
Experiment	on	the	(Inverted)	Fractal	Demonstrating	Micro	Quantum	and	Macro	Astronomical	Observations	and	

Conjectures		

First	published:	Dec.	08th,	2016*.	

*This	paper	is	the	update	and	merger	of	my	earlier	papers	[1]	and	[2].	

Blair	D.	Macdonald		

Abstract	

Continuing	the	debate	on	whether	the	universe	is	fractal	by	nature:	an	experiment	was	undertaken	on	the	‘simple’	Koch	Snowflake	

fractal	to	test	whether	fractal	geometry	matches	observations	and	conjectures.		The	Koch	Snowflake	was	inverted	to	model	

observations	from	within	an	iterating	fractal	set	it:	simulating	a	static	or	‘measured’	position.	Converse	to	the	fractal	snowflake	

emergence	–	where	triangle	sizes	diminish;	the	sizes	of	new	triangles	were	held	constant,	and	earlier	triangles	in	the	set	expanded	

as	the	set	iterated.	Kinematic	velocities	and	accelerations	were	calculated	for	both	the	area	expansion	of	the	total	fractal,	and	the	

distance	between	points	and	the	‘observer’	within	the	fractal	set.	The	inverted	fractal	was	tested	for	the	Hubble's	Law.	It	was	found	

area(s)	expanded	exponentially;	and	as	a	consequence,	the	distances	between	points	–	from	arbitrary	locations	within	the	set	–	

receded	away	from	the	‘observer’	at	increasing	velocities	and	accelerations.	The	model	was	consistent	with	the	standard	ΛCDM	

model	of	cosmology	and	demonstrated:	a	singularity	‘Big	Bang’	beginning;	homogeneous	isotropic	expansion	consistent	with	the	

observed	CMB;	Hubble's	Law	expansion	–	with	a	Hubble	diagram	and	Hubble's	constant;	and	accelerating	expansion	with	a	

‘cosmological’	constant	an	expansion	rate	consistent	with,	and	capable	of	explaining	the	conjecture	of	early	inflation	epoch	of	the	

universe.	The	model	predicts	and	matches	current	galaxy	distribution	observations	–	clustered	nearby	and	smooth	on	large	scales	–	

and	thus	is	inconsistence	with	the	cosmological	principle.		The	mechanism	of	expansion	is	consistent	with	quantum	mechanical	

descriptions:	the	vacuum	catastrophe	is	addressed	and	concluded	to	be	as	a	consequence	of	fractal	behaviour.	It	was	concluded	

that	the	universe	behaves	as	a	general	as	a	fractal	object,	where	we	are	observing	inside	it.		
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1 INTRODUCTION 

The	great	unanswered	and	perplexing	problem	of	modern	cosmology	is	what	is	causing	the	accelerating	expansion	of	the	universe	

[3],[4]		–	the	so-called	‘dark	energy’.	This	comes	atop	a	list	of	problems	–	associated	with	observation	and	conjecture	of	the	

‘standard	model’	–	including:	its	big	bang	–	inflationary	–	beginning,	the	cosmic	microwave	background	(CMB)	[5],	Hubble	

expansion,	and	not	to	mention	its	‘dark	matter’.	Add	to	these	–	assuming	General	Relativity	is	correct	–	the	standard	model	doesn’t	

match	or	fit	with	quantum	mechanics	–	said	to	be	the	most	successful	theory	of	science	–	is	out	by	a	factor	of	10120.		One	thing	agree	

upon[6]	by	scientists:	the	standard	model	is	‘looking	for	a	new	breakthrough’.			

In	this	paper	I	would	like	to	propose	and	test	a	solution	to	the	above.	It	is	a	different	aspect	or	perspective	of	an	already	proposed	

cosmic	geometry,	fractal	geometry.	My	theory	is	based	on	how	fractals	are	produced,	and	the	mechanics	and	behaviour	observed	

when	viewed	within	a	fractal	–	it	is	an	inverted	fractal	view.	I	aim	to	test	this	perspective,	and	prove	this	matches,	in	principle,	the	

above	large	scales	problems,	and	because	of	the	scale	invariance	of	the	fractal,	the	small	scale	too	–	including	quantum	mechanical	

problems.		

This	is	not	a	direct	pure	mathematic	paper,	and	it	does	not	necessarily	take	from	current	work,	but	is	rather	a	basic	prototype	

experiment	–	a	proof	of	concept	–	and	it	should	complement	current	thinking,	not	take	from	it.	Its	simplicity	may	render	it	trivial	to	

some;	but	if	the	conclusions	from	the	experiment	are	right,	the	implications	will	be	akin	to	putting	the	Sun	at	the	centre	of	the	solar	

system	–	everything	will	fit.			This	investigation	was	an	applied	mathematic	analysis:	the	growth	behaviour	of	the	complex	

(chaotic)	fractal	attractor[7]	was	analysed.	To	measure	the	fractal,	the	Koch	snowflake	fractal	was	chosen	for	its	quantitative	

regularity:	the	snowflake	was	inverted,	and	areas	recorded	as	the	fractal	iterated.	Measurements	were	taken	as	from	a	fixed	

reference,	perspective	or	position	within	the	iterating	set.		

1.1 Fractals	and	Fractal	Cosmology	

Fractal	attractors	are	in	general	presented	as	interesting	computer-generated	images,	and	as	a	result	may	easily	be	disregarded,	

but	they	also	offer	a	not	to	be	overlooked	window	into	the	mechanics	of	our	reality,	particularly	the	isolated,	scale	invariant	and	

iterating	object.	Fractal	geometry	offers	one	of	the	best	descriptions	of	the	complexity	of	nature	mathematics	has	to	offer:	and	its	

insights	are	not	lost	on	cosmology,	and	has	its	own	field	termed	fractal-cosmology.	Fractals	are	inextricably	related	chaos	theory,	

and	already	appear	in	works	on	(eternal)	inflation	theory	[8]	and	the	structure	and	distribution	of		matter	in	the	universe.	

[9],[10],[11],[12],[13].	

Though	this	question	of	whether	the	universe	conform	to	fractal	geometry	is	not	often	mentioned	in	‘mainstream’	–	or	even	

popular	–	science,	it	has	indeed	been	debated	and	the	claim	left	unfounded	due	to	lack	of	(ever)	larger	scale	observations,	and	by	

the	recent	findings	of	the	WiggleZ	survey	[14],	[15],	[16],[17].		

1.2 Observed	Galaxy	Distribution	

The	proponents	of	fractal	cosmology	(Luciano	Pietronero,	Francesco	Sylos	Labini,	and	others)	have	been	arguing	the	observed	

hierarchies	of	clustering	and	super	clustering	–	based	on	surveys	similar	to	the	2003	2df	Redshift	Survey	map	(figure	2	below)	–	

are	direct	evidence	of	a	universe	that	is	fractal	[18],[19],[20],[21],[22],[7]	and	[23].	The	current	consensus,	however,	is	–	after	even	
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deeper	cosmic	surveys	–	the	universe	on	large	scales	smoothens	out	to	become	homogenous	–	and	is	overall	not	(a)	fractal[24],[25]	

and	[26].			

	

Figure 1. 2dF SDSS Galaxy Redshift Survey [27] . 

It	was	the	2012	WiggleZ	Dark	Energy	Survey[14]	–	the	largest	survey	to	date	–	that	settled	the	fractal	question:	They	concluded	–	

with	increased,	but	similar	confidence	as	previous	teams	(namely,	the	2004	Sloan	Digital	Sky	Survey	[28]	and	[29])	–	the	universe	

shows	evidence	of	fractal	galaxy	distribution	–	with	clustering	and	super-clustering	–	only	on	small	scales	(less	than	70	to	100	Mega	

parsecs	away)	–	beyond	this	distance,	the	pattern	becomes	a	homogenous	galaxy	distribution.		

On	viewing	the	WiggleZ	Dark	Energy	Survey	results	–	particularly	its	figure	13	(figure	3	below)	of	changing	galaxy	distribution	

(from	fractal	at	small	cosmic	scales	to	smooth	at	large	cosmic	scales)	I	questioned	whether	the	inverted	fractal	may	offer	

explanation	and	insight	to	the	decreasing	‘Scaled	N	(r)’	transitions	(and	increasing	smoothness)	with	distance.		
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Figure 2. WiggleZ Dark Energy Survey figure 13, page 16. Revealing changing galaxy distributions from small-scale to 

large-scale. 

In	this	publication	I	shall	investigate	whether	the	galaxy	distribution	results	from	the	WiggleZ	Dark	Energy	Survey	(and	its	

contemporises)	match	a	view	of	what	one	would	expect	to	see	if	they	viewed,	not	at	a	fractal	–	as	is	implied	in	their	studies	–	but	

from	within	a	(growing)	fractal.		

To	test	this	I	shall	return	to	the	fractspansion	model	and	analyse	the	occurrence	of	the	said	clustering	of	measurement	points.	For	

the	clustering	in	the	fractspansion	model	to	have	any	significance	to	cosmology,	it	would	have	to	demonstrate	how	the	distribution	

of	triangles	(in	the	inverted	Koch	snowflake)	changes	over	distance	from	the	observer	(section	4.1	and	4.2).				

1.3 The	Classical	Fractal		

Fractals	–	also	described	as	L-systems	–	are	emergent	objects	that	develop	and	(or)	grow	with	the	iteration	of	a	simple	rule.	They	

possess	self-similarity	at	all	scales	and	can	be	observed	as	being	regular	but	irregular	(same	but	different)	objects.		They	are	

classically	demonstrated	by	the	original	Mandelbrot	Set	[7],	and	–	in	one	of	their	most	simplest	forms	–	the	Koch	Snowflake	(Figure	

3	below,	A	and	B	respectively).	Familiar	examples	of	them	in	reality	are	clouds,	waves,	coastlines	and	trees.	All	fractals	have	a	

defined	‘fractal	dimension’.	Stewart	in	his	book	on	chaos	(and	fractals)	‘God	does	not	play	dice’	–	said:	‘..coastlines	and	Koch	

Snowflakes	are	equally	rough’	[30].	Indeed,	the	very	close	fractal	dimension	values	of	both	the	Koch	Snowflake	and	the	coastlines	of	

islands	(Great	Britain)	1.26,	and	between	1.15	and	1.2	respectively	–	stands	as	testament	of	their	power	to	best	model	nature	and	

reality.		

