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Abstract

A comparison is made between the Hagen-Poiseuille flow in rigid tubes and

networks on one side and the time-independent one-dimensional Navier-

Stokes flow in elastic tubes and networks on the other. Analytical rela-

tions, a Poiseuille network flow model and two finite element Navier-Stokes

one-dimensional flow models have been developed and used in this inves-

tigation. The comparison highlights the differences between Poiseuille and

one-dimensional Navier-Stokes flow models which may have been unjustifi-

ably treated as equivalent in some studies.
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1 Introduction

Poiseuille flow model has been widely used in the earth science and engineering

studies for modeling and simulating the flow of Newtonian fluids in networks of

rigid tubes which may represent a network of interconnected pipes for oil trans-

portation or a simplified imitation of porous media. The model is naturally ex-

tended to include Poiseuille-like flow of time-independent non-Newtonian fluids

[1–7]. Although the 1D Navier-Stokes flow model for elastic tubes and networks

is the more popular [8–17] and normally is the more appropriate one for biologi-

cal hemodynamic modeling, Poiseuille model has also been used in some studies

for modeling and simulating blood flow in large vessels without accounting for the

distensibility of the biological networks.

One of the main differences between Poiseuille and 1D flow models for single

tube, which also affects the network flow since the individual tubes in the network

are subject to the same flow principles as the stand-alone tubes, is that the flow
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in the first model depends on the pressure difference while in the second model it

depends on the actual pressure at the inlet and outlet [18]. This difference is mainly

based on the rigidity and distensibility of the flow ducts in these two types of tubes

and networks. Another principal difference between Poiseuille and 1D models for

network flow, which reflects their complexity and practical relevance and originates

from their single tube models, is that Poiseuille is linear and hence it is numerically

solved in a single iteration, while the 1D model is nonlinear and hence it requires an

iterative process which may cause convergence instabilities leading to compromises

associated with considerable numerical errors and approximations.

Apart from the appropriateness of one of these models or the other for a given

physical situation (a reason that dictates which model must be used in a specific

situation) there are certain practical advantages and disadvantages of Poiseuille

and 1D network flow models. In general Poiseuille is easier to implement, more-

over it incurs a relatively low computational cost, normally of the order of N2 of

memory space where N is the number of network nodes, while the 1D is more dif-

ficult to implement with a high computational cost of the order of 4N2 of memory

space. This memory cost, associated with the previously-indicated solver iteration

requirement, have obvious consequences on the speed of operation and overall per-

formance. The high computational cost of the 1D model in terms of memory space

and CPU time can substantially increase by the demand of fine meshing and the

use of higher order interpolation.

On the other hand, the 1D model gives more detailed picture as it depicts the

flux and pressure fields over the spatial domain inside the tubes; opposite to the

Poiseuille model which can only provide the average flow rate in the tubes and

the pressure at the junctions. However, the pressure at the interior points of the

tubes can be obtained directly for Poiseuille flow due to the linearity of the pressure

field; a feature that cannot be replicated in the 1D flow due to the nonlinearity

of the pressure field. Another advantage of the 1D Navier-Stokes model is that it

can simulate transient flow as well as steady state flow, while the Poiseuille model

is basically time-independent and hence any time-dependent feature cannot be

directly and dynamically replicated. However, consideration of transient effects in

Poiseuille model may be imitated indirectly by the generation of a sequence of time-

independent flow frames which represent snapshots of the overall time-dependent

process.
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2 Poiseuille Model for Single Tube and Network

Poiseuille formula for the flow of laminar, incompressible, axi-symmetric, time-

independent, fully-developed flow of Newtonian fluids in rigid cylindrical tubes

assuming no-slip-at-wall [19] conditions is given by

Q =
πr4∆P

8µL
(1)

where Q is the volumetric flow rate, r is the tube radius, ∆P is the pressure drop

along the tube, µ is the fluid dynamic viscosity and L is the tube length. This

equation can be derived by several methods [1, 4, 5, 20]; most of which are based

on the use of Navier-Stokes equation or one of its subsidiaries.

