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The problem on the existence and smoothness of the Navier—Stokes equations is
solved.

1. Introduction

The Navier-Stokes equations are thought to govern the motion of a fluid in R?
where d € N, see [1,3]. Letu = u(x, ) € R? be the velocity and let p = p(x,t) € R
be the pressure, each dependent on position x € R? and time r > 0. We take
the externally applied force to be identically zero. The fluid is assumed to be
incompressible with constant viscosity v > 0 and to fill all of R?. The Navier—
Stokes equations can then be written as

0
8—'; +(u-Vyu=wWu-Vp, 1)
V-u=0 (2)
with initial condition
u(x,0) = ug 3)
where uy = uy(x) € R?. In these equations
o 0 0
= (o )
(9X1 8X2 0Xd
is the gradient operator and
2 S
Ve = — 5
o2 (5)

is the Laplacian operator. When v = 0, equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

uy(X + ¢;) = up(x) (6)

for 1 < i < d where ¢ is the i unit vector in R?. The initial condition u, is a given
C* divergence-free vector field on R?. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

ux +e;, 1) =ux,1n, p(x+e;,t) = p(x,1) (7
on R? x [0, c0) for 1 <i < dand

u,p € C°(RY x [0, 0)). (8)
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2. Solution to the Navier—Stokes problem

I provide a proof of the following theorem [2,3,6].

Theorem. Let uy be any smooth, divergence-free vector field satisfying (6). Then
there exist smooth functions u, p on R x [0, 00) that satisfy (1), (2), (3), (7), (8).
Proof. It is sufficient to rule out the possibility that there is a smooth, divergence-
free u, for which (1), (2), (3) have a solution with a finite blowup time [3].

Let the Fourier series of u, p be

oo

i= Z uLeikL-X, (9)
L=—c0

5 Z pLeikL-X (10)
L=-0c0

respectively. Here uy, = up(f) € C%, pp = p() € C,i= V=1,k =27, and 3§°
denotes the sum over all L € Z¢. The initial condition u, is a Fourier series [2] of
which is convergent for all x € R?. Since uy is a Fourier series this then implies
that uy at complex values of x is irrelevant and that u, can be taken to be smooth
for all x. The Fourier series i|,-o is equivalent to its Taylor series [7] of which
would converge for all x € R¥. Substituting u = @, p = p into (1) gives

0
uL QikLx Z Z (uy. - ikM)uy et LM

L=-c0 L=—co M=—

= - Z VI2|L[Puy e lx — Z KLy e, (11)

L=—c0 L=—00
Equating like powers of the exponentials in (11) yields

ou
6; + Z (ur_p - ikM)uy = —vi2|LPPuy, — ikLpy, (12)

on using the Cauchy product type formula [4]

i ax! i b X" = i i T (13)

|=—00 m=—00 [=—00 m=—o0

Substituting u = u into (2) gives

(o)

Z KL - ug e * = 0. (14)

L=-c0



Equating like powers of the exponentials in (14) yields
L-u,=0. (15)
Applying L- to (12) and noting (15) leads to
D IR R DICIYES B (16)
M=—0c0

where py is arbitrary and L.=L /IL]| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

8uL

== Z (U - ikM)uyy — v |Luy, + Z ikL(ug_y - L)(ay - L) (17)

M=-c0

where uy = uy(0). The equations for uy, are to be solved for all L € Z.
Let
up, = a, + ibL, (18)

pPL =cCL + ldL (19)

where a;, € RY, by, € R?, ¢, € R, and dy, € R. Substituting (18), (19) into (12)
gives

0a ob
a—tL + I—L + Z ((ap_m + iby M) 1kM)(aM + le)

= —vk’|L*(ay, + iby,) — ikL(cy, + idy). (20)
Equating real and imaginary parts in (20) gives

0
aL + Z (—(ar-m - kM)by — (b _m - kMDay) = —vK*|LIay, + kLdy,  (21)

b (o)
aa_zL + Z ((aL—m - kM)ay — (br_a - kM)by) = —vE2|ILI*by, — kL. (22)

