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Abstract

Analytical expressions correlating the volumetric flow rate to the inlet and

outlet pressures are derived for the time-independent flow of Newtonian fluids

in cylindrically-shaped elastic tubes using a one-dimensional Navier-Stokes

flow model with two pressure-area constitutive relations. These expressions

for elastic tubes are the equivalent of Poiseuille and Poiseuille-type expres-

sions for rigid tubes which were previously derived for the flow of Newtonian

and non-Newtonian fluids under various flow conditions. Formulae and pro-

cedures for identifying the pressure field and tube geometric profile are also

presented. The results are validated by a finite element method implemen-

tation. Sensible trends in the analytical and numerical results are observed

and documented.

Keywords: fluid mechanics; Navier-Stokes; one-dimensional flow; Newtonian

fluids; cylindrical elastic tubes; finite element; time-independent; blood flow.

1 Introduction

Considerable amount of work has been done in the past on the flow in rigid tubes

with different types of geometry for both Newtonian and non-Newtonian fluids

using various derivation methods (see for example [1–8]). However, relatively little

work has been done on the flow in elastic tubes especially on developing closed-

form analytical relations. These relations are useful in many scientific, industrial

and medical applications; an obvious example is the flow of blood in large vessels.

Most of the reported work in the literature on the flow in elastic tubes is based on

the use of numerical methods such as finite element (see for instance [9, 10]) mainly

due to the fact that since the flow in networks of elastic tubes was the main focus

of these studies numerical methods were more appropriate to use.

In the current paper, explicit analytical relations linking the volumetric flow

rate to the pressure at the inlet and outlet are derived from a one-dimensional form
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of the Navier-Stokes equations for cylindrically-shaped elastic tubes with constant

cross sectional area using two pressure-area constitutive models. The flow rate

formulae are validated by a finite element implementation based on a Galerkin

method with Lagrange polynomial interpolation and Gauss quadrature integration

schemes. Formulae implicitly defining the tube profile and pressure field at each

point along the tube axis are also provided, demonstrated and validated. The

results presented in this paper are especially useful in biological studies such as

modeling blood flow in arteries and veins.

2 One-Dimensional Navier-Stokes Flow Model

The widely used one-dimensional Navier-Stokes model describing the flow of New-

tonian fluids, which is mainly formulated to model the flow in elastic tubes, is given

by the following mass and momentum conservation principles

∂A

∂t
+
∂Q

∂z
= 0 t ≥ 0, z ∈ [0, L] (1)

∂Q

∂t
+

∂

∂z

(
αQ2

A

)
+
A

ρ

∂p

∂z
+ κ

Q

A
= 0 t ≥ 0, z ∈ [0, L] (2)

where A stands for the tube cross sectional area, t for time, Q for the volumetric

flow rate, z for the space coordinate along the tube axis, L for the length of tube,

α (=
∫
u2dA

Au2
with u and u being the fluid local and mean axial speed at the tube

cross section respectively) for the axial momentum flux correction factor, ρ for the

fluid mass density, p for the z-dependent pressure, and κ for the viscosity friction

coefficient which is usually given by κ = 2παν/(α − 1) with ν being the fluid

kinematic viscosity defined as the ratio of the dynamic viscosity µ to the mass

density [9–12].

In using this model we assume a laminar, axi-symmetric, Newtonian, incom-

pressible, fully-developed flow with insignificant gravitational forces and no-slip-

at-wall boundary conditions [12, 13]. For our current purpose, we also assume a

steady time-independent flow and hence we drop the time terms in the Navier-

Stokes equations. In the following section, we use this one-dimensional Navier-

Stokes formulation to derive Q-p relations for cylindrical elastic tubes using two

pressure-area constitutive relations.
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3 Deriving Q-p Relations

For time independent flow, the Navier-Stokes system given by Equations 1 and 2,

becomes

∂Q

∂z
= 0 z ∈ [0, L] (3)

∂

∂z

(
αQ2

A

)
+
A

ρ

∂p

∂z
+ κ

Q

A
= 0 z ∈ [0, L] (4)