Figure	3	B	below	shows	the	classical	view	of	fractal	emergence	(growth	or	development)	–	achieved	by	the	iteration	of	a	simple	

rule,	by	adding	more	(triangle)	bits	–	of	diminishing	size	–	to	the	previous	triangle,	originating	from	an	initial	(iteration	0)	bit	–	also	

known	as	the	‘axiom’	in	L-system	theory.	The	snowflake	shape	is	formed	at	and	around	5	or	6	iterations;	from	this	point	on	–	to	the	

observer	–	it	no	longer	changes	shape.	This	equilibrium	iteration	count	is	the	observable	fractal	distance,	relative	to	the	observer.	

This	distance	is	constant	irrespective	of	magnification.	
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Figure 3. (Classical) Fractals. (A) boundary of the Mandelbrot set; (B) The Koch Snowflake fractal from iteration 0 to 3. 

Reference: (A) [31]; (B) [32]. 

1.4 Production,	and	the	Inverted	Fractal	

To	‘produce’	a	Lorenz	curve	with	a	fractal	attractor,	we	first	need	to	determine	what	it	meant	by	production	and	thus	growth	of	the	

fractal.	When	we	attempt	to	do	this,	we	find	there	is	a	paradox	–	there	are	two	views	that	conflict	with	each	other:	one	where	the	

original	triangle	bit	size	remains	constant,	and	the	new	bits	diminish	in	size	as	the	fractal	iterates	–	this	is	termed	(A)		‘a	

consumption	perspective’;	and	(B)	where	it	is	the	new	triangle	bits	size	remain	constant,	and	all	earlier	triangle	bits	expand	and	

grow	as	the	fractal	iterates	–	termed	‘a	production	perspective’.		A	is	the	classical	view	–	as	shown	in	figure	3B	(and	A	in	figure	4	

below)	and	B	the	‘inverted’,	shown	in	figure	4	B.	Both	of	these	views,	A	and	B,	are	relative	views	of	the	same	process:	both	are	true,	

but	only	one	really	describes	the	production	and	the	growth	from	production,	and	for	this	study	it	is	assumed	to	be	the	inverted	

view	B.		

	

Figure 4. Expansion of the inverted Koch Snowflake fractal (fractspansion). The schematics above demonstrate fractal 

development by (A) the classical Snowflake perspective, where the standard sized thatched (iteration ‘0’) is the focus, and the 

following triangles diminish in size from colour red iteration 0 to colour purple iteration 3; and (B) the inverted, fractspanding 
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perspective where the new (thatched) triangle is the focus and held at standard size while the original red iteration 0 triangle 

expands in area – as the fractal iterates. 

There	is	a	practical	reason	for	this:	the	‘inverted’	production	growth	can	be	‘observed’	in	real	life	nature	fractals,	trees.		With	trees	

(thus	all	plants	–	in	principle)	it	is	the	trunk	of	the	tree	that	grows,	and	the	new	branch	size	that	remains	constant.	This	is	converse	

to	‘our’	static	observation	of	trees,	where	the	(larger)	constant	sized	trunk	is	observed	with	diminishing	sized	branches	‘protruding’	

–	self	similar	–	from	it.		

1.5 Time		

The	iterating	fractal	exposes	the	issue	of	time.	In	isolation	the	fractal	grows	with	the	passing	of	time,	and	in	isolation	this	time	can	

only	be	the	iteration	time.	Iteration	is:	in	one	direction	–	beginning	with	the	original	triangle;	discrete	(bit	by	bit);	and	arbitrary	in	

length	–	as	there	are	no	reference	points	to	measure	the	absolute	rate	time.	For	the	purposes	of	this	investigation	the	iteration	

count	was	assumed	to	be	equal	to	time,	called:	iteration	time,	and	denoted	i.		

1.6 The	Inverted	Fractal	–	a	view	from	within	

To	simulate	observations	from	a	position	or	perspective	within	the	fractal	set	the	fractal	was	(simply)	inverted.	By	doing	this,	the	

focus	is	placed	on	the	newly	added	triangle	(bit),	holding	its	size	constant,	and	allowing	the	previous	bit	sizes	to	expand	–	rather	

than	diminish	as	with	the	classic	fractal.	The	inverted	fractal	reveals	this	fractal	expansion	–	termed	fractspansion	as	demonstrated	

in	Figure	4	(B).	Colours	(red,	blue,	black	followed	by	purple)	and	numbers	are	used	to	demonstrate	the	expansion.		

The	size	of	the	initial	red	iteration	0	triangle,	with	fractspansion,	expands	relative	to	the	new.	A	practical	example	of	this	

fractspansion	principle	is	to	think	of	the	growth	of	a	tree.		Follow	the	first	(new	growth)	stem	size	–	keeping	this	stem/branch	size	

at	a	constant	size	–	as	the	rest	of	the	tree	grows.	To	grow	more	branches,	the	volume	of	the	earlier/older	branches	must	expand.	

Now	think	of	sitting	on	one	the	branches	of	a	tree	that	is	infinitely	large,	infinitely	growing.		What	would	you	see	in	front?	What	

would	you	see	behind?	

If	an	observer	were	to	remain	at	this	constant	static	position	(or	alternatively	change	position	by	zooming	forward	into	the	

structure)	they	would	experience	–	according	to	the	principles	of	the	iterating	fractal,	as	demonstrated	in	Figure	4	(A)	–	an	infinity	

of	self-similar	Koch	Snowflake	like	structure	ahead	of	them,	at	never	see	triangles	more	than	four	or	five	iteration/sizes.		There	will	

always	be	(classical)	fractal	shape	ahead,	and	looking	back	the	observer	would	see	expansion.		

1.7 Spiral	Propagation		

The	propagation	of	triangles	in	the	(inverted)	Koch	Snowflake	fractal	–	or	bits	of	information	on	any	fractal	–	is	not	linear,	but	

rather	a	(logarithmic)	spiral:	as	shown	in	Figure	4B	(above),	and	in	more	detail	in	Figure	5	below.		Each	new	bit	‘branches’	at	an	

angle:	in	an	act	of	rotational	symmetry.	The	first	person	to	describe	this	‘angled’	process	was	Leonardo	Da	Vinci	[33].	Appendix	

figure	3	demonstrates	the	wave/spiral	propagation	properties	of	‘bits’	in	an	emergent	fractal.	In	‘A’	a	triangle	bit	with	a	red	dot	is	

iterated	revealing	a	spiral	and	‘superposition’;	and	in	‘B’	shown	is	the	respective	rotation	of	the	propagating	triangle	bits	through	

3600;	and	‘C’	demonstrates	a	(non	logarithmic)	through	time	–	forming	a	wave.				
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1.8 Hypothesis	

Observation	and	behaviour	of	the	macro	universe	–	as	described	by	the	lambda	CDM	model	–	and	the	micro	quantum	world	are	

inextricably	linked	through	the	geometry	of	the	classical	and	(inverted)	fractal.	

For	this	to	be	so,	the	fractal	will	have	to	demonstrate	not	only	accelerating	expansion,	but	also	temporal	behaviour	that	matches	

both	the	observations	and	the	theories	(in	terms	of	the	shape	and	behaviour)	of	the	cosmos,	including:		

1. a	‘singularity’	(Big	Bang)	beginning,	(section	4.1);	

2. an	inflation	epoch	(section	4.5.2	and	4.6.1);	

3. the	presence,	and	dominance	of	a	‘uniform’	Cosmic	Microwave	Background	(section	4.3);	

4. a	Hubble’s	Law	[34]	(section	4.4);	

5. accelerating	expansion	(section	4.5);	

6. a	cosmological	constant	(section	4.5);	

7. describe	and	predict	the	distribution	of	galaxies	in	the	observable	universe	(section	4.10);	

8. and	offer	insights	into	the	nature	of	quantum	mechanics	(section	4.7).	

Results	from	this	investigation	offer	insights	to	all	objects	–	of	all	scales	–	of	a	fractal	nature,	including:		

1. the	inferred	emptiness	of	the	atom;		

2. the	growth	of	trees		(section	4.14.1);		

3. the	properties	of	evolution;	

4. and	the	expansion	of	perceived	value	–	with	time	(section	4.15).		

2 METHODS	

To	create	a	quantitative	data	series	for	analysis	of	the	inverted	fractal,	the	classical	Koch	Snowflake	area	equations	were	adapted	to	

account	for	this	perspective,	and	a	spreadsheet	model	[35]	was	developed	to	trace	area	expansion	with	iteration.		

The	scope	of	this	investigation	was	limited	to	the	two-dimensional;	three-dimensional	space	or	volume	can	be	inferred	from	this	

initial	assumption.	Changes	in	the	areas	of	triangles,	and	distances	between	points	in	the	fractal	set	were	measured	and	analysed	to	

determine	whether	the	fractal	area	and	distance	between	points	expand.		

2.1 Spreadsheet	Model	

A	data	table	was	produced	(Table	1)	to	calculate	the	area	growth	at	each,	and	every	iteration	of	a	single	triangle.	Area	was	

calculated	from	the	following	formula	(1)	measured	in	standard	(arbitrary)	centimetres	(cm)	

	 (1)	

	 																											

where	(A)	is	the	area	of	a	single	triangle,	and	where	l	is	the	triangle’s	base	length.		l	was	placed	in	Table	1	and	was	set	to	

1.51967128766173cm	so	that	the	area	of	the	first	triangle	(i0)	approximated	an	arbitrary	area	of	1	cm2.		To	expand	the	triangle	

A = l
2 3
4
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with	iteration	the	base	length	was	multiplied	by	a	factor	of	3.		The	iteration	number	was	placed	in	a	column,	followed	by	the	base	

length	of	the	equilateral	triangle,	and	in	the	final	column	the	formula	to	calculate	the	area	of	the	triangle.	Calculations	were	made	to	

the	10th	iteration,	and	the	results	graphed.	

2.2 Distance	and	Displacement	

To	measure	and	analyse	the	changes	in	position	of	points	(the	distance	between	points	in	the	set	after	iteration)	a	second	data	table	

(table	2)	was	developed	on	the	spreadsheet.		The	triangle’s	geometric	centre	points	were	chosen	as	the	points	to	measure.	Formula	

(2)	below	calculated	the	inscribed	radius	of	an	equilateral	triangle.	Distance	between	points	was	calculated	by	adding	the	inscribed	

radius	of	the	first	triangle	(i0)	to	the	inscribed	radius	of	the	next	expanded	triangle	(i1)	described	by	

r = 3
6
l .  

(2)	

From	the	radius	distance	measurements;	displacement,	displacement	expansion	ratio,	velocity,	acceleration,	and	expansion	

acceleration	ratio	for	each	and	every	iteration	time	were	calculated	using	classical	mechanics	equations.		

The	change	in	distance	between	points	was	recorded,	as	was	the	change	in	displacement	(distance	from	i0).	

