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Abstract

In this paper, we address the issue of threshold yield pressure of yield-stress

materials in rigid networks of interconnected conduits and porous structures

subject to a pressure gradient. We compare the results as obtained dynami-

cally from solving the pressure field to those obtained statically from tracing

the path of the minimum sum of threshold yield pressures of the individ-

ual conduits by using the threshold path algorithms. We refute criticisms

directed recently to our previous findings that the pressure field solution

generally produces a higher threshold yield pressure than the one obtained

by the threshold path algorithms. Issues related to the solidification of yield

stress materials in their transition from fluid phase to solid state have also

been investigated and assessed as part of the investigation of the yield point.

Keywords: Keywords: fluid mechanics; yield-stress; threshold yield pres-

sure; threshold solidification pressure; network of conduits; porous media;

threshold path algorithms.

1 Introduction

Yield-stress materials are commonplace in nature and industry. They include very

common biological fluids like blood [1] as well as many polymeric solutions used

in reservoir engineering and pharmaceutical manufacturing. These materials are

characterized by behaving like solids below a certain threshold stress and like flu-

ids above. There are many controversies about the nature of these materials, their

rheological definition, and even their bare existence. They are problematic both

experimentally, as they behave strangely and sometimes unpredictably, and the-

oretically as they are difficult to model and simulate computationally. There are

several rheological models that have been proposed for modeling these materials;
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some of the most common ones are Bingham, Herschel-Bulkley, and Casson. How-

ever, almost all the available rheological models that characterize the yield-stress

behavior are empirical in essence and phenomenological in nature [2–6].

The above-mentioned problems that associate the bulk rheology of yield-stress

materials are aggravated by more complications and difficulties when their rheology

in porous structures and networks of interconnected conduits is investigated exper-

imentally or theoretically. Several fluid-structure interaction factors emerge in such

situations to play intricate defining roles in the overall conduct of such systems.

For instance, the effect of tortuosity and shape irregularities of the conduits inside

such structures makes the local yield point highly dependent on several geometric

and topological factors that are difficult to predict and model [7, 8].

In the mobilization of yield-stress materials through networks of interconnected

conduits and porous structures, there is an important issue about how to predict the

threshold yield pressure of such materials saturating such media. In this regard,

there are two main approaches to predict the yield point: (a) determining the

threshold yield pressure dynamically by finding the pressure field which is normally

obtained through solving the balance equations of the flow system that are based on

the conservation principles and constitutive fluid models, and (b) determining the

threshold yield pressure statically through using the threshold path algorithms such

as the invasion percolation with memory [9] and the path of minimum pressure [7,

10] which trace the route that minimizes the sum of the threshold yield pressures of

the route conduits inside these structures. These algorithms are based on the inert

geometry of the individual conduits and the rheology of the yield-stress materials

without the involvement of dynamic factors.

Sochi [7] (henceforth called S10) has investigated this problem and concluded

that the threshold yield pressure obtained from solving the flow system is gener-

ally higher than the one obtained from the threshold path algorithms. This was

justified by several factors; the main ones are (a) the rejection of the underlying

assumption of the threshold path algorithms that the threshold yield pressure of

serially connected conduits is equal to the sum of their individual threshold yield

pressures, (b) dynamic factors related to obtaining a stable and consistent pressure

field configuration, (c) the effect of the tortuosity on the pressure field and its direct

impact on the nodal pressure of the intermediate nodes and hence the yield point

of the threshold path, and (d) the communication of these intermediate nodes with

the global pressure field through conduits connected to these nodes but are not

part of the threshold path.
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Recently, Balhoff et al [11] (henceforth called BRKMP) conducted a study in

which they investigated this issue, among other issues, in detail and challenged the

previous findings of S10. They argued that the threshold yield pressure obtained

from solving the balance equations must be the same as the one obtained from

the threshold path algorithms. They supported their theoretical reasoning by flow

simulations in which they used a robust solving scheme based on the Newton-

Raphson method in conjunction with the mass conservation and characteristic flow

models. They even produced a mathematical proof using a graph theory framework

to back their findings.

In this context, we should distinguish between two transition points for yield

stress materials between the solid state and the fluid phase. The first one, which we

call the yield point, is the transition from the solid-like state to the fluid state; and

the second one, which we call the solidification or blockage point, is the transition

from the fluid state to the solid state. These two points are in general different due

to the effect of the initial flow conditions and hysteresis and hence the experimental

and computational searching techniques for these two points should be different as

well. However, the two problems are closely linked although there seems to be little

interest in the solidification problem due, apparently, to a common belief that the

two points are the same. We will discuss the solidification point as part of our

investigation to the yield point but we will not go deep into this investigation due

to the specific objectives of the current study.

In our view, the yield point should be identified by a gradual and continuous

increase in the pressure drop, whether across the bulk material or single conduit or

interconnected structure of multiple conduits, on starting from a confirmed solid

state point such as zero pressure drop, while the solidification point should be

identified by a gradual and continuous decrease in the pressure drop on starting

from a well established fluid state point. There is also the possibility of a sudden

and non-continuous change in the pressure drop on a yield-stress material in its

solid or fluid state which may or may not result in a transition in the state of

material. The latter possibility is relevant to identifying the yield point if the

material was initially a solid with a sudden pressure increase and to identifying

the solidification point if the material was initially a fluid with a sudden pressure

decrease. Other possibilities can also be considered but they are of little relevance

to the current investigation and hence they will be ignored.

Which method, gradual or sudden, should be used to determine the yield and

solidification points is a matter of convention as long as the conditions are stated
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unambiguously. However, it is very possible that the yield and solidification points

obtained from a sudden change in the pressure drop are not the same as the ones

obtained from a gradual change. One potential reason for this is transitional in-

stabilities although other reasons are also possible. In this case, more than one

point for yield and solidification, which depend on the pressure application method,

should be accepted if it is supported by experimental evidence. More discussion

about these issues can be found in [7] and section 4.

In the present paper, we discuss the issue of yield point in detail and challenge

the findings of BRKMP. Our main objection to the BRKMP criticism and findings

is that what they claim to be the yield point is in fact more appropriate to be the

solidification point of the yield-stress materials on a gradual decrease of the pressure

from above the sum of thresholds where BRKMP assumed the material has already

yielded and hence it is a fluid, to the point of blockage where the system converges

to the solid state because it has reached the sum of the threshold yield pressures

on the threshold path. We also present two mathematical proofs for our proposal

that the threshold yield pressure of an ensemble of serially-connected conduits is in

general greater than the sum of their individual threshold yield pressures. One of

these proofs is based on the assumption that yield-stress materials prior to reaching

their yield point are fluids with very high viscosity, and the other proof is based on

the assumption that yield-stress materials are solids prior to yield. A mathematical

argument has also been presented to show that finding a mass-conserving consistent

pressure field in a fluid-filled ensemble of interconnected conduits is always possible

for any type of fluid above its minimum mobilization pressure in the given ensemble,

where the minimum mobilization pressure is obtained from the sum of the minimum

mobilization pressures of the individual conduits in the ensemble. This argument

is key to identifying the circularity in the BRKMP argument.