The first of these equations states that Q as a function of z is constant. With

regard to the second equation we have

A

ρ

∂p

∂z
=
A

ρ

∂p

∂A

∂A

∂z
=

∂

∂z

∫
A

ρ

∂p

∂A

∂A

∂z
∂z =

∂

∂z

∫
A

ρ

∂p

∂A
dA (5)

Hence Equation 4 becomes

∂

∂z

(
αQ2

A
+

∫
A

ρ

∂p

∂A
dA

)
+ κ

Q

A
= 0 z ∈ [0, L] (6)

3.1 First p-A Model

For this p-A model we assume a linear pressure-area constitutive relation and hence

the pressure is proportional to the change in cross sectional area relative to the

reference area, that is

p = γ (A− Ao) (7)

where p is the actual pressure as opposed to the reference pressure to which the

reference area is defined, γ is the proportionality coefficient which correlates to

the tube stiffness, A is the tube cross sectional area at pressure p, and Ao is the

reference area as identified by the reference pressure which, in this equation, is

set to zero for convenience without affecting the generality of the results. From

Equation 7, we get ∂p
∂A

= γ and therefore∫
A

ρ

∂p

∂A
dA =

∫
A

ρ
γdA =

γA2

2ρ
(8)

where the constant of integration is neglected because it will eventually vanish

by the action of z partial derivative operator in Equation 6. Hence Equation 6

becomes
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∂

∂z

(
αQ2

A
+
γA2

2ρ

)
+ κ

Q

A
= 0 (9)

that is

∂

∂A

(
αQ2

A
+
γA2

2ρ

)
∂A

∂z
+ κ

Q

A
= 0 (10)

(
−αQ

2

A2
+
γA

ρ

)
∂A

∂z
+ κ

Q

A
= 0 (11)

i.e.

∂z

∂A
=
αQ

κA
− γA2

κρQ
(12)

On integrating both sides of this equation with respect to A, which is always

greater than zero, we get

z =
αQ

κ
lnA− γ

3κρQ
A3 + C (13)

where C is the constant of integration which can be obtained from one of the two

boundary conditions, e.g. the inlet boundary condition where A = Ain at z = 0

with Ain being the tube inlet area, that is

C = −αQ
κ

lnAin +
γ

3κρQ
A3
in (14)

Hence

z =
αQ

κ
ln

(
A

Ain

)
+

γ

3κρQ

(
A3
in − A3

)
(15)

Now, from this equation combined with the other boundary condition which

defines the pressure at the outlet, that is A = Aou at z = L where Aou is the tube

outlet area and L is the tube length, we obtain

L =
αQ

κ
ln

(
Aou
Ain

)
+

γ

3κρQ

(
A3
in − A3

ou

)
(16)

This equation can be transformed to a quadratic polynomial in Q, i.e.

α

κ
ln

(
Aou
Ain

)
Q2 − LQ+

γ

3κρ

(
A3
in − A3

ou

)
= 0 (17)

with the following two roots
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Q =
L±

√
L2 − 4α

κ
ln (Aou/Ain) γ

3κρ
(A3

in − A3
ou)

2α
κ

ln (Aou/Ain)
(18)

For Ain > Aou, which can always be satisfied by proper labeling, the two roots

are necessarily real. For a physically viable flow consistent in direction with the

pressure gradient the negative sign should be taken to obtain a positive flow and

hence

Q =
L−

√
L2 − 4α

κ
ln (Aou/Ain) γ

3κρ
(A3

in − A3
ou)

2α
κ

ln (Aou/Ain)
(19)

This is due to the fact that for Ain > Aou the denominator is negative and hence

to obtain a positive flow rate the numerator should be negative as well, which is

the case only if the negative sign is taken because the square root is always greater

than L. This relation for elastic tubes is the equivalent of the Poiseuille equation

for rigid tubes. However, for elastic tubes the flow rate is dependent not on the

pressure difference but on the actual pressure at the inlet and outlet.

3.2 Second p-A Model

For the second pressure-area constitutive relation, the pressure is proportional to

the radius change with a proportionality stiffness factor scaled by the reference

area, that is

p =
β

Ao

(√
A−

√
Ao

)
(20)

where p is the pressure, β is the tube stiffness factor, Ao is the reference area at

the reference pressure and A is the area at pressure p. The tube stiffness factor for

the second p-A model is normally defined by the following relation

β =

√
πhoE

1− ς2
(21)

where ho is the tube wall thickness at reference pressure, and E and ς are respec-

tively the Young’s elastic modulus and Poisson’s ratio of the tube wall.