2.3 Area	Expansion	of	the	Total	Inverted	Fractal		

With	iteration,	new	triangles	are	(in	discrete	quantities)	introduced	into	the	set	–	at	an	exponential	rate.		While	the	areas	of	new	

triangles	remain	constant,	the	earlier	triangles	expand,	and	by	this	the	total	fractal	set	expands.	To	calculate	the	area	change	of	a	

total	inverted	fractal	(as	it	iterated),	the	area	of	the	single	triangle	(at	each	iteration	time)	was	multiplied	by	its	corresponding	

quantity	of	triangles	(at	each	iteration	time).		

	Two	data	tables	(tables	3	and	4	in	the	spreadsheet	file)	were	developed.	Table	3	columns	were	filled	with	the	calculated	triangle	

areas	at	each	of	the	corresponding	iteration	time	–	beginning	with	the	birth	of	the	triangle	and	continuing	to	iteration	ten.	

Table	4	triangle	areas	of	table	3	were	multiplied	by	the	number	of	triangles	in	the	series	corresponding	with	their	iteration	time.	

Values	calculated	in	table	3	and	4	were	totalled	and	analysed	in	a	new	table	(table	5).	Analysed	were:	total	area	expansion	per	

iteration,	expansion	ratio,	expansion	velocity,	expansion	acceleration,	and	expansion	acceleration	ratio.	Calculations	in	the	columns	

used	kinematic	equations	developed	below.		

2.4 Kinematics		

Classical	physics	equations	were	used	to	calculate	velocity	and	acceleration	of:	the	receding	points	(table	2)	and	the	increasing	area	

(table	5).			

2.4.1 Velocity 

Velocity	(v)	was	calculated	by	the	following	equation					
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where	classical	time	was	exchanged	for	iteration	time	(i).	Velocity	is	measured	in	standard	units	per	iteration	cm-1	i	-	1	for	receding	

points	and	cm-2	i	-	1	for	increasing	area.	

2.4.2 Acceleration 

Acceleration	(a)	was	calculated	by	the	following	equation		

Acceleration	is	measured	in	standard	units	per	iteration	cm-1	i	-2	and	cm-2	i	-	2.	 	 		

2.4.3 Ratios 

Ratios	of	displacement	expansion	and	acceleration	were	calculated	by	dividing	the	outcome	of	i1	by	the	outcome	of	i0.	

The	same	method	of	ratio	calculation	was	used	to	determine	change	or	expansion	of	area.	 	

2.5 Spiral	Propagation		

The	method	given	thus	far	assumes,	and	calculates	the	linear	circumference	of	this	spiral	(the	red	line	below	in	figure	5)	and	not	the	

true	displacement	(the	blue	radius	lines	below).	This	method	was	justified	by	arguing	the	required	radius	(or	displacement)	of	the	

logarithmic	spiral	calculation	was	too	complex	to	calculate,	(and	beyond	the	scope	of	this	investigation),	and	that	expansion	

inferences	from	inverted	fractal	could	be	made	from	the	linear	circumference	alone.		As	an	aside,	a	spiral	model	was	created	

independently,	and	radii	measured	to	test	whether	spiral	results	were	consistent	with	the	linear	results	in	the	investigation.	

Measurements	were	made	using	TI	–	Nspire™	geometric	software.	

	

Figure 5. Spiral Observation of Points from ‘the Observer’. Displacement measurements (blue) from radii on the iterating 

Koch Snowflake. The inverted fractal propagates triangle bits as it iterates (from i0 to i∞). The displacement is measured from 

an arbitrary observation point (i=4) and the previous (discrete) triangle centres to iteration 0. This displacement was used in 

𝒗 =
∆𝒅
∆𝒊  (3)		

𝑎 =
∆𝑣
∆𝑖 	

																																														(4)	
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the calculation of the fractal/Hubble constant. The red line traces the circumference (the distance) of the fractal spiral, and the 

blue line the displacement of the fractal spiral from an arbitrary centre of observation.  cm = centimetres. 	 								

2.6 Hubble’s	Law	and	Diagram	

To	test	for	Hubble’s	Law,	a	Hubble	(like)	a	scatter	graph	titled	‘The	Fractal/Hubble	diagram’	was	constructed	from	the	results	of	the	

recession	velocity	and	distance	calculations	(in	table	2	of	inverted	fractal	spread	sheet	file).	On	the	x-axis	was	the	displacement	

(total	distance)	of	triangle	centre	points	at	each	iteration	time	from	t0;	and	on	the	y-axis	the	expansion	velocity	at	each	iteration	

time.	A	best	fitting	linear	regression	line	was	calculated	and	a	Hubble’s	Law	equation	(5)	was	derived		

𝒗 = 𝑯𝒊𝟎𝑫	

 

(5)	

where	Hi0	the	(present)	Hubble	constant	(the	gradient),	and	D	the	distance.	

2.7 Acceleration	vs.	Distance	

Using	the	same	methods	as	used	to	develop	the	Hubble	diagram	(as	described	above	in	2.4)	an	‘acceleration	vs.	distance’	diagram	

was	created,	regressed,	and	an	expansion	constant	derived.		

2.8 Point/Cluster	Distribution	form	Observation	Point	

To	analysis	whether	astronomical	observations	match	observation	from	within	a	fractal	and	explain	the	point	clustering	on	the	

fractal-Hubble	diagram,	relevant	tables	in	fractspansion	spreadsheet	model	[36]	were	analysed	–	particularly	the	table	from	where	

the	fractal-Hubble	diagram	was	derived.		

Calculations	were	made	(listed	below)	and	diagrams	created	–	these	may	also	be	viewed	in	the	spreadsheet	model:	

1. The	quantity	of	triangle	sizes	per	total	distance	increment	on	the	fractal-Hubble	diagram	was	calculated	by:	counting	the	

quantity	of	triangle	sizes	(in	distance	column	in	table	2)	and	dividing	this	by	the	distance	increments	measured	in	the	

sample.	See	Table	2a	of	spreadsheet	model.	

2. The	quantity	of	triangles	at	each	increment	was	calculated	by	totalling	the	quantity	of	triangles	(from	table	4)	for	each	

respective	iteration-distance.		

3. An	amended	Fractal-Hubble	diagram	–	combining	(recessional)	velocity	with	the	quantity	of	triangles	at	every	distance	–	

was	created.	See	table	7	of	spreadsheet	model.	
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3 RESULTS		

Figures	6	to	14	show	graphically	the	results	of	the	experiment.		

3.1 Expansion	of	Initial	Triangle	

The	area	of	the	initial	triangle	of	the	inverted	Koch	Snowflake	fractal	increased	exponentially	–	shown	here	in	Figure	6.	

	

Figure 6.  Area Expansion of a single triangle in the inverted Koch Snowflake fractal by iteration time (i). cm = 

centimetres. 

This	expansion	with	respect	to	iteration	time	is	written	as	

 𝑨 = 𝟏𝒆𝟐.𝟏𝟗𝟕𝒊.  (6)	

3.2 Total	Fractal	Expansion	

The	area	of	the	total	fractal	(Figure	7A)	and	the	distance	between	points	(Figure	7B)	of	the	inverted	fractal	also	expanded	

exponentially.	

A	

 

B	

 

	

Figure 7. Inverted Koch Snowflake fractal expansion per iteration time (t).   (A) total area expansion and (B) distance 

between points. cm = centimetres. i = iteration time. 

The	expansion	of	the	total	area (𝑨 𝑻)	is	described	as	
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𝑨𝑻 = 𝟏.𝟏𝟎𝟖𝟏𝒆𝟐.𝟑𝟎𝟑𝟐𝒊 (7)	

The	expansion	of	distance	between	points	(D)	is	described	by	the	equation	

𝑫 = 𝟎.𝟓𝟓𝟒𝟗𝒆𝟏.𝟐𝟐𝟒𝟓𝒊	 (8)	

3.3 Expansion	Ratios	

The	expansion	ratios	for	the	given	sample	(shown	below	in	Figure	8A	and	8B)	were	initially	high	(12	and	4	respectively),	followed	

by	a	decreasing	range,	to	settle	finally	at	the	stable	ratio	of	expansion	of	9	and	3	respectively	(for	the	tested	10	iterations).		

A

	

B	

 

Figure 8. Expansion ratios for the Inverted Koch Snowflake fractal.  Results corresponding to each iteration time (i) of (A) 

total area; and (B) between points. i = iteration time. 

3.4 Velocity	

The	(recession)	velocities	for	both	total	area	and	distance	between	points	(Figures	9A	and	9B	respectively)	increased	exponentially	

per	iteration	time.		
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Figure 9. Inverted Koch Snowflake fractal (expansion) velocity.  Expansion velocity of the inverted fractal at each 

corresponding iteration time (i): (A) expansion of total area, and (B) distance between points. cm = centimetres. i = iteration 

time. 

Velocity	is	described	by	the	following	equations	respectively	

𝒗 = 𝟏.𝟏𝟗𝟎𝟖𝒆𝟐.𝟑𝟎𝟑𝟐𝒊	 (9)	

𝒗𝑻 = 𝟎.𝟓𝟓𝟒𝟗𝒆𝟏.𝟎𝟗𝟖𝟔𝒊	

 

(10)	

where	𝒗𝑻	is	the	(recession)	velocity	of	the	total	area;	and	𝒗	the	(recession)	velocity	of	distance	between	points.	

3.5 Spiral	Propagation		

Displacement	measurements	–	and	the	derived	Hubble	diagram,	see	Appendix	figure	1	–	from	this	radius	model	were	–	as	expected	

produced	significantly	lower	values	than	the	(calculated)	circumference	non-vector	method;	but	nonetheless	they	share	the	same	

(exponential)	behaviour.	Appendix	Figure	10	below	shows	in	the	distance	between	centre	points	in	red,	and	in	blue	the	

displacement.	

	

Figure 10. Displacement measurements from radii on the iterating Koch Snowflake created with TI-Nspire ™ software. 

Displacement is measured between (discrete) triangle centres and used in the calculation of the fractal/Hubble constant. The 

red line traces the circumference (the distance) of the fractal spiral, and the blue line the displacement of the fractal spiral from 

an arbitrary centre of observation.  cm = centimetres. 

3.6 The	Fractal/	Hubble	Diagram	

As	the	distance	between	centre	points	increases	(at	each	corresponding	iteration	time),	so	too	does	the	recession	velocity	of	the	

points	–	as	shown	in	Figure	10	below.		
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Figure 11. The Fractal Hubble diagram.  As distance between triangle geometric centres increases with iteration, the 

recession velocity of the points increases. cm = centimetres. i = iteration time. 

Recession	velocity	vs.	distance	of	the	fractal	is	described	by	the	equation		

𝒗 = 𝟎.𝟔𝟔𝟕𝟗𝑫  (11)	

where	the	constant	factor	is	measured	in	units	of	cm-1	i  -1  cm -1 .	

