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Abstract

This article deals with the flow of Newtonian fluids through axially-symmetric

corrugated tubes. An analytical method to derive the relation between volumetric

flow rate and pressure drop in laminar flow regimes is presented and applied to a

number of simple tube geometries of converging-diverging nature. The method is

general in terms of fluid and tube shape within the previous restrictions. Moreover,

it can be used as a basis for numerical integration where analytical relations cannot

be obtained due to mathematical difficulties.
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1 Introduction

Modeling the flow through corrugated tubes of various geometries is an important

subject and has many real-life applications. Moreover, it is required for modeling

viscoelasticity, yield-stress and the flow of Newtonian and non-Newtonian fluids

through porous media [1–3]. There are many previous attempts to model the flow

through capillaries of different geometries. However, they either apply to tubes of

regular cross sections [4, 5] or deal with very special cases. Most of these studies

use numerical mesh techniques such as finite difference and spectral methods to

obtain numerical results. Illuminating examples of these investigations are Kozicki

et al. [6], Miller [7], Oka [8], Williams and Javadpour [9], Phan-Thien et al. [10, 11],

Lahbabi and Chang [12], Burdette et al. [13], Pilitsis et al. [14, 15], James et al.

[16], Talwar and Khomami [17], Koshiba et al. [18], Masuleh and Phillips [19], and

Davidson et al. [20].

In the current paper we present an analytical method for deriving the relation-

ship between pressure drop and volumetric flow rate in corrugated tubes of circular

but varying cross section, such as those depicted schematically in Figure 1. We also

present several examples of the use of this method to derive equations for New-

tonian flow although the method is general and can be applied to non-Newtonian

flow as well. In the following derivations we assume a laminar flow of a purely-

viscous incompressible fluid where the tube corrugation is smooth and limited in

magnitude to avoid problematic flow phenomena such as vortices.
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Figure 1: Profiles of converging-diverging axisymmetric capillaries.

2 Correlation Between Pressure Drop and Flow

Rate

A Newtonian fluid with a viscosity µ satisfy the following relation between stress

τ and strain rate γ̇

τ = µγ̇ (1)

The Hagen-Poiseuille equation for a Newtonian fluid passing through a cylin-

drical pipe of constant circular cross section, which can be derived directly from

Equation 1, states that

Q =
πr4P

8µx
(2)

where Q is the volumetric flow rate, r is the tube radius, P is the pressure drop

across the tube, µ is the fluid viscosity and x is the tube length. A derivation of

this relation can be found, for example, in [1, 21]. On solving this equation for P ,
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the following expression for pressure drop as a function of flow rate is obtained

P =
8Qµx

πr4
(3)

For an infinitesimal length, δx, of a capillary, the infinitesimal pressure drop for

a given flow rate Q is given by

δP =
8Qµδx

πr4
(4)

For an incompressible fluid, the volumetric flow rate across an arbitrary cross

section of the capillary is constant. Therefore, the total pressure drop across a

capillary of length L with circular cross section of varying radius, r(x), is given by

P =
8Qµ

π

∫ L

0

dx

r4
(5)

This relation will be used in the following sections to derive relations between

pressure drop and volumetric flow rate for a number of geometries of axisymmetric

capillaries of varying cross section with converging-diverging feature. The method

can be equally applied to other geometries of different nature.

2.1 Conical Tube

For a corrugated tube of conical shape, depicted in Figure 2, the radius r as a

function of the axial coordinate x in the designated frame is given by

r(x) = a+ b|x| − L/2 ≤ x ≤ L/2 (6)

where

a = Rmin and b =
2(Rmax −Rmin)

L
(7)
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Hence, Equation 5 becomes

P =
8Qµ

π

∫ L/2

−L/2

dx

(a+ b|x|)4
(8)

=
8Qµ

π

[
1

3b(a− bx)3

]0
−L/2

+
8Qµ

π

[
− 1

3b(a+ bx)3

]L/2
0

(9)

=
16Qµ

π

[
1

3a3b
− 1

3b(a+ bL/2)3

]
(10)

that is

P =
8LQµ

3π(Rmax −Rmin)

[
1

R3
min

− 1

R3
max

]
(11)

→

 R
max

 R
min

↑

 R
max

x
0

r

 −L/2  L/2

Figure 2: Schematic representation of the radius of a conically shaped converging-
diverging capillary as a function of the distance along the tube axis.

2.2 Parabolic Tube

For a tube of parabolic profile, depicted in Figure 3, the radius is given by

r(x) = a+ bx2 − L/2 ≤ x ≤ L/2 (12)

where
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→

 R
max

 R
min

↑

 R
max

x
0

r

 −L/2  L/2

Figure 3: Schematic representation of the radius of a converging-diverging capillary
with a parabolic profile as a function of the distance along the tube axis.

a = Rmin and b =

(
2

L

)2

(Rmax −Rmin) (13)

Therefore, Equation 5 becomes

P =
8Qµ

π

∫ L/2

−L/2

dx

(a+ bx2)4
(14)

On performing this integration, the following relation is obtained

P =
8Qµ

π

 x

6a(a+ bx2)3
+

5x

24a2(a+ bx2)2
+

5x

16a3(a+ bx2)
+

5 arctan
(
x
√

b
a

)
16a7/2

√
b


L/2

−L/2
(15)