From the pressure-area constitutive relation of Equation 20 we obtain ∂p
∂A

=
β

2Ao

√
A

and therefore∫
A

ρ

∂p

∂A
dA =

∫
A

ρ

β

2Ao
√
A
dA =

β

3ρAo
A3/2 (22)
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where the constant of integration is ignored as in the past. Hence Equation 6

becomes

∂

∂z

(
αQ2

A
+

β

3ρAo
A3/2

)
+ κ

Q

A
= 0 (23)

that is

∂

∂A

(
αQ2

A
+

β

3ρAo
A3/2

)
∂A

∂z
+ κ

Q

A
= 0 (24)

i.e. (
−αQ

2

A2
+

β

2ρAo
A1/2

)
∂A

∂z
+ κ

Q

A
= 0 (25)

Following similar steps to those outlined in the first model, we obtain

z =
αQ2 ln (A/Ain)− β

5ρAo

(
A5/2 − A5/2

in

)
κQ

(26)

From the last equation associated with the second boundary condition at the

outlet, i.e. A = Aou at z = L, we obtain the following expression for the volumetric

flow rate

Q =

−κL±
√
κ2L2 − 4α ln (Ain/Aou)

β
5ρAo

(
A

5/2
ou − A5/2

in

)
2α ln (Ain/Aou)

(27)

Both these solutions are necessarily real for Ain > Aou which can always be sat-

isfied for normal flow conditions by proper labeling. For a flow which is physically-

consistent in direction with the pressure gradient, the root with the plus sign should

be selected, i.e.

Q =

−κL+

√
κ2L2 − 4α ln (Ain/Aou)

β
5ρAo

(
A

5/2
ou − A5/2

in

)
2α ln (Ain/Aou)

(28)

This, in essence, is a relation between flow rate and pressure drop, similar to

the Poiseuille law for rigid tubes, although for elastic tubes the flow rate, as given

by Equation 28, does not depend on the pressure difference, as for rigid tubes,

but on the actual inlet and outlet pressure as defined by the inlet and outlet area

respectively.
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4 Finite Element Formulation

The flow formulae derived in the previous section can be validated by the finite

element method using the weak formulation. This formulation is outlined for the

first and second p-A models in the following two subsections. More details about

the finite element technicalities and the solution scheme using Newton-Raphson

iteration are given in [12].

4.1 First p-A Model

The Navier-Stokes system, given by Equations 1 and 2, can be cast in matrix

form which is more appropriate for numerical manipulation and implementation as

follow

∂U

∂t
+
∂F

∂z
+ B = 0 (29)

where

U =

[
A

Q

]
, F =

[
Q

αQ2

A
+ γA2

2ρ

]
, and B =

[
0

κQ
A

]
(30)

On multiplying Equation 29 by weight functions and integrating over the solu-

tion domain, z, the following system is obtained∫
Ω

∂U

∂t
· ωdz +

∫
Ω

∂F

∂z
· ωdz +

∫
Ω

B · ωdz = 0 (31)

where Ω is the solution domain, and ω is a vector of arbitrary test functions. On

integrating the second term of Equation 31 by parts, the following weak form of

the preceding 1D flow system is obtained∫
Ω

∂U

∂t
· ωdz −

∫
Ω

F · dω
dz
dz +

∫
Ω

B · ωdz + [F · ω]∂Ω = 0 (32)

where ∂Ω is the boundary of the solution domain. This weak formulation, cou-

pled with suitable boundary conditions, can be used as a basis for finite element

implementation in conjunction with an iterative scheme such as Newton-Raphson

method. Following a solution scheme detailed in [12] and based on the method

of characteristics [9, 10, 14–17], the eigenvalues λ1,2 and left eigenvectors L1,2 of

the H matrix, which are required for obtaining the compatibility conditions on the
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boundaries, are found as follow

det (H− λI) = det

([
−λ 1

−αQ2

A2 + γA
ρ

2αQ
A
− λ

])
= 0 (33)

where H is the matrix of partial derivatives of F with respect to U, that is

H =
∂F

∂U
=

[
0 1

−αQ2

A2 + γA
ρ

2αQ
A

]
(34)

