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Abstract

In this paper, we use a generic and general variational method to obtain
solutions to the flow of generalized Newtonian fluids through circular pipes and
plane slits. The new method is not based on the use of the Euler-Lagrange
variational principle and hence it is totally independent of our previous
approach which is based on this principle. Instead, the method applies
a very generic and general optimization approach which can be justified
by the Dirichlet principle although this is not the only possible theoretical
justification. The results that were obtained from the new method using
nine types of fluid are in total agreement, within certain restrictions, with
the results obtained from the traditional methods of fluid mechanics as well
as the results obtained from the previous variational approach. In addition
to being a useful method in its own for resolving the flow field in circular
pipes and plane slits, the new variational method lends more support to
the old variational method as well as for the use of variational principles in
general to resolve the flow of generalized Newtonian fluids and obtain all the
quantities of the flow field which include shear stress, local viscosity, rate of
strain, speed profile and volumetric flow rate. The theoretical basis of the
new variational method, which rests on the use of the Dirichlet principle, also
provides theoretical support to the former variational method.

Keywords: fluid dynamics; rheology; variational method; Dirichlet principle;
pipe flow; slit flow; Newtonian; power law; Ellis; Ree-Eyring; Carreau; Cross;
Bingham; Herschel-Bulkley; Casson.
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1 Introduction

The flow through circular pipes and plane slits has many applications in physical
and biological sciences and engineering and hence it has been investigated in the past
by many researchers (e.g. [1–12]) using various methods of fluid dynamics. Recently
we proposed the use of Euler-Lagrange variational principle [13] to resolve the flow
of generalized Newtonian fluids through circular pipes. The method is based on
minimizing the total stress in the flow conduit in the sense of minimizing the stress
profile in the velocity-varying dimension. This attempt was later expanded and
supported by other investigations [14–16] where the method was successfully applied
to more types of fluid and another type of geometry, namely the plane slit conduit.

Despite the success of this method in describing the flow of several fluid models
and conduit types, it has not been proven in general by a formal mathematical
argument that justifies the universal applicability of the variational method and
the principle on which it relies. Certain mathematical technicalities may also be
disputed and hence it is desirable to fortify the method by a more generic and
general variational approach that is more safe from such disputes and pitfalls. The
present investigation tries to do so by using a very basic and general variational
approach where the flow field in the conduit is resolved through the application of
a generic optimization technique to a stress functional. The theoretical justification
of this functional can be obtained from the Dirichlet principle although it can also
be justified by other theoretical foundations based on purely physical arguments.

The plan for this paper is that in section § 2 we present a general description of
the proposed method and its theoretical background. This is followed in section §
3 by discussing practical issues about the implementation of this method and the
presentation of sample results that were obtained from this method with comparison
to similar results obtained from the previous methods which include the classical
methods of fluid mechanics and the former variational approach. The paper is
finalized in section § 4 with general discussions and summarization of the main
achievements of the present study. As a matter of convenience, we label the former
variational method which is based on the Euler-Lagrange principle with EL and
the new variational method which is based on the Dirichlet principle with DM.
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2 Method

We first state our assumptions about the flow, fluid and conduit which are adopted
in the present study. We assume a laminar, isothermal, incompressible, steady,
pressure-driven, fully-developed flow of a time-independent, purely-viscous fluid
that can be described by the generalized Newtonian fluid model, that is

τ = µγ (1)

where the viscosity, µ, and stress, τ , depend only on the contemporary rate of strain,
γ, and hence the fluid has no memory of its deformation past. In this formulation
we ignore all non deformation-related dependencies of the viscosity and stress due
to other physical factors like temperature and pressure. In fact we consider only the
shearing effects since the effects of other forms of deformation, such as extensional,
are presumed insignificant which is well justified for the presumed state of flow,
fluid and conduit. Edge effects at the entry and exit of the conduit, as well as
external body forces, are also regarded negligible.

Concerning the conduit, we use circular pipe and plane slit geometries, which
are depicted in Figures 1 and 2, where the pipe is assumed straight with a cross
section that is uniform in shape and size while the slit is assumed straight long
and thin with a uniform cross section. In both cases we assume rigid mechanical
characteristics of the conduit wall as opposite to being deformable such as having
elastic or viscoelastic mechanical properties. It is also assumed that the slit is
positioned symmetrically in its thickness dimension, z, with respect to the plane
z = 0 as depicted in Figure 2.