There are several methods for modeling and implementing Poiseuille flow in a

network of rigid tubes. The methods are mainly based on imposing a Poiseuille flow

condition defined by a constant conductance, as given by Equation 1, on each tube

in the network associated with a conservation of flow condition on all junctions

of the network, as well as boundary conditions on all the boundary nodes. In

the following we briefly describe one of these methods which may be the most

straightforward one and is based on imposing pressure boundary conditions.

For a network with N nodes, which include all the internal junctions as well

as the boundary nodes, the following system of simultaneous linear equations is

formed

CP = Q (2)

where C is the tubes conductance matrix with dimensions of N × N , P is the

pressure column vector with dimensions of N × 1 and Q is primarily the total flow

column vector with dimensions of N × 1. The rows of C basically represent the

relations describing the net volumetric flow rate on the nodes in the network, which,

apart from the boundary nodes, sums up to zero due to the incompressibility of

fluid with the absence of sources and sinks inside, while the columns represent the

nodes of the network. Similarly, the rows of the P vector represent the pressure at

the N nodes while the rows of the Q vector primarily represent the net flow at the

nodes. The pressure drop across each tube is then split into two parts corresponding

to the two nodes involved at the two ends of that tube. All the entries in each row

of the conductance matrix are set to zero except the ones related to the tubes

that are connected to the node represented by that row. By a proper choice of

flow signs, the total flow at each internal junction will be added to zero to satisfy
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the continuity condition and hence the only sources and sinks for the flow are the

boundary nodes. For the rows corresponding to the boundary nodes, the boundary

pressure conditions are imposed by setting the diagonal entry of the conductance

matrix to unity while all the other entries are set to zero with the corresponding

entry of the Q vector being set to the given pressure boundary value of that node.

Poiseuille model for the networks can be validated by testing the satisfaction of

Poiseuille formula (Equation 1) on all the tubes of the network given the obtained

pressure at the two end nodes of each tube, plus the satisfaction of the boundary

conditions on the boundary nodes and the continuity of flow at each junction node

which requires that the net flow in each internal node should be added to zero.

A consequence of this is that the outflow (sum of volumetric flow rate at outlet

boundary nodes) should be equal to the inflow (sum of volumetric flow rate at inlet

boundary nodes).

3 1D Model for Single Tube and Network

The one-dimensional model for the time-independent flow of Newtonian fluids in

elastic tubes is derived from the following Navier-Stokes system, which is based on

the mass and momentum conservation principles

∂Q

∂z
= 0 z ∈ [0, L] (3)

∂

∂z

(
αQ2

A

)
+
A

ρ

∂p

∂z
+ κ

Q

A
= 0 z ∈ [0, L] (4)

In these equations, A is the tube cross sectional area, Q is the volumetric flow

rate, z is the axial coordinate along the tube, L is the length of tube, α (=
∫
u2dA

Au2

with u and u being the fluid local and mean axial speed respectively) is the correc-

tion factor for momentum flux, ρ is the fluid mass density, p is the local pressure,

and κ is the viscosity friction coefficient usually given by κ = 2παν/(α − 1) with

ν being the fluid kinematic viscosity defined as the ratio of the dynamic viscosity

µ to the mass density. The model is based on the assumption of a laminar fully-

developed flow of incompressible fluids with a tube having a pressure-dependent

cross sectional area.

The relation between the pressure and flow rate in elastic tubes is dependent on

the constitutive relation that links the local pressure at a certain point along the

tube axis to the cross sectional area of the tube at that point. In reference [18] the
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following two flow relations have been derived based on two different pressure-area

constitutive relations

Q =
L−

√
L2 − 4α

κ
ln (Aou/Ain) γ

3κρ
(A3

in − A3
ou)

2α
κ

ln (Aou/Ain)
(5)

and

Q =

−κL+

√
κ2L2 − 4α ln (Ain/Aou)

β
5ρAo

(
A

5/2
ou − A5/2

in

)
2α ln (Ain/Aou)

(6)

In these equations, Ao is the tube unstretched cross sectional area at reference

pressure, while Ain and Aou are the cross sectional area at the inlet and outlet re-

spectively. Equations 5 and 6 are based on the following pressure-area constitutive

relations respectively

p = γ (A− Ao) (7)

and

p =
β

Ao

(√
A−

√
Ao

)
(8)

where, in the last two equations, p is the actual pressure relative to the reference

pressure with which the unstretched area in defined, and γ and β are the propor-

tionality coefficients that control the stiffness of the tube.