On solving Equation 33 the eigenvalues are obtained

λ1,2 =
αQ

A
±

√
Q2

A2
(α2 − α) +

γA

ρ
(35)

which are necessarily real for α ≥ 1 as it is always the case, and hence the left

eigenvectors are obtained

L1,2 =
[
−αQ

A
±
√

Q2

A2 (α2 − α) + γA
ρ

1
]

(36)

The compatibility conditions for the time-independent flow arising from pro-

jecting the differential equations in the direction of the outgoing characteristic

variables at the inlet and outlet are then obtained from

L1,2

(
H
∂U

∂z
+ B

)
= 0 (37)

that is

[
−αQ

A
±
√

Q2

A2 (α2 − α) + γA
ρ

1
] [ ∂Q

∂z(
−αQ2

A2 + γA
ρ

)
∂A
∂z

+ 2αQ
A

∂Q
∂z

+ κQ
A

]
= 0

(38)

which can be simplified to

(
−αQ

A
±

√
Q2

A2
(α2 − α) +

γA

ρ

)
∂Q

∂z
+

(
−αQ

2

A2
+
γA

ρ

)
∂A

∂z
+

2αQ

A

∂Q

∂z
+ κ

Q

A
= 0

(39)
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4.2 Second p-A Model

Following a similar procedure to that outlined in the previous subsection for the

first p-A model, the finite element formulation leads to the following matrix struc-

ture, eigenvalues, left eigenvectors and time-independent compatibility conditions

respectively

U =

[
A

Q

]
, F =

[
Q

αQ2

A
+ βA3/2

3ρAo

]
and B =

[
0

κQ
A

]
(40)

λ1,2 = α
Q

A
±

√
Q2

A2
(α2 − α) +

β
√
A

2ρAo
(41)

L1,2 =
[
−αQ

A
±
√

Q2

A2 (α2 − α) + β
√
A

2ρAo
1
]

(42)

and

−αQ
A
±

√
Q2

A2
(α2 − α) +

β
√
A

2ρAo

 ∂Q

∂z
+

(
−αQ

2

A2
+
β
√
A

2ρAo

)
∂A

∂z
+

(
2α
∂Q

∂z
+ κ

)
Q

A
= 0

(43)

5 Numerical Validation

To validate the derived flow formulae, the finite element formulation as outlined

in the previous section was implemented for the two p-A models in a computer

code using a Galerkin method with a Lagrange polynomial interpolation associated

with a Gauss quadrature integration scheme. The comparison between the analytic

and finite element solutions is outlined for some typical cases in the following two

subsections.

5.1 First p-A Model

Extensive tests have been carried out to verify Equation 19; a sample of which is

given in Table 1. Certain sensible trends can be observed in these results. For

example, the diagonally-oriented entries from top-left to bottom-right direction in

the table are of similar magnitude which is sensible since in this quasi-linear flow
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regime obtained at relatively low pressures the flow is Poiseuille-like and hence it

is almost proportional to the pressure difference (i.e. Pin − Pou). This Poiseuille-

like behavior disappears at high-pressure flow regimes as the flow rate becomes

increasingly dependent on the actual pressures at the inlet and outlet rather than

on the pressure difference. Another sensible trend is that the flow rate in these

diagonally-oriented entries is increasing in the top-left to bottom-right direction

due to the fact that although the pressure difference for these entries is the same,

the lower entries have larger area at the inlet and outlet, due to the higher pressure

at the tube entrance and exit, than the upper ones. This trend is more obvious at

higher pressure regimes.

We also used Equation 15, which implicitly correlates A to z, to obtain the

pressure field inside the tube and the tube profile by numerically solving for A

for a given z. A sample of these results, with their finite element counterparts, is

presented in Figures 1 and 2. These figures confirm the sensibility of the obtained

analytical and numerical results.