The	spiral	radius	(see	Appendix	Figure	1	and	Appendix	Table	1	for	details)	–	where	the	centre	is	the	observation	point	–	resulted	in	

a	fractal	Hubble	equation	of	

𝒗 = 𝟎.𝟔𝟓𝟖𝟏𝑫  	(12)	

3.7 Acceleration	of	Area	and	Distance	Between	Points	

The	accelerations	for	both	total	area	and	(recession)	distance	between	points	(Figure	12A	and	12B	respectively)	increased	

exponentially	per	iteration	time.	
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Figure 12. Inverted Koch Snowflake fractal (expansion) acceleration.  Acceleration of the inverted fractal at each 

corresponding iteration time (i): (A) expansion of total area, and (B) distance between points. cm = centimetres. i = iteration 

time. 

Acceleration	is	described	by	the	following	equations	respectively	

𝒂𝑻 = 𝟏.𝟏𝟗𝟓𝟖𝒆𝟐.𝟐𝟎𝟕𝟑𝒊	 	(13)	

𝒂 = 𝟎.𝟓𝟖𝟒𝟗𝒆𝟎.𝟗𝟕𝟕𝒊	 (14)	

where	aT	is	the	(recession)	acceleration	of	the	total	area,	and	a	the	(recession)	acceleration	of	distance	between	points.	

As	function	of	distance	from	the	observer,	the	distance	of	centre	points	increases	(at	each	corresponding	iteration	time)	from	an	

observer,	so	does	the	recession	acceleration	of	the	points	(expanding	away)	–	as	shown	in	Figure	13	below.		

	

Figure 13. Recessional acceleration vs. distance on the inverted Koch Snowflake fractal.  As distance between triangle 

geometric centres increases with iteration, the recession acceleration of the points increases. cm = centimetres. i = iteration 

time. 

The	recession	acceleration	of	points	at	each	iteration	time	at	differing	distances	on	the	inverted	fractal	is	described	by	the	equation		

𝒂 = 𝟎.𝟒𝟒𝟒𝟕𝑫 	(15)	

where	the	constant	factor	is	measured	in	units	of	cm-1	i	-2	cm-1.			a	=	acceleration;	D =	distance.	

The	spiral	radius	(see	Appendix	Figure	2	and	Appendix	Table	1	for	details)	–	where	the	centre	is	the	observation	point	–	resulted	in	

an	acceleration	equation	of	

The	spiral	radius	–	where	the	centre	is	the	observation	point	–	equation	resulted	(see	Appendix	Figure	3	for	details)	
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𝒂 = 𝟎.𝟒𝟐𝟗𝟓𝑫. 	(16)	

3.8 Point	(and	Triangle/Bit)	Distribution	from	an	Inverted	Observation	Perspective	

Figure	14	below	shows	the	quantity	of	triangles	by	distance	–	between	geometric	centres	–	from	an	arbitrary	observation	point.	

The	quantity	of	triangles	decreased	exponentially	from	7.86E+05	bits	from	the	observation	point	(distance	0),	to	a	quantity	of	1	bit	

at	distance	51800cm-1.	

	

Figure 14. Quantity of triangles at each distance (point) from the observer on the inverted Koch Snowflake fractal.  As 

the distance between triangle geometric centres increases (exponentially) with iteration, and so increasing the distance from 

the observer, the quantity of triangles per iteration decreases exponentially to a quantity of one – at time 0. cm = centimetre. 

Eight	of	the	ten	measurement	points	were	located	inside	the	first	(1.20E+4cm-1)	increment	distance.	The	remaining	2	measurement	

points	are	outside	this	range.				
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4 	DISCUSSIONS	

While	results	from	this	investigation	point	immediately	to	the	field	of	cosmology,	owing	to	the	universality	of	the	fractal,	the	

findings	are	relevant	to	all	things	fractal	–	able	to	be	observed	or	experienced,	in	principle,	throughout.	In	this	discussion	I	shall	

focus	on	the	cosmological	applications	of	fractspansion,	ending	with	biological	(accelerating	tree	growth)	anomalies	and	classical	

world	(marginal)	economics.		

Fractspansion	has	direct	relevance	to	problems	associated	with	the	standard	ΛCMB	model	of	cosmology,	and	with	the	de	Sitter	

model	of	the	universe.	It	demonstrated	a	beginning	followed	by	(arbitrarily)	rapid	expansion	–	all	as	the	result	of	the	iteration	of	a	

simple	rule	of	producing	discrete	bits	and	resulting	in	the	wave	like	propagation,	spiralling	into	infinity	with	increasing	frequency.		

4.1 Singularity		

The	fractal	is	in	isolation,	it	is	expanding	into	‘nothing’.	The	single	inverted	triangle	expansion	(Figure	6)	demonstrates	a	‘Big	Bang’	

singularity	beginning.	Its	area	begins	arbitrary	small	(it	could	be	set	to	any	size	value,	one	akin	to	the	Planck	area),	and	is	followed	

by	exponential	area	expansion	as	(iteration)	time	passes.	It	is	not	an	explosion:	it	is	an	infinite	exponential	emergent	expansion	of	

area	–	consistent	with	descriptions	that	‘space	itself	that	is	expanding’.	As	the	initial	bit	size	is	very	small	(Plank	size):	this	is	

consistent	with	high	frequency	‘hot’	big	bang.	While	the	model	demonstrates	rapid	expansion	(see	inflation	below),	it	does	not	

demonstrate	a	singularity	accumulation	of	all	matter	in	one	place	at	one	time.	The	model	does	though	suggest	the	emergence	of	

matter	through	time.		

4.2 Expansion	in	Excess	of	Light	Speed	and	the	Cosmological	Principle	

The	propagation/production	‘speed’	(quantity	of	bits	per	unit	time)	of	the	fractal	frontier	is	constant:	its	propagation	is	analogous	

to	light	speed	where	c	=	fλ.	For	the	sake	of	the	model	this	propagation	speed	is	arbitrary.	The	frequency	of	bits	produced	per	unit	

time	(and	passing	through	an	arbitrary	constant	distance)	increases	as	the	wavelength	(the	size	of	the	fractal	bit	(or	triangle	

propagating	as	a	spiral	–	see	figure	5)	increases.		Constant	light	speed	–	and	its	propagation	–	is	consistent	with	fractal	bit	

propagation.		

From	this	the	inverted	fractal	demonstrates	the	cosmos’s	ability	to	expand	at	a	speed	greater	than	the	speed	of	light	–	as	proposed	

by	Albert	Einstein	in	his	General	Theory	of	Relativity.		This	expansion	speed	of	point	is	consistent	with	and	addresses	issues	

surrounding	the	particle	horizon	problem	and	the	cosmological	principle	(axiom).	Points	within	the	triangle	are	initially	close	

enough	to	have	causal	contact,	but	this	will	not	last	–	as	they	accelerate	away	from	each	other.	Analogous	to	the	speed	of	light,	the	

fractal	has	a	constant	propagation	speed	(of	triangle	bit	coming	into	existence):	this	propagation	speed	can	be	assumed	to	be,	in	

principle,	able	to	be	surpassed	by	the	speed	of	the	(accelerating)	expanding	frontier	of	the	fractal	itself.		

4.3 The	Cosmic	Microwave	Background	

This	simplest	of	demonstrations	is	consistent	with	the	observed	very	cool	cosmic	microwave	background	(CMB).	To	an	observer	

anywhere	in	the	set,	this	initial	triangle	will	dominate,	but	will	not	be	seen	by	the	same	observer	no	more	than	6	or	7	iterations	

distant	–	the	classical	shape	equilibrium	iteration	count,	or	observable	fractal	distance	(as	introduced	in	section	1.4).	The	initial	

triangle	is	both	isotropic	and	homogeneous	with	expansion.	The	expansion	of	the	initial	triangle	is	due	to	iteration:	with	additional	



18	

iteration	time,	its	size	and	thus	wavelength	(due	to	the	spiralling	propagation)	increases,	while	its	frequency	decreases.	This	is	

consistent	with	electromagnetism	theory	and	will	be	the	topic	of	further	research.		

4.4 Hubble’s	Law	

Figure	11	shows	the	velocity	of	the	expansion	at	each	iteration	time	–	for	both	total	area	and	distance	between	points	–	increases	

with	distance	from	the	observer.	The	significance	of	this	points	to	Edwin	Hubble’s	observations	and	all	the	conjectures	surrounding	

the	expanding	universe.		It	is	the	area	between	the	points	that	is	increasing.	In	accordance	with	Hubble’s	Law,	all	points	(observed	

from	any	observation	position	in	the	iterating	fractal	set)	will	appear	to	recede	(away)	from	an	observer,	and	as	a	consequence,	the	

observer	will	perceive	themselves	to	be	at	the	centre	of	the	set.	

When	velocity	(v)	is	plotted	against	distance	of	points	(D)	(Figure	11,	and	Appendix	Figure	1)	the	inverted	fractal	demonstrates	

Hubble’s	Law	described	by	the	equation	

𝒗 = 𝑭𝒗𝑫 (17)	

where	(Fv)	is	the	slope	of	the	line	of	best	fit	–	the	fractal	(Hubble)	recession	velocity	constant.			

The	scale	invariance	of	the	fractal	Hubble	diagram	concurs	with	the	development	of	the	original	Hubble	curve,	from	its	1929	

original,	to	the	improved	1931	‘Hubble	and	Humason’	[37].	As	with	any	perfect	fractal:	however	deep	one	looks,	the	(Hubble)	shape	

will	remain	constant.	

4.5 Accelerating	Expansion	and	Fractal	Lambda	–Fractspansion:	

Figure	13	(above)	is	consistent	with	the	1998	astronomical	discovery	(by	observation)	of	the	accelerating	expanding	universe	and	

conjectures	surrounding	the	term	‘dark	energy’	and	the	cosmological	constant	(lambda).	It	can	be	inferred	(from	the	fractal)	that	

the	accelerating	expansion	of	the	universe,	with	respect	to	distance	(Figure	8)	is	a	property	of	the	fractal,	a	problem	of	geometry	

where	the	expansion	with	respect	to	distance	can	be	described	by	the	equation		

where		Fa	is	the	fractal	(cosmological)	recession	acceleration	constant	measured	in	units	of	cm-1	i	-2	cm-1.	

The	constant	Fa	(in	equation	18)	may	be	interpreted	as	a	fractal	a	(cosmological	constant)	lambda	with	respect	to	point	

acceleration	and	distance.		