On multiplying the mass and momentum conservation equations by weight func-

tions and integrating over the solution domain the weak form of the Navier-Stokes

flow system can be obtained. This weak form, with suitable boundary conditions,

can then be used as a basis for finite element implementation in conjunction with

an iterative scheme such as Newton-Raphson method. A detailed account about

the finite element formulation is given in references [18, 21].

The system can also be extended to a network of elastic tubes by imposing

suitable pressure or flux boundary conditions on all the boundary nodes, and com-

patibility and matching conditions on all the internal junctions, where the latter

conditions are derived from Riemann’s method of characteristics, and mass and

energy conservation [16, 21, 22].

The time-independent finite element solution of the 1D model on a network

is validated by fulfilling the boundary and matching conditions plus the time-
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independent analytical solution, as given by Equations 5 and 6, on each individual

tube. The validation of the time-independent finite element solution of the 1D

model on a single tube is trivial as the numeric solution can be compared directly

to the analytic solution with the inspection of the boundary conditions.

4 Comparing Poiseuille and 1D Models for Sin-

gle Tube

Thorough comparisons between rigid Poiseuille and elastic 1D Navier-Stokes mod-

els have been carried out for single tube as part of this study to investigate the

effect of various parameters of these two models on the flow behavior. The results

of a sample of these comparisons, which represent the two previously mentioned

pressure-area constitutive relations, are plotted in Figures 1, 2, 3 and 4. The

Poiseuille results shown in these figures are obtained from the analytical solution

(Equation 1) while the 1D results are obtained from the analytical expressions

(Equation 5 for the first p-A relation and Equation 6 for the second p-A relation)

with an endorsement by a finite element numeric implementation [18].

As seen, the investigated flow, fluid and tube parameters; which include α, β, γ,

µ, pressure regime, ρ, and tube size; have significant effects on the flow conduct of

these two models and hence the results are highly dependent on these parameters.

It is noteworthy that all these reported results represent qualitative demonstration

and hence may not reflect a general trend due to the effect of other parameters

which are held constant to investigate the particular dependency. The variation

of these parameters is expected to affect the apparent trend in general. We also

do not report the values of the other parameters for each one of these cases in

detail due to the generality of the current study and the qualitative nature of this

demonstration, as well as space limitation and avoiding unnecessary repetition.

However, in all these simulations, typical and representative values have been used

for the parameters related to the flow, fluid and flow paths, unless stated otherwise.

This general conduct has also been followed in the forthcoming investigation of the

flow in networks.
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(a) α = 1.1
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(b) α = 1.333
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(c) γ = 106 Pa/m2
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(d) γ = 107 Pa/m2
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(e) µ = 0.05 Pa.s
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(f) µ = 0.1 Pa.s

Figure 1: The effect of α, γ and µ on the difference between Poiseuille model
for rigid tube and the 1D Navier-Stokes model for elastic tube using the first p-A
relation. The planar surface belongs to Poiseuille while the curved surface belongs
to the 1D. The horizontal axes represent the pressure at the two ends of the tube
where the inlet is taken where the largest pressure occurs and hence the two surfaces
are symmetric with respect to the diagonal zero-flow-rate line of equal pressures.
The pressures are in Pa while the flow rates are in m3/s.
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(b) Pressure range: 0-2000 Pa
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(c) ρ = 1000 kg/m3
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(d) ρ = 100 kg/m3
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(e) r = 0.1 m, L = 1.0 m
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(f) r = 0.01 m, L = 0.1 m