The non-Newtonian fluids may be classified into two main categories, history-

dependent which include viscoelastic and thixotropic/rheopectic, and history inde-

pendent which are the purely viscous non-Newtonian fluids that also include the

Newtonian as a special case. The second category may be equated with the general-

ized Newtonian fluids if yield-stress materials are accepted in this category. Yield-

stress can associate both history-dependent and history-independent fluids. For the

purpose of the present paper, these attributes are almost irrelevant as we are mainly

interested in the threshold yield point. Although history-dependent and history-

independent attributes have very strong impact on the flow, this is generally valid

only above the very low-shear-rate regimes, i.e. following yield and mobilization.
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The reason is that prior to yield any potential deformation is minimal and hence any

non-Newtonian effects, other than yield-stress, are negligible since the fluid is still

at its low-shear Newtonian plateau which characterizes almost all non-Newtonian

fluids. The low-shear Newtonian plateau can also be justified theoretically by the

fact that all the non-Newtonian rheological properties are strongly dependent on

the rate of deformation, whether shear or extension. We therefore do not differenti-

ate in this paper between the history-dependent and history-independent fluids as

long as they are yield-stress materials, although we will indicate the consequences

of these properties on the yield-stress behavior briefly when necessary and where

relevant. However, history-dependent and history-independent attributes should

have more significant impact on the solidification point but in this study we inves-

tigate the solidification point marginally as part of our investigation to the yield

point.

We should also remark that in the present study we are only concerned with rigid

networks and porous structures; any tangible deformability, such as being elastic

or viscoelastic, in these structures requires further modeling considerations and

hence complicates the modeling strategies of the yield and solidification processes

substantially.

2 Modeling Yield Stress in Porous Structures

In this section we outline our proposals for modeling the mobilization of yield-stress

materials in networks of interconnected conduits and porous structures. We would

like to insist that in the present paper we consider these aspects from the view-

point of threshold yield point only with minimal consideration for the subsequent

dynamic effects that automatically take place following mobilization which will

inevitably change the dynamics of the system, and hence the modeling strategy,

fundamentally. These effects must be taken into account thoroughly for a complete

and reliable yield-stress flow model. Also, there are still many detailed issues that

should be dealt with at the practical levels for implementing such models, such as

convergence difficulties and convergence enhancement techniques, which are very

serious issues for such studies; but we do not consider these issues here since they

are out of the scope of the present paper. Some of these issues have already been

discussed in some of our previous papers (e.g. [12, 13]).

Although we presented a limited amount of computational work in this paper,

due to its nature, extensive computational work has been done in the background
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as part of this investigation to test and verify various possibilities and aspects. We

therefore feel obliged to provide a general clarification about the computational

framework which the current study relies upon. We have already fully explained

this framework in some of our previous publications and hence for the purpose

of saving space and avoiding repetition we refer the reader to the following pa-

pers: [13–15] where our computational framework is fully explained. More relevant

details may also be found in [12, 16] although these are mainly related to a one-

dimensional finite element Newtonian flow model. We would also like to clarify that

this computational framework is different to the one used in our previous studies

(e.g. [7, 10, 17]) and hence there is no ground for potential criticisms based on

the computational approach adopted in the previous studies. However, we have no

reason to believe that the previous results are incorrect or compromised because of

the previous computational framework and modeling strategies which, to the best

of our knowledge, are still valid in general.

The minimum pressure drop required to initiate the mobilization of a yield-

stress material in its solid state is called the threshold yield pressure. The essential

issue that determines the threshold yield pressure of a yield-stress material occu-

pying a network of interconnected conduits or a porous structure is the pressure

field configuration inside such structures. Let us assume we have a solid porous

structure filled with a yield-stress material and we started from a zero pressure

drop and kept varying the pressure drop across the structure either gradually and

continuously or through sudden changes. The crucial question then is what is the

pressure field configuration inside the porous structure as a function of the applied

pressure drop across the structure. If we can a priori determine the pressure field

spatially inside the structure as a function of the applied pressure drop for any

given pressure value then we can easily determine the threshold yield point by sim-

ply identifying the minimum pressure drop across the structure that creates a path

on which the pressure drop across each one of its conduits exceeds the threshold

yield pressure for that conduit. For a perfectly circular cylindrical rigid tube with

a constant cross sectional area along its axial length, the threshold yield pressure

condition is given by [7, 10]

τw = τo =⇒ ∆Pt =
2Lτo
R

(1)

where τw is the shear stress at the tube wall, τo is the yield-stress of the fluid,

∆Pt is the pressure drop across the tube at the yield threshold, and L and R are

the tube length and radius respectively. It should be remarked that the condition
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given by Equation 1 is a necessary but not sufficient condition for yield, as will be

discussed later.

It is noteworthy that our definition for the threshold yield pressure of networks

and porous structures and how it is determined is based on some implicit assump-

tions about how the pressure field configuration inside such structures changes in

response to the applied pressure drop across these structures. Although these as-

sumptions are not self-evident, they seem to be generally accepted and hence we

see no necessity for discussing them in the present paper. However, there is one

important assumption that requires some clarification that is the assumption of

continuity of yield above the threshold yield pressure which, although it seems in-

tuitive, still requires a physical or mathematical justification. While we will not

discuss this issue here, we think the argument presented in Appendix A, whose

essence is the possibility of finding a mass-conserving consistent pressure field for

any type of fluid above its minimum mobilization pressure, can be easily adjusted

to provide such a proof. Due to the fact that the flow rate is a strictly increasing

and continuous function of pressure drop, the yield condition of an ensemble, as

soon as it is satisfied, will remain so on increasing the pressure drop across the

ensemble.