The	acceleration	between	points	with	respect	to	time	(from	equation	14)	is	described	as 	

𝒂 = 𝒂𝟎𝒆𝑭𝝀𝒊 (19)	

where	the	constant	F	λ	may	be	interpreted	as	a	fractal	‘Cosmological	Constant’	Lambda	with	respect	to	point	acceleration	and	

iteration	time.		

With	entry	(or	birth)	of	new	triangles	into	the	fractal	set	the	total	fractal	area	of	the	total	universe	(Figure	14	above),	growths	

exponentially.		The	total	area	expansion	with	respect	to	time	is	described	by	the	function		

𝒂 = 𝑭𝒂𝑫	 																																																					(18)	
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where		FΛ is	a	fractal	constant	with	respect	to	total	area	expansion	and	time.	

Fractspansion	appears	similar	to	(but	not	the	same	as)	the	theory	general	relativity	in	that	it	is	the	geometry	of	space-time	that	is	

curved.	With	general	relativity	the	mass	of	objects	curves	space-time,	and	as	a	result	we	observe	or	experience	gravity:	with	fractal	

‘fractspansion’	by	means	of	(what	is	described	as)	quantum	mechanics	or	electromagnetism	space	curves	and	as	a	result	of	

particle/bit	propagation.	What	we	observe	or	experience	as	a	result	is	the	dark	energy:	the	micro	and	the	macro	are	different	

aspects	of	the	same	object.		

4.5.1 Changing Strength of ‘Dark Energy’ 

From	a	fractspansion	(inverted	fractal)	perspective,	the	strength	of	the	expansion	will	increase	the	further	from	the	observer	the	

points	are.	This	is	consistent	with	current	thinking	of	the	strength	of	the	dark	energy.		In	an	act	of	relativity,	the	observer	will	–	due	

to	lack	of	a	frame	of	reference	other	than	expanding	points	beyond	–	‘notice’	no	expansion,	even	if	it	can	be	argued	they	too	are	

expanding.		

4.5.2 Quintessence 

While	the	fractal	constant	Fλ is	in	this	investigation	constant	and	relevant	for	only	the	Koch	Snowflake	fractal,	in	reality	it	may	well	

be	dynamic	–	able	to	change	with	changes	of	other	trophic	stimuli	such	as	gravity,	as	posited	in	quintessence	theory	[38].		

4.6 Inflation	Theory	and	Inverted	Fractal-Fractspansion	

The	isolated	(unbounded)	fractal	may	offer	a	totally	alternative	explanation	to	the	early	‘inflation	epoch’	[39]	conjecture		-	and	

there	is	no	need	for	an	alternative	‘eternal	inflation’	explanation.		From	a	perspective	within,	if	the	fractal	is	assumed	to	be	

iterating/propagating	bits	at	‘the	speed	of	light’,	how	quickly	will	the	fractal	frontier	grow	from	an	initial	state?		From	equation	20,	

the	initial	area	(the	Planck	area)	was	set	to	the	Planck	length	constant	(1.61619926	×10-35),	and	the	time	taken	calculated	by	

𝒊 =
𝟏

𝟐.𝟐𝟎𝟕𝟑 𝐥𝐧 (𝟐.𝟔𝟏𝟐𝟐𝟑×𝟏𝟎𝟕𝟎 )	 (21)	

It	takes	the	inverted	fractal	72.59	(2s.f.)	iteration	times	to	expand	to	an	area	of	1𝒄𝒎!𝟐.	If	the	propagation	speed	of	triangles	on	the	

(Koch)	fractal	is	scaled	up	to	be	equivalent	to	light	speed	–	allowing	for	the	propagation	of	6	bits	per	iterations	cycle[40]	–	these	

72.59	iterations	may	be	consistent	with	the	(small	Plank)	time	period	and	rapid	expansion	of	space	conjectured	during	the	early	

‘inflation	epoch’	of	the	universe.		Further	discussion	on	this	issue	is	beyond	the	scope	of	this	investigation,	but	suffice	to	say,	

‘inflation	theory’	as	it	stands	may	be	redundant:	no	other	examination	is	needed	if	this	extraordinarily	rapid	growth	is	a	property	of	

the	fractal	on	its	own:	the	key	energy	that	propagates	the	expansion	is	light	itself,	right	down	that	the	smallest	of	scales.	This	insight	

extends	to	the	‘dark	energy’	expansion	of	the	universe.	

4.6.1 High Initial Expansion Ratios – Inflation? 

Notwithstanding	the	discussion	on	inflation	theory	above,	the	first	iterations	of	the	fractal	reveals	an	anomaly	period	(Figure	8A,	

and	8B)	of	high	expansion	ratio	for	both	area	expansion	and	distance	between	points.	Though	the	ratio	values	shown	are	minimal	

𝑨𝑻 = 𝑨𝟎 𝒆𝑭𝜦𝒊 (20)	
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in	comparison	to	Allan	Guth’s	inflation	theory’s	actual	predictions,	the	presence	of	this	anomaly	along	with	the	above	(4.6)	–	in	the	

context	of	the	other	observed	cosmic	similarities	with	the	fractal	–	may	well	explain	the	theory	and	cannot	be	over	looked.			

4.7 Quantum	Mechanics	(like)	Properties	of	the	Fractal		

The	assumption	of	observation	from	within	the	set,	from	a	fixed	position,	congers	fractal’s	uncanny	resemblance	to	properties	and	

problems	shared	with	objects	described	only	by	the	quantum	mechanics	and	the	electromagnetic	spectrum.		

When	isolated,	the	iterating	(snowflake)	fractal	is	produced	by	an	infinitely	of	discrete	triangles	(bits).	The	snowflake	is	a	

superposition	of	all	triangles,	in	one	place,	at	one	time.		The	production	of	new	triangles	propagates	in	the	geometry	of	a	spiral:	

rotating	in	a	arbitrary	direction	to	form	–	when	viewed	from	a	side	elevation	–	a	logarithmic	sinusoidal	wave,	comparable	to	the	

described	electromagnetic	spectrum.	This	spiralling	wave	like	propagation	is	illustrated	below	in	Figure	4	B	and	in	Figure	10,	and	

demonstrated	in	Appendix	Figure	3.	If	the	iteration	time	is	assumed	constant:	the	speed	of	propagation	must	be	constant.	This	is	

consistent	with	realities	constant	light	speed.	

Location	or	position	within	this	infinite	set	is	only	known	when	observed	or	measured;	otherwise	all	positions	are	possible	–	at	the	

same	time.		These	‘quantum’	like	features	of	the	fractal	are	an	essential	background	to	this	investigation	–	one	that	will	not	be	taken	

further	in	this	publication,	but	cannot	be	over	looked.		

Put	together,	this	single	fractal	attractor	can	explain	–	small-scale	–	quantum	behaviour,	while	from	another	aspect,	accelerated	

expansion:	while	it	doesn’t	demonstrate	gravity,	it	must	be	a	candidate	as	an	explanation	to	the	great	unifying	question,	deserving	

of	further	investigation.		

4.8 Vacuum	Catastrophe	

The	vacuum	catastrophe	–	the	10120	calculation	discrepancy	between	the	quantum	vacuum	energy	and	its	prediction	of	the	

(cosmological	constant)	expansion	of	space	–	maybe	explained	and	resolved	from	a	fractal	perspective.	If	we	assume	(it	can	be	

demonstrated	to	do	so	and	will	be	the	topic	of	a	coming	paper)	the	classical	view	of	the	fractal	(the	Snowflake	production)	is	

behaving	as	a	quantum	system:	the	‘standard’	iteration	0	triangle	area	size	is	akin	to	the	assumed	(Plank)	‘particle’	or	‘bit’.		If	this	

area	used	to	calculate	the	total	area	of	the	(expanded)	set	at	any	arbitrary	iteration-time,	the	result	is	an	extremely	large	value:	

quite	within	the	order	of	the	‘vacuum	catastrophe’	value	–	if	given	modest	iteration-time.	The	rationale	for	this	claim	–	of	using	the	

iteration	0	triangle	–	stems	from	the	assumed	arbitrary	observation	position	in	–	what	is	in	principle	–	an	infinite	set,	presented	in	

the	introduction.	This	assumed	measurement	is	akin	to	the	quantum	measurement.		

To	resolve	this	‘vacuum’	discrepancy:	if	the	total	area	of	the	inverted	fractal	set	–	at	any	arbitrary	iteration-time	–	is	divided	by	the	

respective	(expanded)	bit	area	‘sizes’	at	respective	iteration	times,	the	of	the	expanded	triangle’s	area	value	(after	their	expansion	

at	each,	and	every,	iteration	time)	the	will	equate	to	a	lower	–	and	more	realistic	–	value.	The	total	area	will	equate	to	the	total	

number	of	triangles	propagated	in	the	set.	In	a	fractal,	in	principle	all	triangles	are	as	identical	as	the	iteration	0	standard	triangle,	

and	only	differ	in	scale	due	to	the	fractspansion.	In	summary,	if	the	universe	is	a	fractal,	then	its	area	and	expansion	are	the	same	as	

the	(quantum	like	–	micro)	production	of	it:	they	are	different	ends	of	the	same	object.		
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4.9 Galaxy	Distribution	–	Large	and	Small	Scales	

At	the	point	of	observation	(the	origin	on	the	Fractal-Hubble	diagram)	there	is	a	quantity	of	786,432	triangles,	all	of	which	are	the	

same	size	as	the	observers	triangle	viewing	position.	The	clustering	of	the	measurement	points	near	the	origin	of	the	diagram	is	

due	to	the	location	the	observer	within	the	(inverted)	fractal,	and	the	relative	size	of	these	triangles	near	the	observer.	From	this,	

the	observer	will,	in	principle,	be	surrounded	by	these	sized	triangles.	The	observer	will	not	see	all	these	triangles	directly	–	how	

many	they	will	see	is	beyond	of	the	scope	of	this	investigation	–	but	it	will	be	many,	and	it	may	mean	some	of	the	nearby	triangles	

on	other	branches	could	be	approaching	the	observer:	this	concurs	with	what	is	observed	in	the	cosmos,	with	nearby	galaxies	to	

the	Milky	way	not	all	expanding	away.		As	we	view	further	out,	the	quantity	of	triangles	decrease	–	while	the	area	of	the	respective	

triangles	increase.	This	property	of	clustering	near	the	origin	is	scale	invariant:	no	matter	the	distance,	this	pattern	of	clustering	

near	the	origin	will	remain.	From	this,	the	universe	will	not	be	isotropic	or	homogenous.	If	our	current	position	were	observed	

from	the	(current)	far	reaches	of	the	universe,	a	clustering	(‘ball’)	of	galaxies	would	be	observed,	after	a	relatively	smooth	section	of	

space.			