Regarding the boundary conditions, we assume no-slip at the conduit wall, where
the fluid interfaces the solid [17], with the flow speed profile having a stationary
derivative point at the symmetry center line of the pipe and symmetry center plane
of the slit which means zero stress and rate of strain at these loci. As for the
viscoplastic fluids, this stationary region expands to include all the points at the
forefront of the flow profile whose stress falls below the yield stress, as will be
discussed further in the coming sections.

Now, for the generalized Newtonian fluids that satisfy the above assumptions,
the momentum equation in one dimension is reduced to

dτ

ds
= G (2)
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Figure 1: A schematic of the circular pipe geometry used in this investigation.
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Figure 2: A schematic of the plane slit geometry used in this investigation.

where s is a spatial coordinate that represents r for pipes and z for slits, and G is a
constant. If we differentiate the last equation with respect to s we get

d2τ

ds2
= 0 (3)

which is a one-variable Laplace equation in one dimension. According to the Dirichlet
principle, the solution of this equation is a minimizer of the following functional
and vice versa
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D =

∫
Ω

∣∣∣∣∣
(
dτ

ds

)2

ds

∣∣∣∣∣ (4)

where D is the Dirichlet functional and Ω is a spatial domain in this formulation.
On using Equation 2, substituting and simplifying, the functional can be reduced to

D = |G|
∫
T

dτ (5)

where T is the new domain in this formulation. The last equation demonstrates that
the solution of this problem is a minimizer (and vice versa) of the total stress in the
sense that have been given previously and hence it establishes the foundation of our
former variational approach, EL, which is based on the use of the Euler-Lagrange
principle. It can also provide a theoretical foundation for new method or methods.

Apart from its theoretical aspects, the Dirichlet principle can be used practically
as a basis for another variational method, DM, that can be employed to obtain
flow solutions and verify the solutions obtained by other methods including the
EL method. The DM method in practical terms is based on finding the shear
stress solution in conduits by minimizing the above functional. This functional is
discretized and minimized numerically using an optimization algorithm subject to
the boundary conditions at the conduit wall and conduit center. For pipes these
boundary conditions are respectively

τw ≡ τR =
R∆p

2L
and τm = 0 (6)

while for slits they are

τw ≡ τB =
B∆p

L
and τm = 0 (7)

where τw is the shear stress at the conduit wall which is equivalent to τR for pipes
and to τB for slits, τm is the stress at the conduit center line or plane, R is the
pipe radius, B is the slit half thickness, and L is the conduit length across which a
pressure drop ∆p is exerted.

The numerically obtained solution, τ(s), is then used in conjunction with the
rheological constitutive relations, as given in Table 1 for the models considered in
this study, applied to the generalized Newtonian fluid equation to find γ(s) either
explicitly or implicitly through the use of a simple numerical solver like a bisection
solver. As for the viscoplastic fluids, a zero stress is applied to all the points at
the forefront of the flow profile whose shear stress falls below the yield stress value
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during the optimization process. As indicated earlier, this is an extension to the
second boundary condition at the conduit center to include a plane region in the
forefront of the speed profile and hence it does not compromise the optimization
condition and the underlying variational principle.

The obtained γ(s) is then integrated numerically with respect to s to find the
flow speed, v(s), where the no-slip boundary condition at the conduit wall is used
to provide an initial value, v = 0, that is incremented on moving inward from the
conduit wall toward the conduit center during the integration process. This is
followed by integrating v(s) numerically with respect to the conduit cross sectional
area normal to the flow direction to obtain the volumetric flow rate. During these
successive integration processes, the boundary conditions at the conduit wall and
center, which are based on the zero speed and zero stress respectively, are used.