However, no one can completely rule out the possibility of a blockage subsequent

to yield at a pressure drop above the threshold yield pressure due to continuous or

discrete transformations in the system dynamics, especially with the involvement

of complex non-Newtonian rheological factors other than yield-stress, that change

the pressure field configuration in a way that affects the yield condition. This

possibility may not be realistic in a simple one-dimensional network of serially-

connected conduits but it should be realistic for more complex two-dimensional

and three-dimensional networks and porous structures. Such a possibility should

be seriously considered for a complete yield-stress model which is out of the scope

of the current paper as it is mainly focused on the yield point succeeding a total

blockage. Anyway, to avoid any possible disputes we could assume that the pre-

vious statements in the former paragraphs related, explicitly or implicitly, to the

dependency of pressure field inside a structure on the pressure drop across it and

subsequent developments are just definitions or assumptions and hence they are

part of our modeling strategy and not considered as physical facts.

There are two main approaches for modeling yield-stress materials prior to

reaching their yield point whether in the bulk flow, single conduit flow or flow

through networks of interconnected conduits and porous structures; these two ap-
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proaches are explained in the following subsections.

2.1 Highly-Viscous Fluid Approach

According to this approach, the yield-stress materials prior to reaching their yield

point are fluids with very high viscosity. Therefore, they are distinguished by

having a viscosity function whose dependency on the shear stress is discontinuous

at the yield point. Our modeling choice for the highly-viscous fluid approach is

to identify the pressure field prior to yield from solving the balance equations

assuming the fluid is Newtonian with a constant viscosity. As indicated early,

the Newtonian assumption prior to yield is very realistic one even for the highly

non-Newtonian fluids, because at these stages of negligible deformation, all non-

Newtonian rheological effects, except yield-stress, are absent as the fluid is still on

its low-shear Newtonian plateau.

Therefore, to find the threshold yield pressure we step up on the pressure ladder

by starting from a confirmed non-yield point and solve the pressure field at each

pressure step using the Poiseuille flow model. The pressure field is then tested at

each step to identify a possible inlet-to-outlet spanning path whose all conduits

have passed their threshold yield point, as given by Equation 1 for cylindrical

tubes. The minimum pressure drop that satisfies this condition is taken to be the

threshold yield pressure that defines the yield point. At and above this pressure,

the flow model for the mobilized parts will be subject to the adopted yield-stress

rheological fluid model such as Herschel-Bulkley. Although the fluid prior to yield,

according to this approach, is theoretically assumed to be of very high-viscosity,

computationally the value of the Newtonian viscosity is irrelevant to the pressure

field solution since the viscosity in the Poiseuille model is a conductance scale factor

for the flow rate with no effect on the configuration of the pressure field and hence

any value for the viscosity will produce the same pressure field.

Now we test the consequences of this modeling approach and compare the yield

point obtained dynamically from solving the pressure field to the one obtained

statically from the threshold path algorithms. In this regard, it is easy to verify that

the dynamic threshold yield pressure of the structure according to this modeling

strategy generally exceeds the sum of the threshold yield pressures of the individual

tubes as given by the threshold path algorithms. In Appendix B we presented a

mathematical proof for this assertion for the case of a one-dimensional network

consisting of an ensemble of serially-connected tubes. We also demonstrate this

by a simple example of such a network, shown in Figure 1 with data given in
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Table 1, where we can simply verify that the sum of the threshold yield pressures

is 450 Pa for a yield-stress value of 5 Pa, while the threshold yield pressure for

this value of yield-stress as obtained dynamically from solving the pressure field is

about 1664 Pa. Although a general proof for such a statement for two-dimensional

and three-dimensional networks are not available currently, we feel that the same

principles should apply. Anyway, the special case of one-dimensional networks is

sufficient to discredit the BRKMP claim that theses two thresholds are equal in

general, as will be discussed later in detail. Furthermore, all our simulations using

the old and the new computational frameworks with a diversity of two-dimensional

and three dimensional networks produced dynamic yield points that are generally

larger than the static yield points.

Figure 1: One-dimensional network of serially-connected cylindrical tubes.

Table 1: Data related to the network of serially-connected tubes shown in Figure
1 where ∆Pt stands for the threshold yield pressure of the respective tube as given
by Equation 1 and the indices are related to the tubes in Figure 1 from left to
right. The threshold yield pressures given in the fourth column are based on a
yield-stress value of τo = 5 Pa.

Tube Index R L ∆Pt

1 0.020 0.160 80
2 0.015 0.165 110
3 0.010 0.090 90
4 0.017 0.119 70
5 0.022 0.220 100

2.2 Solid-Like Approach

According to this approach, the yield-stress materials prior to reaching their yield

point are solid-like substances. A reasonable modeling strategy for this approach is

to determine the pressure field from intuitive physical considerations as part of this

approach. The most reasonable option for modeling the pressure field in this case is

to assume a linear pressure drop across the structure and hence a constant pressure

gradient. Any other model for the pressure field requires additional justification.
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The propagation of pressure through solid materials may seem strange but it is

physically sound since pressure can propagate through solids as in the case of

sound wave transmission and reflection for instance. Although solids are normally

assumed to be rigid, they are not absolutely rigid since all solids, due to their

atomic structure, have a certain degree of elasticity; the yield-stress materials are

not an exception as they obviously have such a property.

According to this modeling strategy and the associated assumption about the

spatial definition of the pressure field, the pressure field is determined as a function

of the pressure drop across the structure with no need for solving the balance

equations as it can be obtained from pure geometric considerations such as the

proportionality of pressure to the distance from the inlet and outlet boundaries.

If a linear pressure drop is adopted to define the pressure field prior to yield then

no backtracking will occur. The threshold yield pressure is found by increasing

the pressure drop across the structure gradually starting from a point known to

be below the threshold yield point of the structure. A test is then carried out at

each pressure step to identify a possible connected route that spans the structure

from the inlet to the outlet with all its conduits being above their threshold yield

pressure. The minimum pressure that satisfies such a condition will be deemed as

the threshold yield pressure. At and above this point, the flow in the mobilized part

of the system should be determined by solving the balance equations according to

the presumed yield-stress theoretical fluid, such as Bingham, that is used to model

the flow following mobilization.