=
8Qµ

π

 L

6a[a+ b(L/2)2]3
+

5L

24a2[a+ b(L/2)2]2
+

5L

16a3[a+ b(L/2)2]
+

10 arctan
(

L
2

√
b
a

)
16a7/2

√
b


(16)

that is
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P =
4LQµ

π

 1

3RminR3
max

+
5

12R2
minR

2
max

+
5

8R3
minRmax

+
5 arctan

(√
Rmax−Rmin

Rmin

)
8R

7/2
min

√
Rmax −Rmin


(17)

2.3 Hyperbolic Tube

For a tube of hyperbolic profile, similar to the profile in Figure 3, the radius is

given by

r(x) =
√
a+ bx2 − L/2 ≤ x ≤ L/2 a, b > 0 (18)

where

a = R2
min and b =

(
2

L

)2

(R2
max −R2

min) (19)

Therefore, Equation 5 becomes

P =
8Qµ

π

∫ L/2

−L/2

dx

(a+ bx2)2
(20)

=
8Qµ

π

[
x

2a(a+ bx2)
+

arctan(x
√
b/a)

2a
√
ab

]L/2
−L/2

(21)

that is

P =
4LQµ

π

 1

R2
minR

2
max

+
arctan

(√
R2

max−R2
min

R2
min

)
R3

min

√
R2

max −R2
min

 (22)
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2.4 Hyperbolic Cosine Tube

For a tube of hyperbolic cosine profile, similar to the profile in Figure 3, the radius

is given by

r(x) = a cosh(bx) − L/2 ≤ x ≤ L/2 (23)

where

a = Rmin and b =
2

L
arccosh

(
Rmax

Rmin

)
(24)

Hence, Equation 5 becomes

P =
8Qµ

π

∫ L/2

−L/2

dx

[a cosh(bx)]4
(25)

=
8Qµ

π

[
tanh(bx)

[
sech2(bx) + 2

]
3a4b

]L/2
−L/2

(26)

that is

P =
8LQµ

3πR4
min

tanh
(

arccosh
(

Rmax

Rmin

)) [
sech2

(
arccosh

(
Rmax

Rmin

))
+ 2
]

arccosh
(

Rmax

Rmin

)
 (27)

2.5 Sinusoidal Tube

For a tube of sinusoidal profile, depicted in Figure 4, where the tube length L spans

one complete wavelength, the radius is given by

r(x) = a− b cos (kx) − L/2 ≤ x ≤ L/2 a > b > 0 (28)
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→

 R
max

 R
min

↑

 R
max

x
0

r

 −L/2  L/2

Figure 4: Schematic representation of the radius of a converging-diverging capillary
with a sinusoidal profile as a function of the distance along the tube axis.

where

a =
Rmax +Rmin

2
b =

Rmax −Rmin

2
& k =

2π

L
(29)

Hence, Equation 5 becomes

P =
8Qµ

π

∫ L/2

−L/2

dx

[a− b cos(kx)]4
(30)

On performing this integration, the following relation is obtained

P =
8Qµ

πb4k
[I]

L/2
−L/2 (31)

where

I =
(6A3 + 9A)

3(A2 − 1)7/2
arctan

(
(A− 1) tan(kx

2
)

√
A2 − 1

)
− (11A2 + 4) sin(kx)

6(A2 − 1)3[A+ cos(kx)]

− 5A sin(kx)

6(A2 − 1)2[A+ cos(kx)]2
− sin(kx)

3(A2 − 1)[A+ cos(kx)]3
(32)

& A =
Rmax +Rmin

Rmin −Rmax

(33)
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On taking lim
x→−L

2

+ I and lim
x→L

2

− I the following expression is obtained

P =
8Qµ

πb4k

[
− (6A3 + 9A)

3(A2 − 1)7/2
π

2
− (6A3 + 9A)

3(A2 − 1)7/2
π

2

]
(34)

= −8Qµ(6A3 + 9A)

3b4k(A2 − 1)7/2
(35)

Since A < −1, P > 0 as it should be. On substituting for A, b and k in the last

expression we obtain

P =

LQµ(Rmax −Rmin)3
[
2
(

Rmax+Rmin

Rmax−Rmin

)3
+ 3

(
Rmax+Rmin

Rmax−Rmin

)]
2π(RmaxRmin)7/2

(36)

that is

P =
LQµ [2(Rmax +Rmin)3 + 3(Rmax +Rmin)(Rmax −Rmin)2]

2π(RmaxRmin)7/2
(37)

It is noteworthy that all these relations (i.e. Equations 11, 17, 22, 27 and 37),

are dimensionally consistent. Moreover, they have been extensively tested and

verified by numerical integration.
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3 Conclusions

The current paper proposes an analytical method for deriving mathematical re-

lations between pressure drop and volumetric flow rate in axially symmetric cor-

rugated tubes of varying cross section. This method is applied on a number of

converging-diverging capillary geometries in the context of Newtonian flow. The

method can be equally applied to some cases of non-Newtonian flow within the

given restrictions. It can also be extended to include other regular but non-axially-

symmetric geometries. The method can be used as a basis for numerical integration

when analytical solutions are out of reach due to mathematical complexities.

Nomenclature

γ̇ strain rate (s−1)

µ fluid viscosity (Pa.s)

τ stress (Pa)

L tube length (m)

P pressure drop (Pa)

Q volumetric flow rate (m3.s−1)

r tube radius (m)

Rmax maximum radius of corrugated tube (m)

Rmin minimum radius of corrugated tube (m)

x axial coordinate (m)
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