41)

and ω is a canonical differential form. Here each point i or j contributes a
factor of CP1 to a large underlying affine space. That is, the dimension of the
computation increases with particle number [24]. The integrals (40) include
historically important hadronic amplitudes, which predate QCD itself.

6 Beyond Renormalization

The Connes-Kreimer Hopf algebra of decorated commutative rooted forests
is equivalent to the algebra of bracketed words in an alphabet of subdiver-
gence types. This gives the Hopf algebra for simple quantum field theories,
such as φ4 theory [6][7][8]. Hopf algebras of trees related to QED were
introduced in [25]. Modern on-shell methods for QCD employ generalised
associahedra. From this perspective, the Standard Model is not really a
local gauge theory (for SU(N) Lie groups) with a Lagrangian formulation

12



[1], because integral amplitudes typically have a simpler algebraic represen-
tation.

For a scalar field theory, Kreimer originally considers a regularization
scheme applied to the antipode rule, but in general the Bogoliubov recursion
is an antipode law [26][27][28]. First UV divergences are eliminated by the
antipode axiom, using the zero of the tree counit. The paper [27] defines
the character structure of Bogoliubov recursion using the exponential and
logarithm functions for the ? product. Here the failure of the product rule for
an exponential, due to the noncommutativity of its arguments, is specified
by the Lie algebra BCH formula. This directly gives an antipode recursion
so that the physical value is a ? exponential.

Physical theories may also require the expq function (32). Concrete
examples of the braiding operator R appear in the foundations of quantum
computation, using qubits and qutrits. In the braid diagrams, each strand
stands for a copy of the algebra H in some category containing all relevant
algebras. Since the dimension of the associahedron axiom increases with
particle number, the axioms for infinite dimensional categories are probably
important to the underlying theory.
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