The state of the flow system, according to this solid-like scenario, is expected

to change radically on reaching the yield point and hence a very different pressure

field may replace the pre-mobilization pressure field. These two pressure fields

could even be qualitatively different. Furthermore, the system at the transition

point may be unstable especially if complex non-Newtonian rheological factors,

such as history-dependent effects, are becoming involved in the post yield pro-

cesses. The occurrence of such instabilities is entirely realistic from the physical

viewpoint as such transitional instabilities are commonplace in physical systems,

including fluid dynamics. Mathematical models may also be characterized by such

instabilities. Anyway, as indicated earlier we are not concerned with these issues

in the present paper which is limited in scope to the identification of the thresh-

old yield pressure with a minor interest in other related issues. Any subsequent

changes in the dynamics of the system will not change the yield point which took

place earlier as this is part of the system history.
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With regard to the consequences of this solid-like approach and the adopted

modeling strategy, it is easy to verify that the threshold yield pressure of the flow

system generally exceeds the sum of the threshold yield pressures of the individual

tubes on the threshold path as given by the threshold path algorithms. In Ap-

pendix C we presented a mathematical proof for this assertion for the case of a

one-dimensional network consisting of serially-connected tubes. We also demon-

strate this by the simple example of Figure 1 and Table 1, where we can easily

verify that the sum of the threshold yield pressures for a yield-stress value of 5 Pa

is 450 Pa, while the threshold yield pressure for this value of yield-stress as ob-

tained dynamically from inspecting the pressure field is about 754 Pa assuming

the ensemble is straightly aligned. The required threshold yield pressure gradient

will be greater for a tortuous network since the pressure gradient across the entire

network will be multiplied by a sinusoidal factor to obtain the component of the

pressure gradient in the tube axial direction.

3 Pressure Regimes

 Pressure Drop across Ensemble 

Regime A 
∆P ≤ ∆Pts 

0 ∞ 

      Regime B 
∆Pts < ∆P < ∆Pdy 

Regime C 
∆Pdy ≤ ∆P 

Figure 2: The three pressure regimes for an ensemble of interconnected conduits
or a porous structure, where ∆Pts is the pressure drop of threshold sum and ∆Pdy

is the pressure drop of dynamic yield.

To clarify the situation for identifying the threshold yield and solidification

points, we refer to Figure 2 where we identified three mutually-exclusive pressure

regimes related to the magnitude of the applied pressure drop across an ensemble

of interconnected conduits or a porous structure. For simplicity, we assume the

ensemble is a one-dimensional straightly-aligned network like the one depicted in

Figure 1 although the classification and associated arguments are valid in general

for other types of networks and porous structures. These pressure regimes are

11



• Regime A where the pressure drop is less than or equal to the sum of the

threshold yield pressures of the tubes in the ensemble.

• Regime B where the pressure drop is larger than the threshold sum but less

than the threshold yield pressure as identified by the dynamic argument based

on solving or inspecting the pressure field.

• Regime C where the pressure drop is greater than or equal to the ensemble

threshold yield pressure according to the dynamic argument.

We all agree that in regime A the ensemble is blocked because there is no way to

split the pressure drop to ensure simultaneous yield of all the tubes in the ensemble.

This is correct whether we applied the pressure drop gradually and continuously

from above or from below or we applied the pressure suddenly, as long as we start

from a solid state point.

We also agree that in regime C the ensemble is open to the flow because whether

we used the rheological model of the yield-stress, like Bingham, or the pre-yield

model, like Poiseuille or solid state, the pressure will split in both possibilities

such that every tube in the ensemble will reach its yield point. There is also no

difference with regard to the sudden or gradual application of such a pressure drop

if we ignore, in the case of a sudden application, a possible brief transitional stage

during which the pressure adjusts itself to satisfy the requirement of one of the

rheological models and hence the system may still be blocked.

As for regime B, there are different scenarios that generally depend on the initial

conditions and the method of applying the pressure drop as outlined below

• We should agree that if we start from a pressure drop in stage C where

the system is flowing and keep decreasing the pressure drop gradually and

continuously then we should have a flow in stage B as well, because the initial

condition for the system requires the application of the yield-stress rheological

flow model and hence all is needed is the satisfaction of the mass conservation

principle which is possible even in regime B according to the mathematical

argument of Appendix A. This may be stated in a different way by saying

that the smooth variation of the pressure field inside the structure in response

to a similar variation in the pressure drop across it requires the continuity

of the initial configuration of the pressure field which, qualitatively, is that

of a yield-stress rheology. The assumption of a sudden blockage on entering

regime B implies a sudden and non-continuous change in the pressure field
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configuration which is difficult to imagine and justify physically. Now whether

the system will be blocked or not on further decrease beyond the lower limit

of regime B is dependent on possible hysteresis, as discussed early.

• If we start from a pressure drop in regime A where the system is blocked and

keep increasing the pressure drop continuously then on exceeding the upper

limit of this regime the system should be still blocked because at the very

edge of regime A we agree that the system is blocked since it is subject to the

pre-yield model and according to this model the pressure field is very different

to that required for a simultaneous yield of the tubes. It is difficult to imagine

that an infinitesimal increase in the pressure drop on passing the upper limit

of regime A will change the pressure field configuration suddenly and radically

to the configuration required for a simultaneous yield as a consequence of the

supposed validity of the adopted yield-stress rheological model on such a

trivial transition. This is demonstrated in Figure 3 where we compared the

pressure field of a Poiseuille flow with a pressure drop of 450 Pa across the

ensemble, which is equal to the threshold sum, with the pressure field of a

Bingham flow with a pressure drop of 450.1 Pa across the ensemble, which is

just above the threshold sum. As can be seen, these two pressure fields are

very different. Such a strong dissimilarity will also be obtained for a solid-like

pre-yield approach. Therefore we think the most logical scenario is that the

pressure field will keep adjusting itself continuously and smoothly according

to the rules of the pre-yield model, whether fluid or solid, on a continuous

increase of the pressure drop across the ensemble all the way through regime

B and hence the system will yield only when it enters regime C.

• Now if we apply a sudden pressure drop whose value belongs to regime B then

the outcome in our view is dependent on two factors: transitional instabilities

and the previous pressure regime to which the system was subject prior to the

sudden change. Briefly, if the previous pressure is in regime A then the most

likely outcome is blockage, but transitional instabilities may lead to a pressure

distribution that opens all the tubes simultaneously and hence the system

will continue flowing because as soon as the system starts flowing, whether

it is in regime B or C it should be subject to the yield-stress rheological

fluid model which can sustain a stable mass-conserving flow according to the

mathematical argument of Appendix A. On the other hand if the previous

pressure drop belongs to regime C then the most likely scenario is mobilization
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although instabilities may lead to blockage. Other static and dynamic factors,

like hysteresis, should also play a role in these scenarios. Other rheological

aspects, especially history-dependent attributes, could also be important in

determining the transitional stage and the final outcome.
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Figure 3: Axial pressure as a function of axial coordinate of the ensemble of Figure
1 for a Poiseuille flow with a pressure drop of 450 Pa and a Bingham flow with a
pressure drop of 450.1 Pa. The yield-stress of the Bingham fluid is assumed to be
5 Pa. The Bingham pressure field is obtained by gradual decrease of the pressure
drop starting from a high value belonging to regime C where the system in known
to have already reached its dynamic yield point. The flow rate for Poiseuille is
QP ' 2.26 × 10−4 m3.s−1 assuming µ = 0.05 Pa.s, and for Bingham is QB '
2.72× 10−11 m3.s−1 assuming C = 0.05 Pa.s.