Substituting (18) into (15) gives
L - (aL +iby) = 0. (23)
Equating real and imaginary parts in (23) gives
L-a;, =0, (24)
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L by =0. (25)
From (21) and in light of (24) it is possible to write

Oay . — . .
—5 Lt ) (~(@u - AVMDby — (b KMDay) - A, = —vE|LPag -y (26)
M=-00

where 4, = ag,/|ay | is the unit vector in the direction of a;,. Then (26) implies

5|3L|

Z (—(ap-m - kM)by — (by_y - kM)ayy) - &, = —vi*[LPla].  (27)

M=-0c0

From (27) it is possible to write

Olay|
ot

< Z (laL-wIkIM|[by| + [by_wk[Mlap]) + v&*[LI%jay | (28)
M=-c0

on using the Cauchy—Schwarz inequality [5]
la - b| < |a||bl. (29)

It then follows from (28) that

0
Il < 573 oy Myl

=—o00 0t L=—0c0o M=—0c0
+ 0 > b lkiMlaye™ + 3" VP LPag ™™ (30)
L=—c0 M=—c0 L=-00

implying that

Z (9|aL| k|L||x| < Z Z |aL|k|M”bM|ek\L+MHX|

L=—00 L=—0c0 M=—c0

£ 30D bkMlaet N S Rt 61

L=—0c0 M=-c0 L=—c
in light of (13), which yields

o

o Ol SHLIX K(L+MDIx]
2 e Z A k{M[bye

L= L=—0co M=-—

+ >0 bukMlayle MMM &N LN (32)

L=—00 M=-00 L=-00



on using the triangle inequality [5]
|a + b| < |a| + [b].
From (22) and in light of (25) it is possible to write

obL o
or

(33)

b, + Z ((aL_m - kMDay — (b_y - kM)byy) - by, = —vk*[L*by, - by, (34)

where by, = by, /|by| is the unit vector in the direction of by.. Then (34) implies

dlbul
ot

Z ((aL-m - kMDays — (br_n - kM)byy) - by, = —vi?|LF by |.

From (35) it is possible to write

dlby |
ot

< Z (Jar-wmlIkIMlay| + [by ylkIM[by]) + v&>*[L[by |

on using the Cauchy—Schwarz inequality. It then follows from (36) that

N albLl eklLIxl KIL{Ix|
LZ = Z Z jar wIk[M|ae

L=—00 M=—c0

* Z Z [br, -y |k[M[bp e X+ Z Vi?|L[*|by [e" X!
L=—co M=-c0

L=-00

implying that

ab o (o]
Z | L| ML Z Z |ag |K[M[|ay;|e =M

L=—c0o M=—

+ Z Z b JKIM{ by M Z VI2ILP [y je L

L=—0c0 M=—0c0

in light of (13), which yields

o dlby SHLIK KILI+MDIx|
> o Z Z A kiMjay(e

L=-c0 L=—0co M=-

+ Z Z |bL|k|M||bM|ek(ILI+IMI)Ix| + Z Vk2|L| |bL|€k|L”x|

L=—0c0o M=-c0 L=-00

(35)

(36)

(37)

(38)

(39)



on using the triangle inequality.

Let -
y=> lale™, (40)
L=—0c0
6= > byl (41)
L=-c0
where X = |x| and note that
lal < 0 (42)

where Q = ¢ + ¢. Then (32) can be written as

oy op Oy Oy
E<$8—X+¢6—X+v@ (43)

and (39) can be written as

0p oy 0y 0%

AP A S 44
o “Vax T Px T Voxe @4
Adding (43) and (44) yields
00 00  0*Q
o S%x TVox (43)

Here Q|,—, converges for all X € R since ii|,—o converges for all x € R?. In light of
[8] it is found that (45) is globally regular for v > 0. .. blowup is ruled out. O
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