In Table 1 the rheological constitutive relations for the nine fluid models which
are employed in this study are presented, while in Tables 2 and 3 the analytical
relations that correlate the flow rate, Q, to the applied pressure drop, ∆p, for the
flow in pipes and slits respectively are given. Most of these expressions can be
found in the classic literature of rheology and fluid dynamics (e.g. [18, 19]) while
the rest can be obtained with their derivation from [14–16]. Regarding the Carreau
and Cross fluids, the “I” factors, which are included in their Q expressions and
represent definite integral expressions, are given by

Ip,Ca =
δ3 [3λ4 (3n′2 + 5n′ + 2) γ4

R − 3n′λ2γ2
R + 2] (1 + λ2γ2

R)
3n′/2

3λ4 (9n′2 + 18n′ + 8)

+
µiδ

2 [λ4 (2n′2 + 5n′ + 3) γ4
R − n′λ2γ2

R + 1] (1 + λ2γ2
R)

n′

2λ4 (n′ + 1) (n′ + 2)

+
µ2
i δ [λ4 (n′2 + 5n′ + 6) γ4

R − n′λ2γ2
R + 2] (1 + λ2γ2

R)
n′/2

λ4 (n′ + 2) (n′ + 4)
+
µ3
i γ

4
R

4

−
(

2δ3

3λ4 (9n′2 + 18n′ + 8)
+

µiδ
2

2λ4 (n′ + 1) (n′ + 2)
+

2µ2
i δ

λ4 (n′ + 2) (n′ + 4)

)
(8)

Ip,Cr =

{
2δ3
[
−m

(
2f2 + 5f + 3

)
+ 4g2 + 2m2

]
+ 12mδ2µig (m− g) + 12m2δµ2

i g
2 + 3m2µ3

i g
3
}
γ4
R

12m2g3

−
{
δ3
(
m2 − 6m+ 8

)
+ 3mδ2µi (m− 4) + 3m2δµ2

i

}
2F1

(
1, 4

m ; m+4
m ;−f

)
γ4
R

12m2
(9)
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Is,Ca =
n′δ2γB

[
2F1

(
1
2
, 1− n′; 3

2
;−λ2γ2

B

)
− 2F1

(
1
2
,−n′; 3

2
;−λ2γ2

B

)]
λ2

+
(1 + n′) δ2γ3

B 2F1

(
3
2
,−n′; 5

2
;−λ2γ2

B

)
3

+
n′δµiγB

[
2F1

(
1
2
, 1− n′

2
; 3

2
;−λ2γ2

B

)
− 2F1

(
1
2
,−n′

2
; 3

2
;−λ2γ2

B

)]
λ2

+
(2 + n′) δµiγ

3
B 2F1

(
3
2
,−n′

2
; 5

2
;−λ2γ2

B

)
+ µ2

i γ
3
B

3
(10)

and

Is,Cr =

[
3δ2 (m− g)− {δ2 (m− 3) + 2mδµi} g2

2F1

(
1, 3

m
; 1 + 3

m
;−f

)
+ 6mδµig + 2mµ2

i g
2
]
γ3
B

6mg2

(11)
where, in these expressions,

δ = (µ0 − µi) , n′ = (n− 1) , f = λmγmw , g = 1 + f, (12)

and 2F1 is the hypergeometric function of the given arguments with its real part
being used in the evaluation of I factors. Moreover

µRγR = τR and µBγB = τB (13)

where τR and τB are given by Equations 6 and 7 respectively, with γR and γB being
obtained numerically from the above implicit relations, as explained in [16].
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Table 1: The constitutive relations for the nine fluid models used in this investigation.
The meaning of the symbols are given in Nomenclature § 5.

Model Constitutive Relation

Newtonian τ = µoγ

Power Law τ = kγn

Ellis µ = µe

[
1 +

(
τ
τh

)α−1
]−1

Ree-Eyring τ = τc arcsinh
(
µrγ
τc

)
Carreau µ = µi + (µ0 − µi) (1 + λ2γ2)

(n−1)/2

Cross µ = µi + µ0−µi
1+λmγm

Bingham τ = C ′γ + τ0

Herschel-Bulkley τ = Cγn + τ0

Casson τ 1/2 = (Kγ)1/2 + τ
1/2
0

Table 2: The volumetric flow rate, Q, for the pipe flow of the nine fluid models
used in this investigation. The symbols are given in Nomenclature § 5.