4 Discussion

Now, the key question is why a yield-stress fluid model at a pressure just above the

threshold sum produces a mass-conserving consistent pressure field configuration

with an open path while a solid-like or Newtonian fluid models do not produce
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such an open path at such a pressure. In Appendix A we presented a mathe-

matical argument to demonstrate why a mass-conserving consistent pressure field

can always be found for a pressure drop above the threshold sum of a yield-stress

fluid-structure system.

In reality finding a mass-conserving consistent pressure field for a yield-stress

fluid above the threshold sum of an ensemble is not different to finding such a field

for a Poiseuille flow except that while for the Poiseuille flow the threshold pressure

for mobilization is zero, for the yield-stress fluids the mobilization threshold is the

sum of the threshold yield pressures since this sum is the absolute minimum for

any possible mobilization assuming that it is split correctly to overcome the yield

point for each tube in the ensemble. As we always can find a mass-conserving

consistent pressure field for Poiseuille flow above the zero pressure reference level,

which seems self-evident although we believe it requires a mathematical proof as

outlined in Appendix A, we can find such a pressure field for the yield-stress fluids

above the sum of thresholds for the same reason. The latter gives the illusion that

this is because the yield point is at the threshold sum whereas the reality is that

justifying the search for a consistent pressure field above the sum and below the

dynamic yield point is only justified if we assume that the system in regime B is

in a yield state which can be justified in the case of solidification process but not

in the case of yield process.

The mathematical argument in Appendix A reveals our main objection to the

BRKMP reasoning because what BRKMP do in their model is only to find a

mass-conserving consistent pressure field above the threshold sum point which can

be trivially found. Finding such a pressure field gives the impression that the

actual yield point is at the threshold sum whereas in reality searching for such a

mass-conserving pressure field in the neighborhood of the threshold sum can only

be justified if we assume that the system is already in a yield state above the

threshold sum point.

This reveals that all the derived results of BRKMP are in fact based on the very

statement that they are supposed to prove and hence they in fact use a circular

argument. The matter of fact is that they start from the assumption that the

threshold yield pressure of the ensemble is detrmined by the sum of the threshold

yield pressures of the individual tubes; then all they need to take care of is mass

conservation above this limit.

Therefore, the BRKMP method, which is supposed to be for identifying the

yield point, may be more appropriate to use for identifying the blockage or solid-
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ification point because when they start from a pressure point above the threshold

sum point assuming the system is already in a fluid state to which a rheological

yield-stress fluid model, like Bingham, applies and keep lowering the pressure grad-

ually and continuously as can be concluded from their algorithm (refer e.g. to their

equation ∆P ∗ = ∆Pm(1 + ε)), they will inevitably converge to the blockage point

at the threshold sum point.

However, in reality, due to hysteresis, the actual solidification point may be

below the threshold sum point as indicated previously. Such a hysteresis lagging is

commonplace in polymeric and other yield-stress systems, and hence it can delay

the solidification to a pressure point below the value of threshold sum when ap-

proaching the point from above. So, even if we assume that the yield point from

below is the one obtained by the threshold path algorithms it is not necessarily that

the solidification point from above is the same as the yield point. This of course

implies that the system during this pressure decreasing process will be subject to

a different yield-stress rheological model from the one that applies during the yield

process or at least to the same rheological model but with different parametric

values. Briefly, the points of transition between the solid state and fluid phase for

yield-stress materials do not necessarily agree even in the bulk rheology regardless

of the extra reasons for this in the in situ rheology, which we are concerned with in

this paper, and whether the actual yield point for a network or a porous structure

is at the threshold sum or not. Experimental evidence has already shown that

the two points usually do not agree. The reason for hysteresis in general is the

disturbance of the micro-molecular structure during the deformation process in the

fluid phase.

In fact even detecting the solidification point from above, ignoring the hysteresis

issue, is only legitimate if we start from a confirmed fluid state point as obtained

from the dynamic yield condition, i.e. from a point in regime C, and keep lowering

the pressure all the way through regime B until we reach the threshold sum point,

because as explained early there is no ground in general for assuming a yielded

fluid state if we start in regime A or B. In our simulation experiments we expe-

rienced exceptional convergence difficulties when we tried to start from pressure

points in regime B. We observed that the convergence was easier if we start from

above the dynamic yield point in regime C, which is unusual because convergence

difficulties usually increase with higher pressure boundary conditions. This is in

complete agreement with the BRKMP observations about convergence difficulties

in these regimes (refer for example to their statement “The traditional Newton’s
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method converges easily if the imposed pressure gradient is significantly higher

than the threshold pressure gradient...”) although BRKMP may offer a different

explanation. The reason for these difficulties in our view is the difficulty of finding

a consistent pressure field of a yielded system on starting from the given initial

conditions based on the state in regime B.

In brief, we can challenge the underlying assumptions of BRKMP model that

lead to such conclusions. The key question that BRKMP should consider is why a

pressure drop that is infinitesimally above the sum of the threshold yield pressures

applied across a serially-connected ensemble should necessarily split, according to

their yield scenario, such that the size of the pressure drop across each tube is

infinitesimally above its threshold yield pressure, while at an infinitesimally lower

pressure drop across the ensemble (i.e. when the pressure drop was equal to the

threshold sum) the pressure field was very different as it was subject to a different

rheological model. If we accept this non-evident and controversial scenario, which

BRKMP explicitly or implicitly present as a fact and not just as an assumption

or a possibility, then all is needed is to satisfy the mass conservation principle

which is a trivial thing to do as we demonstrated in Appendix A. Therefore, it is

not surprising when BRKMP find that the threshold yield pressure as found from

solving the pressure field is identical to the value obtained from the threshold path

algorithms because during all the stages of stepping down on the pressure ladder

they are using a yield-stress fluid model since they assume, at least implicitly, that

the yield-stress fluid has already yielded in regime B and hence a physical flow

that satisfies the mass-balance equation will be found inevitably. As soon as they

approach their ‘yield’ point from above based on a fluid state assumption, they

should converge to a zero flow at the threshold sum and hence the two pressure

values will necessarily agree.

5 Criticism

We now address the main criticisms raised by BRKMP to our yield-stress modeling

approach and the conclusions that have been reached in S10. We also present some

of our criticisms to the BRKMP model as described in their paper.