4.9.1 Clustering and the Fractal-Hubble Law 

Figure	15	(below)	combines	–	on	the	original	(Koch	snowflake)	fractal-Hubble	diagram	–	the	quantity	of	triangles	at	each	distance	

point	with	the	(recessional)	velocity	at	the	same	distance	point.	The	diagram	reveals	the	relationship	between	the	clustering	of	

measurement	points	close	to	the	(low	recessional	velocity)	origin,	and	the	smooth	distribution	(high	recessional	velocity)	at	large	

distances.	

	  	

Figure 15. The inverted Fractal Hubble diagram combined with the quantity of triangles (red boxes.  As distance 

increases with respect to iteration-time: the recession velocity of distance between geometric points increases; while the 

quantity of triangles at each distance decreases. cm = centimetre, i = iteration-time. 
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4.9.2 Tree metaphor 

If	the	observation	from	deep	within	a	snowflake	fractal	is	substituted	with	observation	from	high	within	a	common	branching	tree	

(also	a	natural	fractal):	the	clustering	of	points	on	the	Fractal-Hubble	diagram	would	equally	correspond	to	the	clustering	of	self-

similar	(sized)	branches	–	in	the	tree	–	surrounding	the	observer.		If	the	observer	were	to	look	down,	inwards	from	the	outer	

branches	–	towards	the	trunk	of	the	tree	–	the	branch	(nodes)	quantity	would	decrease,	the	volume	of	the	single	branches	would	

increase,	and	the	branch	‘clustering’	would	smooth	out.		

4.9.3 Distribution and the Universe  

The	distribution	of	measurement-point	(triangle	centre	points)	clustering	along	the	Fractal-Hubble	diagram	matches	the	

transitions	from	rough	to	smooth	as	revealed	in	(recent)	galaxy	surveys	(figure	1	and	2	above).	Observation	and	model	diagrams	of	

correlated	in	Appendix	figure	3.		The	distribution	of	galaxies	in	the	universe	(figure	1)	is	of	a	nature	expected	if	one	was	viewing	

from	within	a	fractal	universe:	looking	back	through	the	universe	–	in	terms	of	distance	and	time	–	to	its	–	now	expanded	–	origin.	

The	smooth	outer	reaches	of	the	universe	–	out	near	the	CMB	origin	of	the	universe	–	is	the	‘trunk’	of	the	universe,	and	the	rough	

fractal	clusters	are	‘the	branches’	of	the	universe.		Using	a	tree	(fractal)	as	a	metaphor	of	the	universe	is	not	to	say	the	universe	is	a	

fractal	tree	structure:	it	is	to	say,	just	as	a	tree	is	a	fractal	structure,	the	universe	is	a	fractal	structure.		It	should	be	noted	trees	

growth	have	recently	been	found	to	also	increase	at	accelerating	rates	[41],	[42].			

4.9.4 A Galaxy Distribution Prediction.  

In	2016	a	paper	was	published	suggesting	the	large	scale	distribution	of	galaxies	is	as	clustered	on	near	scales,	and	consequently	

the	number	of	galaxies	in	the	observable	universe	lifted	from	100	to	200	billion	to	2	trillion[43].	This	new	figure	is	based	on	models	

and	is	at	best	an	extrapolation.	If	this	extrapolation	is	so,	and	the	James	Webb	space	telescope	will	reveal	it:	if	it	does,	it	will	stand	as	

a	contradiction	to	the	(inverted)	fractal	model	distribution.	I	predict	they	will	not	find	these	galaxies	and	the	distribution	observed	

today	will	hold.			

4.9.5 Super Clusters 

There	are	many	questions	and	issues	arising	from	this	finding	–	all	of	which,	at	this	point,	are	beyond	the	scope	of	this	investigation,	

but	not	beyond	the	scope	of	reason.		

Proponents	of	fractal	cosmology	are	expecting	to	see	even	larger	galactic	clusters	further	out	into	the	large-scale	homogeneous	

region.		The	fractspansion	model	would	concur	with	this,	only	that	the	distance	(in	principle)	to	the	next	cluster	(next	larger	branch	

or	node)	may	be	beyond	the	age	of	the	universe	–	and	or	may	not	exist	at	all.	If	they	do,	smoothness	will	extend	out	beyond	this	

point.		

4.9.6 Emergent Structure  

A	fractal	universe	would	imply	an	emergent	structure	–	the	whole	made	of	many	parts	–	just	as	the	tree	is	made	of	many	branches.	

It	may	force	us	to	question	the	initial	conditions	of	the	big	bang	beginning.	Namely,	whether	all	mass	(in	the	universe)	was	together	

in	one	place	and	at	one	time.		It	could	now	be	argued	–	from	the	principles	of	fractal	emergence	–	the	universe	developed/evolved	

mass	from	the	bottom	up,	with	the	passing	of	time.		

4.9.7 Growth Explanation 
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If	the	branches	of	the	tree	are	akin	to	the	small-scale	galaxy	clusters	of	the	universe,	we	may	find	it	profitable	to	search	for	growth	

explanations	to	the	universe	in	the	branches	too.	Given	it	is	at	the	branches	where	trees	grow	form	and	the	trunk	and	first	branches	

are	only	infrastructure	to	the	total	emergent	structure.		This	would	suggest	growth	begins	at	the	smallest	of	scales:	at	the	sub-

atomic	level,	the	Planck	scale.		

The	quantum	nature	of	the	fractal	has	been	addressed	in	my	original	publication	–	and	must	be	further	investigated	[40].			

4.9.8 Dark Matter 

This	fractal	model	offers	insight	to	the	dark	matter	structure	of	the	universe	also.	The	dark	matter	appears	to	be	concentrated	

where	galaxies	are	concentrated	conforming	to	the	described	structure	in	the	introduction.		The	current	mapped	structure	of	the	

dark	matter,	and	the	structure	of	the	observed	universe	–	matching	this	‘inverted’	fractal	model	–	must	through	the	fractal	have	a	

direct	connection.	Merger	Halo	Trees	are	where	the	dark	matter	is	strongest	and	these	structures	are	by	their	nature	fractal	–	

‘trees’	–	themselves.		These	halo	have	evolved	from	the	early	‘smooth’	universe	to	the	near	clustered	structure	observed	today	–	

this	is	consistent	the	presented	model.		

On	December	7th	2016,	Sky	and	Telescope	issued	an	article	‘Not-So-Clumpy	Dark	Matter	Poses	Cosmological	Challenge’[44]:	where	

they	outlined	the	“the	distribution	of	dark	matter	in	the	modern	universe	is	smoother	than	predicted	from	observations	of	a	far	

younger	universe”.		

“..the	distribution	KIDS	found	is	smoother	than	predicted.	The	apparent	discrepancy	poses	a	challenge	for	astronomers	

to	explain.”	

This	‘smoother	than	predicted’	will	be	of	great	importance	to	verifying	the	model:	the	LSST	survey	results	will	be	of	great	interest.		

4.9.9 General Relativity 

What	is	clear	from	the	model	(and	observation)	space	is	not	homogenous	and	is	not	isotropic:	this	is	in	total	conflict	with	general	

relativity	assumptions	(see	below	4.10).	

What	a	fractal	universe	means	for	the	future	of	General	Relativity	theory	is	unclear	and	beyond	the	scope	of	the	author	–	though	it	

is	conceivable	it	may	have	to	be	adapted	to	take	account	the	geometry	of	the	fractal.		Work	has	already	begun	in	this	area:	from	

noted	theorist	Laurent	Nottale	[45],[46]	and	others	[47].		

4.9.10 Fractal Dimension 

Recent	studies	have	shown	fractal	dimension	decreases	with	increased	z	values	[48].	This	may	also	complement	my	study.		

4.10 Refuting	the	Cosmological	Principle		

The	inverted	fractal/fractspansion	model	is	totally	inconsistent	with	the	cosmological	principle	–	the	topology	it	presents	is	neither	

homogenous	nor	isotropic	as	currently	assumed	–	but	it	is	consistent	with	astronomical	observation	–	as	discussed	above.		The	

clustering	of	points	on	the	fractal	model	near	the	observer,	and	‘smoothness’	farther	away	(as	demonstrated	in	figure	15	above)	is	

consistent	with	non	homogenous	observations	and	investigations	by	SSDS	and	WiggleZ	and	others;	while	in	terms	of	isotropy,	the	

Hubble	expansion	will	endure	everywhere	within	the	set;	however,	the	views	of	the	distributions	will	be	viewed	different	
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everywhere	and	not	the	same	as	so	claimed	by	the	‘standard	model’.		A	view	within	a	(fractal)	tree	is	different	from	one	at	its	base	

or	trunk	as	compared	to	within	its	branches:	as	stated,	Earths	perspective	is	viewed	from	within	the	newer	‘branches’	–	viewing	out	

to	the	older	trunk.			

4.11 Multiverse,		

With	some	trepidation,	the	inverted	fractal	are	consistent	with	conjectures	surrounding	a	multiverse	and	as	they	clearly	

demonstrate	multiple	beginnings.	An	isolated	fractal,	by	definition,	has	no	arbitrary	single	beginning,	and	is	an	infinity	of	

beginnings.	What	is	important,	while	the	inverted	fractal	may	predict	a	multiverse,	it	does	not	need	it	to	explain	‘inflation’	and	the	

like.		

4.12 Scale-invariance	–	the	Atom	

Fractspansion	is	scale-invariant;	this	had	direct	relevance	to	the	apparent	emptiness	of	‘Rutherford’s	atom’,	and	may	add	strength	

to	unparticle	theory	[49].	The	following	will	be	the	topic	of	a	separate	investigation,	suffice	to	say	–	and	notwithstanding	the	

already	mentioned	quantum	like	behaviour	of	fractal	propagation:	the	frequency	range	of	the	bits	and	the	clustering	of	them	at	the	

centre	or	observation	point	within	the	modeled	fractal	attractor	is	somewhat	similar	to	a	model	of	a	single	atom.	There	is	a	nucleus	

surrounded	a	massive	expanse	of	space.	This	concurs	with	the	work	of	by	Renate	Loll	(and	others)	on	quantum	space-time	[50].		

	 “Evidently,	a	small	object	experiences	space-time	in	a	profoundly	different	way	than	a	large	object	does.	To	that	object,	

the	universe	has	something	akin	to	a	fractal	structure.	A	fractal	is	a	bizarre	kind	of	space	where	the	concept	of	size	simply	does	not	

exist.	It	is	self-similar	--	which	means	that	it	looks	the	same	on	all	scales.	This	implies	there	are	no	rulers	and	no	other	objects	of	a	

characteristic	size	that	can	serve	as	a	yardstick.”	