Figure 2: The effect of pressure range, ρ and tube size on the difference between
Poiseuille model for rigid tube and the 1D Navier-Stokes model for elastic tube
using the first p-A relation. All the other aspects are as in Figure 1.
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(a) α = 1.1
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(b) α = 1.333
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(c) β = 104 Pa.m
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(d) β = 105 Pa.m
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(e) µ = 0.05 Pa.s
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(f) µ = 0.1 Pa.s

Figure 3: The effect of α, β and µ on the difference between Poiseuille model for
rigid tube and the 1D Navier-Stokes model for elastic tube using the second p-A
relation. All the other aspects are as in Figure 1.
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(b) Pressure range: 0-2000 Pa
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(c) ρ = 1000 kg/m3
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(d) ρ = 100 kg/m3
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(e) r = 0.1 m, L = 1.0 m
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(f) r = 0.05 m, L = 0.5 m

Figure 4: The effect of pressure range, ρ and tube size on the difference between
Poiseuille model for rigid tube and the 1D Navier-Stokes model for elastic tube
using the second p-A relation. All the other aspects are as in Figure 1.

10



5 Comparing Poiseuille and 1D Models for Net-

work

Both p-A models have been implemented in a finite element network flow computer

code as part of this study. However, due to instabilities and convergence difficul-

ties encountered in some cases of the first model which may affect the reliability

and generality of the results, we will only present and analyze the results of the

second model. This will not affect the generality of this study since a single p-A

model is sufficient to highlight the main issues and draw the conclusions; moreover

the generic trends observed from both models are similar in general. In fact the

second model is the one which is widely used by the elastic network flow modelers,

possibly due to its numerical stability and reliability. The effect of the p-A model

on the Poiseuille versus 1D comparison may deserve a study by itself. It should be

remarked that all the network results reported in the current paper, like the single

tube results, have been subjected to rigorous checks using the validation criteria

outlined in sections 2 and 3.

With regard to the type of networks used in this investigation for Poiseuille and

1D flow simulations, we used fractal-type networks generated by a computer code.

The main feature of these networks, which differ in the number of generations

and consequently the number of elements which ranges between a few tubes to

several thousands, is that they have a fixed branching angle with a constant length

to radius ratio; moreover the branching radius transition from one generation of

tubes to the next generation is subjected to a Murray-type rule [21], i.e.

rδm =
n∑
i

rδdi (9)

where rm is the radius of the mother tube, rdi is the radius of the ith daughter tube,

n is the number of daughter tubes, and δ is a constant index. Various networks

with different branching angle, length-to-radius ratio, Murray’s index, and number

of generations have been used in our investigation. However, most of our networks

were generated with n = 2 and δ between 2 and 3 with equal-size daughter tubes.

A sample of these networks with different number of generations are presented in

Figure 5. The reason for using highly regular and symmetric fractal networks is that

they, with their simplicity and regularity, reduce the effect of factors related to the

complex structure. With the use of these simple fractal networks the flow results

will essentially reflect the correlation of the flow with the varied parameters in a
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simple manner. The use of networks with complex morphology will only obscure

the results and complicate the analysis due to the involvement of factors related to

the complex geometry and topology of the network.

Using these fractal networks in conjunction with the second p-A model for the

1D Navier-Stokes, a number of Poiseuille and 1D simulations have been conducted

using typical network, fluid and flow parameters. In these simulations a typical

case in which Poiseuille and 1D produce virtually identical results with α = 1.333,

β = 236 Pa.m, µ = 0.0035 Pa.s, pi = 2000 Pa, po = 0 Pa, and ρ = 1060 kg/m3 has

been used as a reference case. To investigate the effect of the parameters of concern

(α, β, µ, p, ρ, and size) a single parameter was varied at a time from this reference

case and a comparison between Poiseuille and 1D was made to identify the effect of

that parameter. The method of comparison is based on computing the ratio of the

volumetric flow rate between Poiseuille and 1D flow for each tube and plotting this

ratio versus tube indices, as seen in Figure 6. Although using the ratio of pressure

at each junction node is sensible for making the comparison it has not been used

here due to the fact that the pressure at each node for the 1D model is tube-

dependent because each tube at a specific junction has its own pressure due to the

involvement of Bernoulli energy conservation principle as a matching condition. As

for the boundary conditions which were employed in these simulations, a single inlet

node belonging to the largest single tube was used to impose an inlet Dirichlet-type

pressure boundary condition while all the other boundaries at the other end, which

belong to the smallest tubes representing the last generation of the network, were

subjected to zero-pressure boundary conditions. However, there is one exceptional

case where the outlet pressure was set to a non-zero value to investigate the effect

of pressure limits, as seen in Figure 6(e).