One of the major criticisms directed to our model is that delaying the yield point

beyond reaching the threshold sum of the threshold path algorithms necessitates

that some conduits have already reached their yield points (refer to the BRKMP

statement “This condition requires that......and not yield flow.”) and hence cannot
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be blocked as implied by our model which requires the yield point to occur at a

higher pressure belonging to regime C in a blatant violation to the conduit yield

condition as given by Equation 1.

First, according to our model there is no ground for the application of the yield

condition of Equation 1 prior to reaching the yield point of the ensemble, because

we are not looking for the yield condition of a single tube but we are searching

for the yield point of an ensemble or porous structure. Before reaching the yield

condition of the ensemble the material is not considered a yield-stress fluid that is

subject to the condition of Equation 1, but it is either a highly-viscous Newtonian

fluid or a solid state material. Therefore before reaching the dynamic yield point

in regime C the flow system is assumed to be Newtonian or solid state and hence

no yield-stress does exist. Yield-stress model will take effect only on opening a

spanning path that sustains a tangible quantity of flow by reaching the ensemble

dynamic yield point.

Second, the possibility that some conduits reach their yield point before the

system reaches its yield point occurs not only in the controversial B regime but

even in regime A where we all agree that the system in this regime cannot yield;

whether we adopted a highly-viscous fluid approach or a solid-like approach prior

to yield. Even BRKMP who use, according to our understanding of their model as

indicated for example by the second part of their equation (1), a Poiseuille model

prior to reaching the threshold sum should accept that some conduits will reach

their yield condition as given by Equation 1 in regime A. For example, the sum

of threshold yield pressures for the ensemble of Figure 1 and Table 1 is 450 Pa

for τo = 5 Pa. However, if we apply a pressure drop across the ensemble well

below this sum then we will find that some of the tubes have already reached their

yield point assuming a Poiseuille flow of a highly-viscous fluid. For instance if we

apply a pressure drop of 200 Pa then the pressure drop across the third tube with

a consistent pressure field of a Poiseuille flow will be about 115 Pa which is well

above its threshold yield pressure of 100 Pa assuming a yield-stress of 5 Pa. The

solid-like approach also implies the occurrence of such situations. So even according

to the BRKMP modeling strategy such a ‘violation’ to the yield condition in some

conduits is inevitable. The setting of the flow in these conduits to zero, as BRKMP

seem to suggest, is arbitrary and hence requires justification; moreover this setting

is a clear violation of the adopted Poiseuille flow in these conduits in this regime

which has obvious consequences on the mass conservation balance. More discussion

about this issue will be presented later.
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Third, and possibly the most important factor, is that pressure drop is a nec-

essary but not a sufficient condition for fluid flow. Two obvious examples are

yield-stress fluids where no flow occurs even with the presence of a pressure drop,

and the second is a tube immersed vertically in a body of water. The presumed

solidity or fluidity with high viscosity in the first example cannot change the argu-

ment which is based on the expectation of a tangible flow of a fluid phase prior to

yield as if it was a normal Poiseuille fluid. For the second example the flow upwards

will not happen even with the presence of a pressure drop in the upward direction

because it is balanced by another force which is the force of gravity in this case. A

conduit confined within a non mobilized structure will not flow even if it reached

its threshold yield pressure due to a similar balancing force, that is the yield stress

force of the surrounding structure which is essentially the same force that prevents

flow in a stand-alone tube filled with a yield-stress fluid and subjected to a pressure

drop below its yield point.

Another criticism to our model is the violation of local mass balance (refer to “It

is unknown why Sochi (2010) obtains...found from search algorithms.” in BRKMP).

According to our model, the system before reaching the dynamic yield point as

obtained by solving the pressure field, assuming a highly-viscous fluid approach,

is subject to the Poiseuille model and hence the mass is conserved locally and

globally. The illusion of a violation to the local mass balance arises from imagining

that the isolated throats will be automatically subject to the rheological model of

the yielded yield-stress fluid as soon as they reach their threshold yield condition

of Equation 1. Mass balance violation can only occur if it is not accommodated in

the flow model correctly, and hence if the model dictates that the mobilization in

the individual throats does not take place automatically as soon as they reach their

threshold yield point, but should also associate the flow conductivity condition by

being part of a yielded inlet-to-outlet spanning path, then no local or global mass

balance violation will occur.

In fact the mere distinction between local and global mass balance, as if they

are two separate conditions, is incorrect, because these two conditions are the same

in essence due to the fact that the global mass balance is based on the local mass

balance of the individual interior pores. This can be proved simply by stepping

through the network from the inlet boundary to the outlet boundary to verify that

the total outflow must be equal to the total inflow if mass balance is respected on

each interior pore [12]. In brief, local and global mass balance should be satisfied

if the process is modeled correctly using a consistent yield-stress flow model as
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described early.

With regard to our criticism to the BRKMP investigation, in addition to the

points that we already made, we should first express our reservation about the

graph theory proof. We have a strong suspicion about the capability of the graph

theory in principle to determine the outcome of a physical process in such dynamic

systems. All the graph theory, and any similar mathematical apparatus, can do

is to reproduce the pre-stated assumptions in a technical form with drawing some

logical conclusions from the given conditions. In fact the content of the given proof

of graph theory may not even be controversial as long as it is related to finding the

threshold path from static considerations. The important thing that really needs

a proof is the underlying assumptions and conditions which lead to these logical

conclusions. The expected outcome of such processes in such dynamic systems is

therefore more logical to obtain from dynamic considerations based on the physics

of fluid mechanics.

We also observe that, unlike us, BRKMP do not have a model for the solid-like

approach. The assumptions of solid-like and highly-viscous fluid approaches are

not just mathematical ideals but they correspond to a physical reality, that is the

yield-stress fluids should behave in one of these ways or the other and hence for a

complete modeling approach both possibilities should be considered. In fact it is

physically viable that even some yield-stress materials prior to yield could behave

as solid-like while others behave as highly-viscous fluids or a single yield-stress

material behaves differently under different physical conditions.