Table 1: Sample results of the volumetric flow rate in m3/s related to the elastic
tube investigation for the first p-A model. The rows stand for the inlet pressure,
Pin, and the columns for the outlet pressure, Pou, in Pa. The parameters with
which these results are obtained are: ρ = 1060 kg/m3, µ = 0.0035 Pa.s, α = 1.333,
L = 1.0 m, r = 0.1 m, and γ = 5 × 106 Pa/m2. In each Pin row the top and
bottom entries are respectively the analytic solution, given by Equation 19, and
the finite element solution which is obtained with a quadratic Lagrange polynomial
interpolation.

Pou
0 100 200 300 400 500 600 700 800 900

Pin
100 0.286046

0.286046
200 0.307977 0.286332

0.307977 0.286332
300 0.315789 0.308278 0.286619

0.315789 0.308278 0.286619
400 0.319850 0.316096 0.308579 0.286905

0.319850 0.316096 0.308579 0.286905
500 0.322373 0.320158 0.316402 0.308881 0.287192

0.322373 0.320159 0.316402 0.308881 0.287192
600 0.324118 0.322684 0.320467 0.316708 0.309182 0.287479

0.324119 0.322684 0.320467 0.316708 0.309182 0.287479
700 0.325415 0.324430 0.322994 0.320776 0.317015 0.309484 0.287766

0.325415 0.324430 0.322994 0.320777 0.317015 0.309484 0.287766
800 0.326430 0.325727 0.324741 0.323305 0.321086 0.317322 0.309785 0.288053

0.326430 0.325728 0.324742 0.323305 0.321086 0.317322 0.309785 0.288053
900 0.327256 0.326743 0.326040 0.325053 0.323615 0.321395 0.317628 0.310087 0.288340

0.327257 0.326743 0.326040 0.325053 0.323616 0.321395 0.317628 0.310087 0.288340
1000 0.327950 0.327569 0.327056 0.326352 0.325365 0.323926 0.321704 0.317935 0.310389 0.288627

0.327951 0.327570 0.327056 0.326353 0.325365 0.323926 0.321704 0.317935 0.310389 0.288627
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Figure 1: Pressure versus tube axial coordinate for three sample cases related to
the first p-A model as obtained analytically from Equation 15 and numerically by a
finite element method with a quadratic polynomial interpolation scheme as outlined
in the previous section. The labels ‘1’, ‘2’ and ‘3’ in these plots refer respectively
to the cases where Pin = 1000 Pa and Pou = 0 Pa, Pin = 500 Pa and Pou = 0 Pa,
and Pin = 700 Pa and Pou = 400 Pa. The tube, fluid and flow parameters with
which these results are obtained are: ρ = 1060 kg/m3, µ = 0.0035 Pa.s, α = 1.333,
L = 1.0 m, r = 0.1 m, and γ = 5× 106 Pa/m2.
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Figure 2: Radius versus tube axial coordinate for the three sample cases of Figure
1.
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5.2 Second p-A Model

Extensive tests have been carried out to verify Equation 28; a sample of which is

given in Table 2. Also, we used Equation 26 to obtain the pressure field inside the

tube and the tube geometric profile, as outlined for the first p-A model. A sample

of these results, with their finite element equivalents, is presented in Figures 3 and

4. Similar sensible trends to those observed in the first p-A model are detected.

Table 2: Sample results of the volumetric flow rate in m3/s related to the elastic
tube investigation for the second p-A model. The rows stand for the inlet pressure,
Pin, and the columns for the outlet pressure, Pou, in Pa. The parameters with
which these results are obtained are: ρ = 1060 kg/m3, µ = 0.0035 Pa.s, α = 1.333,
L = 1.0 m, r = 0.1 m, and β = 5 × 104 Pa.m. In each Pin row the top and
bottom entries are respectively the analytic solution, given by Equation 28, and
the finite element solution which is obtained with a quadratic Lagrange polynomial
interpolation.