On inspecting Figure 6 it can be seen that while α and β have a significant

effect on the 1D flow model as compared to Poiseuille, the other parameters have

either moderate or negligible effect. However, this may not be true in general due

to the limitation of this study and the number of cases investigated. The use of

networks with more complex morphology is expected to introduce other sources of

discrepancy between the two models and exacerbate the difference between them.
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(a) 5-generation (b) 7-generation

(c) 10-generation (d) 15-generation

Figure 5: A sample of fractal networks used in the current investigation with
different number of generations as well as other branching parameters.
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Figure 6: Comparing the effect of various parameters on Poiseuille and 1D Navier-
Stokes network flow models using the second p-A constitutive relation. The y-axis
represents the ratio of Poiseuille flow rate, QP , to 1D flow rate, QN .
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6 Conclusions

The purpose of this study is to compare Poiseuille model for rigid tubes and net-

works with the time-independent 1D Navier-Stokes model for elastic tubes and

networks based on investigating the effect of the parameters of these two models

related to the flow, fluid and flow ducts. The main conclusion of the current inves-

tigation is that Poiseuille and 1D models could produce very different results and

hence they should not be used interchangeably as it may happened in some stud-

ies. The use of one model or the other should be based on the merit of that model

and its suitability to capture the physical reality and similar objective consider-

ations, not on convenience and pragmatic factors. Moreover, the results of these

models should be assessed relying on independent metrics such as consistency and

compliance with experimental observations.

Apart from the main theme of this investigation, it has been observed that

for the investigated cases of single tube, all the investigated parameters; which

include α, β, γ, ρ, µ, pressure range, and tube size; have significant effects. With

regard to the networks, limited in this study to those with fractal character, it has

been observed that α and β have the most sizeable impact. However, the impact

of each one of the investigated parameters can be affected by the involvement of

other factors such as network topology and geometry. Moreover, other factors are

expected to play a significant role in networks with more complex morphology.

Other effects related, for example, to the converging-diverging nature of the

flow ducts and non-Newtonian rheology [23–25], are not considered in this study.

These and all other factors should contribute to the complexity of the situation and

the departure of the results of Poiseuille and Poiseuille-like models for rigid tubes

and networks from the results of the 1D models for distensible tubes and networks.

The comparison presented in the current paper is very general and lacks thor-

oughness due to specificity of purpose and space limitation. The effect of each

one of the investigated parameters, as well as many other aspects not touched in

this study such as the effect of morphology of the networks and their statistical

distribution, deserve a study on its own.
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Nomenclature

α correction factor for axial momentum flux

β stiffness parameter in the second pressure-area relation

γ stiffness parameter in the first pressure-area relation

δ Murray’s law index

κ viscosity friction coefficient

µ fluid dynamic viscosity

ν fluid kinematic viscosity

ρ fluid mass density

A tube cross sectional area

Ain tube cross sectional area at inlet

Ao tube cross sectional area at reference pressure

Aou tube cross sectional area at outlet

C conductance matrix

L tube length

n number of daughter tubes in Murray’s law

p local pressure

P pressure column vector

pi inlet pressure

po outlet pressure

∆P pressure drop along the tube

Q volumetric flow rate

Q total flow column vector

QN volumetric flow rate of 1D Navier-Stokes model

QP volumetric flow rate of Poiseuille model

r tube radius

rd radius of daughter tube

rm radius of mother tube

u local axial speed of fluid

u mean axial speed of fluid

z tube axial coordinate
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