We also notice that what BRKMP describe as “Close inspection” in their state-

ment “Upon convergence, some throats may appear open...(total flow into the net-

work model equals flow out of the model) is found.” may not be sufficient to make

such generalizations and hence if this is a possible defect in the model it should

be approached in a more formal, systematic and rigorous way than a close inspec-

tion. Another point is that “some throats may appear open” just confirms what

we stated already about the inevitability of this situation even according to the

BRKMP modeling approach; the use of “may appear” to reduce the impact as if

we are witnessing a real physical process and not just a model that we created by

our own hands does not make any good. We also do not understand the supposed

problem in mass conservation as if it is a matter of choice that we need to take care

of personally: simply if we set our model correctly and ensured that our code does

not contain serious bugs then mass conservation will be taken care of automatically

by the model and the code without need to worry about it and try to fix it through
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close inspection or arbitrary blocking of some throats or any other means. The

Newton-Raphson method as described by BRKMP is sufficiently robust to con-

serve mass. Yes what should be worrying is a possible inconsistency in the model

itself where it is theoretically assumed that no throat can reach its yield condition

unless it is part of a connected path whereas the physics of the model requires such

a situation to occur, as discussed early. We also do not understand the role or the

value of this arbitrary discarding of the isolated throats apart from the possibility

of adjusting the model to make it look more consistent.

There are also some other issues which are relatively minor in the BRKMP

assessment to S10. For example, there are some misinterpretations of S10, e.g.

the meaning of the dynamic effects which are wrongly interpreted as of a viscous

nature, like the meaning of this term in Chen et al [18], whereas we clearly stated

that it is related to the pressure field, and hence some of the BRKMP arguments

may not stand as they are. Also, the path of minimum pressure algorithm is not an

approximate method but it is rigorous within its validity domain. The algorithm

is mainly based on a linear pressure drop assumption prior to mobilization which

is mostly relevant to the solid-like approach for un-yielded yield-stress materials.

Backtracking in such situations will not be allowed because it does not occur for

obvious physical reasons, as indicated early in this paper. We also notice that there

is a mention and even discussion of convergence problems with some suggestions

about how to overcome these problems and improve the rate of convergence by

Sochi in his thesis [10]. Another minor remark is that although a single open path

at the threshold pressure gradient is the most common possibility, multiple open

paths are also possible.

There are possibly other limitations in the BRKMP yield-stress model which

we suspect from reading the method description in their paper, like possible incon-

sistency in the use of Poiseuille and yield-stress models in the pre and post yield

regimes. However reaching a definite conclusion about these issues requires further

technical and coding details and more clarifications from Balhoff and coworkers,

which are not available to us. There are other controversial issues in BRKMP that

can be challenged but they are not related to yield-stress and hence are entirely

out of the scope of the present paper.
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6 Final Thoughts

Finally, by what means we can verify which model is the ‘correct’ one? Experi-

mental evidence should have the final word about most, but not all, of the previous

issues which determine the validity and applicability of any model. There are many

limitations in the experimental procedures, their results, interpretations and con-

clusions. Although we think that experimental evidence can in many circumstances

rule in or rule out some of the above mentioned models and scenarios, such as the

yield point of an ensemble and if it is at the threshold sum or at the dynamic

yield point or may even be at a different point, many other possibilities related to

other phenomena, which are more involved and less obvious, may not be possible

to assess and reach a conclusion about unequivocally. Some flow systems, like a

highly complex non-Newtonian yield-stress fluid in a topologically and geometri-

cally complex porous medium, may be too complex to reach a definite conclusion

about their rheological behavior including their yield point due to the involvement

of many intricate factors. The quantitative difference between the two methods for

determining the yield point, for instance, may be absorbed in the overall error mar-

gin of the yield process. The difference between the static yield point as determined

by the threshold path algorithms and the dynamic yield point as determined from

the pressure field is obviously system dependent and hence the difference between

the two methods may not be sufficiently big in some cases for an unambiguous

conclusion.

Another limitation of the experimental evidence is that in some circumstances

although it can endorse certain possibilities it cannot entirely rule out other pos-

sibilities. For example, there is a possibility that there are different types of yield-

stress fluids where each type has a distinctive and different yield and rheological

behavior. ‘Yield-stress’ is a generic label that can encapsulate many other physi-

cal attributes that characterize different yield-stress materials and hence affect the

overall behavior of the flow system including its yield and solidification points. Al-

though this may be difficult to imagine with regard to the yield and solidification

points, it could have an impact on other rheological attributes that, directly or

indirectly, affect these points.

We also should not rule out the possibility of yield-stress models, other than the

ones that have already been proposed in the literature including our own model,

that could lead to a different and possibly better prediction of the yield and solidifi-

cation points. Regardless of any model, there is also the possibility of a yield point

different to the static and dynamic ones, most likely to be in between, due to the
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involvement of other rheological and dynamic factors. The proposed yield and so-

lidification scenarios in the literature including the present paper are mostly based

on a pure logical reasoning with an implicit assumption of an ideal yield-stress

material, and hence many real-world physical factors are not fully incorporated in

these models.

Regardless of all these controversial and uncontroversial issues, even if our crit-

icism to the BRKMP model is rejected, our yield-stress model as proposed in S10

and elaborated in the present paper is at least as valid as the BRKMP model from

a pure modeling viewpoint based on the sensibility and consistency criteria, as long

as there is no independent and conclusive evidence, experimental or otherwise, with

or against one of these models or the other. In this paper we provided sufficient

clarifications and justifications to endorse the yield-stress modeling approach of

S10 regardless of the validity or invalidity of any other model. We therefore believe

that the BRKMP attempt to disqualify the modeling approach of S10 is void.

7 Conclusions

The main conclusions reached in this study is the confirmation of the previous find-

ings by Sochi [7] with regard to the threshold yield pressure of yield-stress materials

residing in rigid networks of interconnected conduits or rigid porous structures sub-

ject to a pressure field defined by two pressure boundary conditions. The essence

of the previous findings is that the dynamic yield point as obtained from solving

or inspecting the pressure field is generally higher than the static yield point found

by the threshold path algorithms. This is in a complete disagreement with Balhoff

et al [11] who claimed to have proved that the threshold yield pressure obtained

dynamically is identical to the one found by the threshold path algorithms. We

demonstrated that what Balhoff et al identified is more appropriate to be the solid-

ification point on a gradual and continuous lowering of the pressure drop starting

from an established fluid state rather than the yield point of a solid state material.