Model Q

Newtonian πR4∆p
8Lµo

Power Law πR4

8L
n

√
∆p
k

(
4n

3n+1

) (
2L
R

)1−1/n

Ellis πR3τR
4µe

[
1 + 4

α+3

(
τR
τh

)α−1
]

Ree-Eyring πR3τc
τ3Rµr

[
(τcτ

2
R + 2τ 3

c ) cosh
(
τR
τc

)
− 2τ 2

c τR sinh
(
τR
τc

)
− 2τ 3

c

]
Carreau πR3Ip,Ca

τ3R

Cross πR3Ip,Cr

τ3R

Bingham πR4∆p
8LC′

[
1
3

(
τ0
τR

)4

− 4
3

(
τ0
τR

)
+ 1

]
Herschel-Bulkley 8π

n√C

(
L

∆p

)3

(τR − τ0)1+1/n
[

(τR−τ0)2

3+1/n
+ 2τ0(τR−τ0)

2+1/n
+

τ20
1+1/n

]
Casson πR3

τ3RK

(
τ4R
4
− 4

√
τ0τ

7/2
R

7
+

τ0τ3R
3

)

8



Table 3: The volumetric flow rate, Q, for the slit flow of the nine fluid models used
in this investigation. The symbols are given in Nomenclature § 5.

Model Q

Newtonian 2WB3∆p
3µoL

Power Law 2WB2n
2n+1

n

√
B∆p
kL

Ellis 2WB2

µe

[
τB
3

+
ταB

(α+2)τα−1
h

]
Ree-Eyring 2Wτ2c

µr

(
B
τB

)2 [
τB cosh

(
τB
τc

)
− τc sinh

(
τB
τc

)]
Carreau 2WB2Is,Ca

τ2B

Cross 2WB2Is,Cr

τ2B

Bingham 2W
C′

(
B
τB

)2 [
τ3B
3
− τ0τ2B

2
+

τ30
6

]
Herschel-Bulkley 2W

n√C

(
B
τB

)2 [
n(nτ0+nτB+τB)(τB−τ0)1+1/n

(2n2+3n+1)

]
Casson 2W

K

(
B
τB

)2
[
τ3B
3
− 4

√
τ0τ

5/2
B

5
+

τ0τ2B
2
− τ30

30

]
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3 Implementation and Results

The optimization method, as described in the last section, was implemented in a
computer code using five numerical optimization algorithms: three deterministic
which are Conjugate Gradient, Quasi-Newton and Nelder-Mead [20]; and two
stochastic which are the Stochastic Global algorithm of Boender et al [21]1 and a
generic simulated annealing algorithm [22]. These five algorithms produce similar
solutions with different levels of accuracy and convergence rate. The sample
results presented in this paper are obtained mostly from the Stochastic Global
algorithm which is overwhelmingly the most accurate and reliable one. In addition,
standard numerical integration and bisection solution techniques, as well as standard
algorithms for evaluating complicated functions like hypergeometric, were employed.

The newly proposed variational method was then employed to obtain solutions
for the flow of nine types of fluid through pipes and slits. The nine types of fluid
are: Newtonian, power law, Ellis, Ree-Eyring, Carreau, Cross, Bingham, Herschel-
Bulkley and Casson. The results obtained from the new method using wide ranges
of fluid and conduit parameters were thoroughly compared to the results obtained
from the traditional methods of fluid mechanics and the former variational method.

In all the investigated cases the three methods produced very similar results
within acceptable error margins. One exception is the Ellis model for which EL has
not been formulated and implemented. Another exception is the viscoplastic fluids
where the EL method differs significantly when the yield stress value is high. This
is justified by the fact that the EL method was formulated and implemented for the
non-viscoplastic fluids specifically and hence, as we demonstrated in our previous
investigations [13–15], it is just an approximation for the viscoplastic fluids which is
a good one only when the yield stress value is low. However, we believe that even
the EL method can be re-formulated and re-implemented to include viscoplastic
fluids, and hence it can produce similar results to the other methods even for the
high yield stress fluids, although we did not make any effort in the current study to
do so.

A representative sample of these results obtained from the three methods are
presented in Figures 3, 4, 5 and 6 where the fluid and conduit parameters of these
examples are given in Tables 4 and 5. In these figures, the analytical solution is
represented by the solid line while the solutions from the two variational methods
are represented by the circles. The exception, as indicated earlier, is the Ellis and

1See also: http://jblevins.org/mirror/amiller/global.txt web page.
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viscoplastic fluids where the circles represent only the DM method. The reason for
combining the solutions of the two variational methods in a single representation is
that they produce very similar results and hence there is no point in plotting them
separately.