In	her	Perimeter	Institute	lecture	[51]	(at	01:06)		Loll	refers	to	the	small	scale	appearing	‘like	a	fractal’	–	after	talking	about	the	

macro	de	Sitter	scale.		

4.13 Limitations	to	the	Model	–	releasing	the	assumptions	

	The	universe	may	by	this	analysis	–	and	by	the	observations	made	–	turn	out	to	behave	as	a	fractal,	but	this	is	not	to	say	the	

universe	behaves	as	a	regular	regularity	fractal	as	the	Koch	snowflake.	Reality	seems	to	point	to	regular	irregularity	(roughness)	as	

best	demonstrated	by	the	Mandelbrot	diagram	(Figure	3A).	This	irregular	reality	is	beyond	the	scope	of	this	investigation.	This	

investigation	also	does	not	in	any	way	suggest	the	universe	has	the	shape	of	a	tree,	or	a	snowflake:	fractspansion	could	have	equally	

been	demonstrated	using	the	Sierpinski	triangle.	The	universe	shares	a	feature	special	to	fractals:	fractals	come	in	many	forms.		

4.13.1 Deceleration 

The	fractspanding	(regular	inverted	Koch	snowflake)	fractal	does	not	demonstrate,	or	offer	any	insight	to	deceleration	–	whether	

observed	post	inflation	epoch	early	universe,	or	conjectured	pre	inflation	epoch.		

4.14 Examples	and	Application	of	Fractspansion		

If	an	object	in	our	reality	maybe	described	as	a	fractal	structure,	the	same	object	will	exhibit	fractspansion	and	stand	as	an	example	

of	the	large-scale	universe:		

4.14.1 Accelerating Tree Growth 
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As	special	as	expansion	at	an	accelerating	rate	may	be,	it	is	not	unique	to	only	the	universe.	Trees	(plants)	have	recently	been	found	

to	also	grow	by	this	behaviour	with	respect	to	time.	In	a	recent	study	[41]	measuring	up	to	80	years	of	tree	growth,	on	more	than	

600,000	trees,	over	6	continents	found	that	97	per	cent	of	the	trees	grew	at	an	accelerating	with	age.	This	acceleration	growth	with	

time	is	equally	a	mystery	to	biologists.		

If	a	tree’s	growth	is	described	by	classical	fractal	geometry	[33],	so	does	accelerating	growth	of	the	tree	reveal	a	property	general	to	

all	things	fractal?	Yes.		

If	the	productive	leafy	stem	of	the	emergent	tree	becomes	the	focus	of	the	tree	growth,	and	held	constant	in	size	–	just	as	with	the	

standard	triangle	size	is	to	the	inverted	Koch	snowflake	–	then	the	older	branches	and	the	load	bearing	trunk	of	the	tree	will	grow	

exponentially	with	iteration	time.	This	is	to	say:	the	tree	grows	in	terms	of	iteration	time,	and	not	solar	time.	As	trees	grow	they	lay	

down	tree	rings,	these	rings	do	not	show	exponential	growth.	Trees	can	generally	–	by	counting	the	tree	rings	–	age	several	

hundreds	of	years	old,	but	in	terms	of	fractal	age	may	only	be	some	4	to	7	iteration	times	old.	One	can	imagine	that	more	iteration	

times	would	result	in	an	exponentially	growing,	exponentially	large	base	trunk.		

4.15 Econo-physics	

First	inklings	of	this	fractspansion	theory	originated	from	the	study	of	the	fractal	and	its	resemblance	to	economic	theory.	

4.15.1 Classical (Marginal) Economics 

I	had	determined	that	the	market,	with	its	equilibrium	between	consumption	(demand)	and	production	(supply),	is	a	fractal	

emergent,	and	that	market	supply	and	demand	was	able	to	be	described	and	quantified	the	Koch	Snowflake	fractal	development.	

When	my	attention	was	turned	to	the	past	–	in	terms	of	iteration	time	–	I	reasoned	that	fundamental	standard	events	or	items	of	

the	past	(just	like	the	standard	triangle	described	in	this	publication)	appeared	larger	to	the	observer	in	the	present	–	and	were	

thus	valued	more.	Information	value	seems	to	grow	with	time.	Examples	maybe	events	such	as	the	findings	of	the	three	great	early	

scientists	Copernicus,	Kepler	and	Galileo:	they	are	greater	now	than	they	possibly	were	in	their	time.	Their	findings	were	seminal,	

fundamental,	and	are	metaphorically	speaking	the	‘Big	Bang’	of	science.	As	special	as	these	‘scientists’	are	to	us	today,	they	were	

scientists	of	their	time	–	just	as	scientists	today	are	of	our	time.	The	same	could	be	said	of	1960’s	pop	band	The	Beatles	–	in	the	

context	of	the	evolution	of	pop	rock.	Time	increases	value.	

To	demonstrate	this	once	more,	in	a	recent	blind	sound	comparison	testing	between	original	Stradivarius	violins	and	new	replicas	

[52],	testers	could	not	discern	a	difference	in	sound	quality;	yet	the	value	difference	between	the	original	and	replica	violins	is	

extremely	large.	Fractspansion	increases	–	distorts	–	the	prices	of	the	same	goods.	

4.15.2 Universal Lorenz Curve 

The	Lorenz	curve	shows	the	distribution	of	individuals’	income	(or	wealth)	for	a	given	population.		The	Lorenz	curve	always	falls	

below	the	line	‘perfect	equality’	(a	line	of	equal	distribution	throughout	the	population)	and	the	Gini	coefficient	(termed	‘Ginis’	for	

short)	tells	the	ratio	between	the	Lorenz	curve	and	the	line	of	equality	(area	A),	and	the	total	(triangle)	area	under	the	line	of	

equality	(areas	A	and	B).		
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The	fractal	derived	Lorenz	curve	(figure	16	below)	reveals	an	age	order	structure	of	the	wealth	distribution	with	growth:	the	oldest	

have	the	largest	proportion.	This	agrees	with	real	tree	development	and	with	the	age	of	the	elements	in	the	universe	on	the	

periodic	table:	the	trunk	is	the	oldest	‘bit’;	and	helium	and	hydrogen	were	the	first	elements	formed	straight	after	the	big	bang.	

Subatomic	particles	came	before	helium	and	hydrogen;	and	the	larger	–	and	fewer	–	elements	like	gold,	came	after.		Whether	this	

age	order	is	prevalent	in	the	economy	maybe	unclear	to	see	at	first,	but	the	rule	should	hold	on	examination.	

	

Figure 16. Lorenz Curve of the (118) Elements from the Periodic Table. Using Lorenz curve method the distribution of 

elements curve was produced. The Gini coefficient was calculated: it is equal to 0.9864 (4sf) [53] 

5 CONCLUSIONS	

This	investigation	it	was	found	–	when	observed	from	a	fixed	(but	arbitrary)	location	within	the	inverted	iterating	Koch	snowflake	

fractal	–	areas	of	triangles	expand	exponentially,	while	points	between	triangles	recede	away	from	the	observer	with	both	with	

exponential	velocity	and	acceleration.		This	expansion,	revealed	by	the	(unrealistic)	regular,	Koch	snowflake	–	termed	fractspansion	

–	is	a	property	unique	to	fractals,	and	is	a	property	shared	in	all	(irregular)	fractal	objects.	Fractspansion	demonstrates	and	

addresses	problems	directly	associated	with	the	ΛCMB	model	–	the	expansion	of	space,	and	reveals	directly	both	a	Hubble’s	law	

and	a	cosmological	constant.	Fractspansion	offers	a	geometric	mechanism	that	explains	the	presence	of	the	CMB,	and	deals	and	

concurs	with	conjectures	surrounding	possible	early	inflation.	Fractspansion	explains	the	dark	energy.	The	iterating	fractal’s	

quantum	and	electromagnetism	like	properties	add	support	to	this	finding,	and	(also)	opens	discussion	to	role	the	geometry	of	the	
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fractal	has	in	explaining	the	quantum	world,	time,	and	reality	itself.	Fractal	geometry	by	fractspansion	explains	why	trees	grow	at	

an	accelerating	rate	with	age	and	may	explain	why	we	perceive	value	to	increase	with	time.		

The	inverted	fractal	model	explains	the	universe’s	galaxy	distribution	transition	from	rough	(fractal)	on	small	cosmic	scales,	to	

smooth	(homogeneous)	on	large-scales.	This	demonstration	can	now	be	combined	with	the	models	original	demonstrations:	a	

single	beginning;	a	CMB;	Hubble’s	law;	and	is	expansion	at	an	accelerating	rate	–	lambda.	The	results	show	strong	agreement	with	

the	WMAP	+	ΛCDM	models	of	the	universe.	These	properties	are	all	properties	of	the	fractal	–	an	inverted	fractal	view	from	within	–	

and	are	inextricably	linked	with	each	other.		From	observations	of	the	universe	–	at	all	scales	–	it	can	be	concluded	the	universe	is	–	

by	its	nature	–	fractal.	It	looks	like	a	fractal,	and	acts	like	a	fractal	–	it	is	a	fractal.		

Fractspansion	offers	a	solution	to	the	problems	facing	the	standard	model	of	cosmology,	in	the	same	way	the	theory	of	plate	

tectonics	(for	example)	did	for	earth	science.	It	is	simple	and	complete.	It	opens	the	door	to	a	unified	theory.	
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6 APPENDIX	

	

Table 1. Displacement taken from radius measurements and calculations from the iterating Koch Snowflake fractal 

spiral (Appendix Figure 1).  

i	 Displacement::	

cm	

Total	
Displacement:	

cm	

Expansion	
Ratio	

Velocity:	

𝑐𝑚 𝑖!!	

Acceleration:	

𝑐𝑚 𝑖!!	

Acceleration	
Ratio	

0	

	 	

-	

	 	 	1	 1.68	 1.68	 -	 1.68	 1.68	

	2	 4.66	 6.34	 3.77	 4.66	 2.98	 1.773809524	

3	 12.16	 18.5	 2.92	 12.16	 7.50	 2.516778523	

4	 35.4	 53.9	 2.91	 35.40	 23.24	 3.098666667	

cm  = centimetres. i = iteration time. 