Pou
0 100 200 300 400 500 600 700 800 900

Pin
100 0.273135

0.273135
200 0.292950 0.273397

0.292950 0.273397
300 0.299986 0.293221 0.273659

0.299986 0.293221 0.273659
400 0.303637 0.300259 0.293491 0.273922

0.303637 0.300259 0.293491 0.273922
500 0.305904 0.303912 0.300532 0.293762 0.274184

0.305904 0.303912 0.300533 0.293762 0.274184
600 0.307471 0.306180 0.304187 0.300806 0.294033 0.274447

0.307471 0.306180 0.304187 0.300806 0.294033 0.274447
700 0.308634 0.307747 0.306455 0.304462 0.301080 0.294304 0.274710

0.308634 0.307747 0.306456 0.304462 0.301080 0.294304 0.274710
800 0.309543 0.308910 0.308023 0.306731 0.304737 0.301353 0.294575 0.274973

0.309543 0.308910 0.308023 0.306731 0.304737 0.301353 0.294575 0.274973
900 0.310283 0.309820 0.309187 0.308299 0.307007 0.305012 0.301627 0.294847 0.275236

0.310283 0.309820 0.309187 0.308300 0.307007 0.305012 0.301627 0.294847 0.275237
1000 0.310903 0.310560 0.310097 0.309464 0.308576 0.307283 0.305287 0.301902 0.295118 0.275500

0.310904 0.310561 0.310097 0.309464 0.308576 0.307283 0.305287 0.301902 0.295118 0.275500
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Figure 3: Pressure versus tube axial coordinate for three sample cases related to the
second p-A model as obtained analytically from Equation 28 and numerically by a
finite element method with a quadratic polynomial interpolation scheme as outlined
in the previous section. The labels ‘1’, ‘2’ and ‘3’ in these plots refer respectively
to the cases where Pin = 900 Pa and Pou = 0 Pa, Pin = 400 Pa and Pou = 0 Pa,
and Pin = 600 Pa and Pou = 200 Pa. The tube, fluid and flow parameters with
which these results are obtained are: ρ = 1060 kg/m3, µ = 0.0035 Pa.s, α = 1.333,
L = 1.0 m, r = 0.1 m, and β = 5× 104 Pa.m.
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Figure 4: Radius versus tube axial coordinate for the three sample cases of Figure
3.
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6 Conclusions

In this study, two analytical expressions, correlating volumetric flow rate to pres-

sure at inlet and outlet, are derived for the Newtonian flow in cylindrical elastic

tubes from a one-dimensional form of the Navier-Stokes equations. The expressions

are validated numerically by a finite element method based on a Galerkin scheme

with Lagrange interpolation and Gauss quadrature integration. Sample results,

which are quantitatively and qualitatively sensible, are presented for demonstra-

tion. Two constitutive relations, depicting the nature of the relation between area

and pressure in elastic tubes, are used in all these derivations and finite element

implementation. The foundations of the finite element weak form for the two p-A

models are outlined for completion. Preliminary rational trends in these results

are observed and documented. Analytical implicit relations for obtaining the pres-

sure field inside the tube, as well as the tube geometric profile, are also presented,

demonstrated and numerically validated. The outcome of this investigation, nu-

merical as well as analytical, is of relevance to several areas of science, technology

and medicine.
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Nomenclature

α correction factor for axial momentum flux

β stiffness factor in the second p-A model

γ stiffness factor in the first p-A model

κ viscosity friction coefficient

λ1,2 eigenvalues of H matrix

µ fluid dynamic viscosity

ν fluid kinematic viscosity

ρ fluid mass density

ς Poisson’s ratio of tube wall

ω vector of test functions in finite element formulation

Ω solution domain

∂Ω boundary of solution domain

A tube cross sectional area at pressure p

Ain tube cross sectional area at inlet

Ao tube reference cross sectional area at reference pressure

Aou tube cross sectional area at outlet

B matrix of force terms in the 1D Navier-Stokes equations

E Young’s modulus of tube wall

F flux matrix in the 1D Navier-Stokes equations

H matrix of partial derivatives of F with respect to U

ho tube wall thickness at reference pressure

L length of tube

L1,2 left eigenvectors of H matrix

p pressure at given coordinate z

Pin pressure at tube inlet

Pou pressure at tube outlet

Q volumetric flow rate

r radius

t time

u local axial speed of fluid at cross section

15



u mean axial speed of fluid at cross section

U vector of Navier-Stokes dependent variables

z tube axial coordinate

16
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