As seen in these examples, the two variational solutions agree very well with the
analytical solutions. The minor departure in some cases between the two variational
methods on one hand and the analytical on the other is due mainly to the nature
of the variational methods as they heavily rely on numerical techniques, mainly
bisection solvers and numerical integration, which is not the case with the analytical
solutions since they are evaluated directly. As indicated above, unlike the EL
approach which is a good approximation for the viscoplastic fluids only if their
yield stress is low, the DM approach produces ‘exact’ solutions, considering the
numerical errors introduced by the heavy use of numerical techniques, even for the
fluids with high yield stress.
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Figure 3: Comparing the analytical solution (solid line) to the variational solutions
(circles) of γ in s−1 (vertical axis) versus r in m (horizontal axis) for the flow of the
nine fluid models in pipes. The EL solutions are not represented for the Ellis and
viscoplastic fluids. The pipe and fluid parameters are given in Table 4, where in all
cases ∆p = 500 Pa.
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Figure 4: Comparing the analytical solution (solid line) to the variational solutions
(circles) of γ in s−1 (vertical axis) versus z in m (horizontal axis) for the flow of the
nine fluid models in slits. The EL solutions are not represented for the Ellis and
viscoplastic fluids. The slit and fluid parameters are given in Table 5, where in all
cases ∆p = 700 Pa.
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Figure 5: Comparing the analytical solution (solid line) to the variational solutions
(circles) of Q in m3.s−1 (vertical axis) versus ∆p in Pa (horizontal axis) for the flow
of the nine fluid models in pipes. The EL solutions are not represented for the Ellis
and viscoplastic fluids. The pipe and fluid parameters are given in Table 4.
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Figure 6: Comparing the analytical solution (solid line) to the variational solutions
(circles) of Q in m3.s−1 (vertical axis) versus ∆p in Pa (horizontal axis) for the flow
of the nine fluid models in slits. The EL solutions are not represented for the Ellis
and viscoplastic fluids. The slit and fluid parameters are given in Table 5.

15



Table 4: Fluid and pipe parameters for the examples of Figures 3 and 5. SI units
apply to all dimensional quantities as given in Nomenclature § 5.

Model Fluid Properties R L

Newtonian µo = 0.025 0.08 0.65
Power Law k = 0.033, n = 1.15 0.01 0.095
Ellis µe = 1.42, τh = 15, α = 3.3 0.04 0.15
Ree-Eyring µr = 0.02, τc = 300 0.03 0.8
Carreau µ0 = 0.1, µi = 0.008, λ = 1.2, n = 0.65 0.03 0.45
Cross µ0 = 0.15, µi = 0.005, λ = 7.9, m = 0.8 0.012 0.15
Bingham C ′ = 0.037, τ0 = 2.5 0.01 0.1
Herschel-Bulkley C = 0.47, τ0 = 5.0, n = 0.75 0.04 0.7
Casson K = 0.75, τ0 = 3.0 0.09 1.33

Table 5: Fluid and slit parameters for the examples of Figures 4 and 6, where
in all cases W = 1.0 m. SI units apply to all dimensional quantities as given in
Nomenclature § 5.

Model Fluid Properties B L

Newtonian µo = 0.13 0.02 1.2
Power Law k = 0.073, n = 0.67 0.01 0.95
Ellis µe = 0.049, τh = 5.0, α = 2.9 0.011 1.95
Ree-Eyring µr = 0.57, τc = 75 0.05 11.5
Carreau µ0 = 0.32, µi = 0.096, λ = 0.75, n = 0.85 0.023 0.75
Cross µ0 = 0.015, µi = 0.007, λ = 2.56, m = 0.73 0.035 2.13
Bingham C ′ = 0.48, τ0 = 4.3 0.014 1.03
Herschel-Bulkley C = 0.03, τ0 = 5.2, n = 1.45 0.035 3.09
Casson K = 0.12, τ0 = 2.15 0.017 2.33
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4 Conclusions

In this paper we presented a variational approach for finding the flow solutions
in one dimensional flow that applies easily to circular pipes and plane slits. The
method, which is demonstrated using nine types of fluid, can be employed to obtain
all the required flow parameters which include shear stress, local viscosity, shear rate,
speed profile and volumetric flow rate. We also presented, through the application
of the Dirichlet principle, a theoretical justification for the application of minimizing
the total stress profile as a basis for our variational approaches including the EL
method.