However, even this could be challenged on the basis of the inertial nature of com-

plex fluids that may shift the solidification point to a lower pressure point than the

threshold sum.
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Nomenclature

µ fluid dynamic viscosity (Pa.s)

τo yield-stress (Pa)

τw stress at tube wall (Pa)

C consistency coefficient in Bingham model (Pa.s)

L tube length (m)

P pressure (Pa)

∆P pressure drop (Pa)

∆Pdy pressure drop of dynamic yield (Pa)

∆Pt threshold pressure drop (Pa)

∆Pts pressure drop of threshold sum (Pa)

Q volumetric flow rate (m3.s−1)

QB flow rate of Bingham model (m3.s−1)

QP flow rate of Poiseuille model (m3.s−1)

R tube radius (m)
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A Mass-Conserving Pressure Field

Assume we have a network consisting of n serially-connected cylindrical tubes which

generally have different radii and lengths containing a yield-stress material. The

sum of threshold yield pressures of the individual tubes in such an ensemble, ∆Pst,

is given by

∆Pst =
n∑

i=1

∆Pit (2)

where ∆Pit is the threshold yield pressure of tube i. Now if we apply a total

pressure drop of ∆Pst across the ensemble and assume that this total pressure

drop is divided such that for each tube a pressure drop equal to its threshold yield

pressure ∆Pit occurs across its length, then at this total pressure drop ∆Pst the

flow in the system is zero because all tubes are at their threshold yield pressure.

Now let us assume that we added an infinitesimal increase in the pressure drop,

ε > 0, across the ensemble such that

∆Pst + ε =
n∑

i=1

∆Pit +
n∑

i=1

εi (3)

then there should be in principle a finite minute flow in each tube in the ensemble.

Since the flow rate is a continuous function of the pressure drop for each tube, then

it is possible to adjust the arbitrary and infinitesimal εi such that the flow rate in

all tubes is the same within a given error tolerance. For this same reason (i.e. the

flow rate is a continuous function of pressure drop for each tube) if we now increase

ε infinitesimally, it should be possible to divide this increase on the pressure drops

of the individual tubes such that the flow rate in all tubes is still the same within

the given error tolerance. By doing this process of adding an infinitesimal increase

to the threshold sum ∆Pst repeatedly and dividing the increase on the individual

pressure drops appropriately as before, we can reach any pressure drop above the

threshold sum ∆Pst such that the flow rate in all tubes of the ensemble is the same

within the given error tolerance. This in essence is the same as finding a consistent

pressure field sustaining a total flow rate in the ensemble that conserves mass.

This mathematical argument can be applied to Poiseuille flow as well to prove

that it is always possible to find a consistent pressure field that sustains a mass-

conserving flow for any pressure drop greater than zero across such ensembles.

The argument can also be generalized to any other characteristic flow above the

threshold mobilization pressure of the ensemble for that particular fluid.
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B Yield Condition for Fluid Approach

For a network consisting of serially-connected cylindrical tubes containing a yield-

stress material assumed to be a highly-viscous fluid prior to yield, the flow of the

material can occur iff two conditions are simultaneously satisfied: (a) the mass

is conserved throughout the ensemble and (b) all tubes pass their threshold yield

point simultaneously. In the following we show that for such a network these two

conditions require a threshold yield pressure that in general is greater than the

sum of the threshold yield pressures of the individual tubes. The threshold yield

pressure for a cylindrical tube is given by

∆Pt =
2τoL

R
(4)

while the Poiseuille flow, which is assumed to model the flow prior to mobilization,

in such a tube is given by

Q =
πR4∆P

8µL
(5)

where ∆Pt is the threshold yield pressure of the tube, τo is the yield stress, L and

R are respectively the tube length and radius, Q is the volumetric flow rate, µ is

the fluid dynamic viscosity, and ∆P is the pressure drop across the tube.

Now let us take the tube with the largest radius in this serially-connected net-

work. Since the flow through the ensemble will not occur unless this tube reaches

its threshold yield point, then a necessary condition for the flow to occur is that

this tube reaches its yield point. We will see later that this is also a sufficient con-

dition for the flow to occur in the network assuming mass conservation is satisfied.

For this tube the flow rate at its threshold pressure is

Qb =
πR4

b∆Pbt

8µLb

=
πR4

b

8µLb

2τoLb

Rb

=
2τoπR

3
b

8µ
(6)

where b is an index marking this tube, and ∆Pbt is the threshold yield pressure of

this tube. Due to the mass conservation, this flow rate is the same for all the tubes

in the network, that is for any tube other than the one with the largest radius we

have

Qi =
πR4

i ∆Pi

8µLi

=
2τoπR

3
b

8µ
(7)

where i is an index marking the other tube. On rearranging and simplifying we
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obtain

∆Pi =
2τoLiR

3
b

R4
i

=
2τoLi

Ri

R3
b

R3
i

= ∆Pit
R3

b

R3
i

(8)

where ∆Pit is the threshold yield pressure of tube i. Now

Rb ≥ Ri ⇒ ∆Pi ≥ ∆Pit (9)

and hence the sum of the actual pressures across the individual tubes for such a

flow assuming mass conservation is greater than or equal to the sum of threshold

yield pressures of the individual tubes. The equality holds only when all the tubes

in the network have the same radii. The condition in Equation 9 also explains why

reaching the threshold yield pressure for the tube with the maximum radius is not

only a necessary condition but is also a sufficient condition for the flow to occur

assuming mass conservation, as indicated earlier.
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C Yield Condition for Solid Approach

For a network consisting of serially-connected and straightly-aligned cylindrical

tubes containing a yield-stress material which is assumed to be solid-like prior to

its mobilization, the flow of the material can occur iff all tubes pass their threshold

yield point simultaneously. In the following we show that for such a network this

condition requires a threshold yield pressure that in general is greater than the sum

of the threshold yield pressures of the individual tubes assuming a linear pressure

drop which is equivalent to a constant pressure gradient.

We take the tube with the smallest radius in the network. Since the flow through

the ensemble will not occur unless this tube reaches its threshold yield point, then

a necessary condition for the flow to occur is that this tube reaches its yield point.

We will see later that this is also a sufficient condition for the flow to occur in the

network. For this tube, indexed by b, the threshold yield pressure is given by

∆Pbt =
2τoLb

Rb

(10)

and hence the constant pressure gradient across the entire network when tube b is

at its threshold yield pressure will be

∇P =
∆Pbt

Lb

=
2τo
Rb

(11)

Now since the pressure drop is assumed linear with respect to the network total

length, the pressure drop across any other tube in the network, indexed by i, will

be

∆Pi = ∇PLi =
2τoLi

Rb

(12)

Now since Ri ≥ Rb we have

∆Pit =
2τoLi

Ri

⇒ ∆Pi ≥ ∆Pit (13)

Hence, at the yield point of the ensemble the sum of the actual pressures across

the individual tubes in such a network based on the solid-like assumption with a

constant pressure gradient across the network is greater than or equal to the sum

of threshold yield pressures of the individual tubes. The equality holds only when

all the tubes in the network have the same radii. The condition in Equation 13 also

explains why passing the threshold yield pressure for the tube with the minimum

30



radius is not only a necessary condition but is also a sufficient condition for the

flow in the network to occur.
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