Thorough comparisons were made both to the analytical solutions obtained from
the traditional methods of fluid dynamics and to the analytical or semi analytical
solutions obtained from the EL method. In all cases, the three methods produced
very close results where the differences can be explained by the numerical errors
introduced by heavy use of numerical methods like numerical integration, bisection
solvers and numeric evaluation of complicated functions. The exception is the
viscoplastic fluids for which the EL method cannot provide reliable solutions when
the yield stress is high due to the particular formulation and implementation of
this method which is restricted to non-viscoplastic fluids. The EL method also has
not been formulated and implemented in the past for the Ellis fluid and we did not
make any effort to do so in the current study.

Apart from being useful on its own for resolving the flow field in the given
conduits and obtaining all the required parameters, the proposed DM method
adds more support to the previous EL approach, which is based on applying the
Euler-Lagrange variational principle, as it confirms the results obtained from the EL
method and provides a theoretical foundation for it. Although the new method may
not be conceptually identical to the previous one, it should still lend support to the
previous one not only because the two differently-formulated variational methods
produce similar results but also because they are both based on similar variational
principles. From a procedural point of view, the two methods are equivalent because
what is done in DM numerically is done in EL, as presented in our previous studies,
either analytically or partly analytically and partly numerically. It has also been
shown that the theoretical foundation of the DM method, represented by the
Dirichlet principle, endorses the particular formulation of stress minimization which
EL rests upon.

There is an obvious theoretical value of the new DM variational method which
is more important than its practical value which may be insignificant for the
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investigated fluid types and conduit geometries due to the availability of the
presented analytical and numerical flow solutions from other methods. If the
proposed variational principle enjoys a general applicability, which is yet to be
established beyond the one dimensional flow through pipes and slits, the method
may also have a significant practical value for the flow systems which are more
complicated than the flow systems in pipes and slits where the DM variational
method may provide solutions that other methods might fail to provide, or the DM
method may require less effort to obtain the solutions than the effort required by
the other methods.
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5 Nomenclature

α indicial parameter in Ellis model

γ rate of shear strain (s−1)

γB rate of shear strain at slit wall (s−1)

γR rate of shear strain at pipe wall (s−1)

γw rate of shear strain at conduit wall (s−1)

δ µ0 − µi (Pa.s)
λ characteristic time constant in Carreau and Cross models (s)

µ fluid shear viscosity (Pa.s)

µ0 zero-shear viscosity in Carreau and Cross models (Pa.s)

µe low-shear viscosity in Ellis model (Pa.s)

µi infinite-shear viscosity in Carreau and Cross models (Pa.s)

µo Newtonian viscosity (Pa.s)

µr characteristic viscosity in Ree-Eyring model (Pa.s)

τ shear stress (Pa)

τ0 yield stress in Bingham, Herschel-Bulkley and Casson models (Pa)

τB shear stress at slit wall (Pa)

τc characteristic shear stress in Ree-Eyring model (Pa)

τh shear stress when viscosity equals µe
2

in Ellis model (Pa)

τm shear stress at conduit center (Pa)

τR shear stress at pipe wall (Pa)

τw shear stress at conduit wall (Pa)

Ω spatial domain in Dirichlet functional (m)

B slit half thickness (m)

C viscosity coefficient in Herschel-Bulkley model (Pa.sn)

C ′ viscosity coefficient in Bingham model (Pa.s)
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D Dirichlet functional (Pa2.m−1)

f λmγmw

2F1 hypergeometric function

g 1 + f

G constant in the reduced momentum equation (Pa.m−1)

Ip,Ca definite integral for Carreau model pipe flow (Pa3.s−1)

Ip,Cr definite integral for Cross model pipe flow (Pa3.s−1)

Is,Ca definite integral for Carreau model slit flow (Pa2.s−1)

Is,Cr definite integral for Cross model slit flow (Pa2.s−1)

k viscosity coefficient in power law model (Pa.sn)

K viscosity coefficient in Casson model (Pa.s)

L conduit length (m)

m indicial parameter in Cross model

n flow behavior index in power law, Carreau and Herschel-Bulkley models

∆p pressure drop across conduit length (Pa)

Q volumetric flow rate (m3.s−1)

r radius (m)

R pipe radius (m)

s spatial coordinate representing r for pipe and z for slit (m)

T stress domain in Dirichlet functional (Pa)

v fluid speed in the flow direction (m.s−1)

W slit width (m)

z spatial coordinate of slit thickness (m)

DM variational method based on applying Dirichlet principle

EL variational method based on applying Euler-Lagrange principle
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