 

Figure 1. The Hubble Fractal Diagram (recessional velocity vs. distance) from radius measurements (Appendix Figure 

1).  From an arbitrary observation point on the inverted (Koch Snowflake) fractal: as the distance between triangle geometric 

centres points increases, the recession velocity of the points receding away increases.  cm = centimetres. i = iteration time. 
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Figure 2. Recessional acceleration with distance on the inverted Koch Snowflake fractal. From a fixed central 

observation point. Using radius measurements (Appendix Figure 1):  as the distance between triangle geometric centres 

points increases, the recession acceleration of the points receding away increases.  cm  = centimetres. t = iteration time. 
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Figure 3. Composite of WiggleZ Galaxy Distribution, Hubble and Acceleration Diagrams. Recessional acceleration with 

distance on the inverted Koch Snowflake fractal. Nearby clustering of galaxies correlates with clustering fractal centre points, 

Hubble (velocity) expansion, and acceleration.   
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Figure 4 Fractal Spiral with Emergence.  A shows the transverse wave propagation of a ‘red dot’ on a fractal Koch 

Snowflake to iteration (i) 6, and to superposition infinity (∞). B shows the rotational aspect of the triangle bits and the 

respective bit size; rotating clockwise through 360o. C shows the Sin wave produced at each iteration-time – assuming bit size 

remains constant: the real is a logarithmic sinusoidal.   

	

	

Acknowledgments	

Firstly	I	would	like	to	thank	my	wife	and	children	for	their	patience	and	support.		Thank	you	to	my	student’s	and	colleague’s	in	the	

International	Baccalaureate	programmes	in	Stockholm	Sweden	–	Åva,	Sodertalje,	and	Young	Business	Creatives	–	for	their	help	and	

support.	Without	the	guiding	words,	support	and	supervision	of	Homayoun	Tabeshnia,	this	work	may	never	of	come	to	being.	For	

their	direct	belief	and	moral	support	I	would	also	like	to	thank	Maria	Waern	and	Dr.	Ingegerd	Rosborg.	Mathematicians	Rolf	Oberg,	

and	Tosun	Ertan	helped	and	guided	me	no	end.	Thank	you	Dr.	Carol	Adamson	and	Lesley	Cooper	for	your	editing	help.		

	 	



32	

References	

1.		 Macdonald	B.	Fractal	Geometry	a	Possible	Explanation	to	the	Accelerating	Expansion	of	the	Universe	and	Other	Standard	
ΛCDM	Model	Anomalies.	2014;	Available:	
https://www.academia.edu/8415112/Fractal_Geometry_a_Possible_Explanation_to_the_Accelerating_Expansion_of_the_Uni
verse_and_Other_Standard_%CE%9BCDM_Model_Anomalies	

2.		 Macdonald	B.	Observed	Galaxy	Distribution	Transition	with	Increasing	Redshift	a	Property	of	the	Fractal.	Available:	
https://www.academia.edu/9412115/Observed_Galaxy_Distribution_Transition_with_Increasing_Redshift_a_Property_of_t
he_Fractal	

3.		 Perlmutter	S,	Aldering	G,	Goldhaber	G,	Knop	RA,	Nugent	P,	Castro	PG,	et	al.	Measurements	of	Omega	and	Lambda	from	42	
High-Redshift	Supernovae.	Astrophys	J.	1999;517:	565–586.	doi:10.1086/307221	

4.		 Riess	AG,	Filippenko	AV,	Challis	P,	Clocchiattia	A,	Diercks	A,	Garnavich	PM,	et	al.	Observational	Evidence	from	Supernovae	
for	an	Accelerating	Universe	and	a	Cosmological	Constant.	Astron	J.	1998;116:	1009–1038.	doi:10.1086/300499	

5.		 Penzias	AA,	Wilson	RW.	A	Measurement	of	Excess	Antenna	Temperature	at	4080	Mc/s.	Astrophys	J.	1965;142:	419–421.	
doi:10.1086/148307	

6.		 The	Mystery	of	Dark	Energy,	2016-2017,	Horizon	-	BBC	Two.	In:	BBC	[Internet].	[cited	19	Nov	2016].	Available:	
http://www.bbc.co.uk/programmes/b0761llv	

7.		 Mandelbrot	BB.	FRACTAL	ASPECTS	OF	THE	ITERATION	OF	z	→Λz(1-	z)	FOR	COMPLEX	Λ	AND	z.	Ann	N	Y	Acad	Sci.	
1980;357:	249–259.	doi:10.1111/j.1749-6632.1980.tb29690.x	

8.		 Guth	AH.	Eternal	inflation	and	its	implications.	J	Phys	Math	Theor.	2007;40:	6811–6826.	doi:10.1088/1751-
8113/40/25/S25	

9.		 Joyce	M,	Labini	FS,	Gabrielli	A,	Montuori	M,	Pietronero	L.	Basic	properties	of	galaxy	clustering	in	the	light	of	recent	results	
from	the	Sloan	Digital	Sky	Survey.	Astron	Astrophys.	2005;443:	11–16.	doi:10.1051/0004-6361:20053658	

10.		 Linde	AD.	Eternally	Existing	Self-Reproducing	Inflationary	Universe.	Phys	Scr.	1987;1987:	169.	doi:10.1088/0031-
8949/1987/T15/024	

11.		 Tegmark	M,	Blanton	MR,	Strauss	MA,	Hoyle	F,	Schlegel	D,	Scoccimarro	R,	et	al.	The	Three-Dimensional	Power	Spectrum	of	
Galaxies	from	the	Sloan	Digital	Sky	Survey.	Astrophys	J.	2004;606:	702–740.	doi:10.1086/382125	

12.		 A	Grand	Unified	Fractal	Theory :	Fractal	Universe	[Internet].	[cited	28	Sep	2014].	Available:	
http://www.fractaluniverse.org/v2/?page_id=51	

13.		 Schmitz	HA.	On	the	Role	of	the	Fractal	Cosmos	in	the		Birth	and	Origin	of	Universes.	J	Theor.	2002;	Available:	
http://www.fractalcosmos.com/Schmitz.pdf	

14.		 Scrimgeour	M,	Davis	T,	Blake	C,	James	JB,	Poole	G,	Staveley-Smith	L,	et	al.	The	WiggleZ	Dark	Energy	Survey:	the	transition	to	
large-scale	cosmic	homogeneity.	Mon	Not	R	Astron	Soc.	2012;425:	116–134.	doi:10.1111/j.1365-2966.2012.21402.x	

15.		 Dickau	JJ.	Fractal	cosmology.	Chaos	Solitons	Fractals.	2009;41:	2103–2105.	doi:10.1016/j.chaos.2008.07.056	

16.		 Chown	M.	Fractured	Universe.	New	Scientist.	21	Aug	19992200.	Available:	
http://www.newscientist.com/article/mg16322004.500-fractured-universe.html	

17.		 Gefter	A.	Don’t	mention	the	F	word.	New	Sci.	2007;193:	30–33.	doi:10.1016/S0262-4079(07)60618-6	

18.		 Pietronero	L.	The	fractal	structure	of	the	universe:	Correlations	of	galaxies	and	clusters	and	the	average	mass	density.	Phys	
Stat	Mech	Its	Appl.	1987;144:	257–284.	doi:10.1016/0378-4371(87)90191-9	

19.		 LAURENT	N.	THE	THEORY	OF	SCALE	RELATIVITY.	1991;	Available:	http://luth.obspm.fr/~luthier/nottale/arIJMP2.pdf	

20.		 Bernard	J.	T.	Jones	VJM.	Scaling	Laws	in	the	Distribution	of	Galaxies.	2004;	doi:10.1103/RevModPhys.76.1211	

21.		 Joyce	M,	Labini	FS,	Gabrielli	A,	Montuori	M,	Pietronero	L.	Basic	properties	of	galaxy	clustering	in	the	light	of	recent	results	
from	the	Sloan	Digital	Sky	Survey.	Astron	Astrophys.	2005;443:	11–16.	doi:10.1051/0004-6361:20053658	

22.		 Nottale	L,	Vigier	JP.	Continuous	increase	of	Hubble	modulus	behind	clusters	of	galaxies.	Nature.	1977;268:	608–610.	
doi:10.1038/268608a0	



33	

23.		 Labini	FS,	Pietronero	L.	The	complex	universe:	recent	observations	and	theoretical	challenges.	ArXiv10125624	Astro-Ph	
Physicscond-Mat.	2010;	Available:	http://arxiv.org/abs/1012.5624	

24.		 Gefter	A.	Galaxy	Map	Hints	at	Fractal	Universe.	New	Sci.	2008;	Available:	http://www.newscientist.com/article/dn14200-
galaxy-map-hints-at-fractal-universe.html?full=true#.VFkQGfTF_WR	

25.		 Cooper	K.	Brave	New	Universe.	Astronomy	Now.	Jul	2005:	28–31.		

26.		 Slezak	M.	Giant	fractals	are	out	–	the	universe	is	a	big	smoothie	-	New	Scientist.	[Internet].	24	Aug	2012.	Available:	
http://www.newscientist.com/article/dn22214-giant-fractals-are-out--the-universe-is-a-big-
smoothie.html#.VFxd2PTF_WQ	

27.		 Peacock	JA,	Cole	S,	Norberg	P,	Baugh	CM,	Bland-Hawthorn	J,	Bridges	T,	et	al.	A	measurement	of	the	cosmological	mass	
density	from	clustering	in	the	2dF	Galaxy	Redshift	Survey.	Nature.	2001;410:	169–173.	doi:10.1038/35065528	

28.		 Yadav	J,	Bharadwaj	S,	Pandey	B,	Seshadri	TR.	Testing	homogeneity	on	large	scales	in	the	Sloan	Digital	Sky	Survey	Data	
Release	One.	Mon	Not	R	Astron	Soc.	2005;364:	601–606.	doi:10.1111/j.1365-2966.2005.09578.x	

29.		 Hogg	DW,	Eisenstein	DJ,	Blanton	MR,	Bahcall	NA,	Brinkmann	J,	Gunn	JE,	et	al.	Cosmic	homogeneity	demonstrated	with	
luminous	red	galaxies.	Astrophys	J.	2005;624:	54–58.	doi:10.1086/429084	

30.		 Stewart	I.	Does	God	Play	Dice?:	The	New	Mathematics	of	Chaos.	2Rev	Ed	edition.	London,	England;	New	York,	N.Y.:	Penguin;	
1997.		

31.		 Prokofiev.	Boundary	of	the	Mandelbrot	set.	[Internet].	2007.	Available:	
http://commons.wikimedia.org/wiki/File:Boundary_mandelbrot_set.png	

32.		 Koch	snowflake	[Internet].	Wikipedia,	the	free	encyclopedia.	2014.	Available:	
http://en.wikipedia.org/w/index.php?title=Koch_snowflake&oldid=624336883	

33.		 Uncovering	Da	Vinci’s	Rule	of	the	Trees.	In:	Inside	Science	[Internet].	26	Jun	2012	[cited	22	Nov	2016].	Available:	
https://www.insidescience.org/news/uncovering-da-vincis-rule-trees	

34.		 Hubble	E.	A	relation	between	distance	and	radial	velocity	among	extra-galactic	nebulae.	Proc	Natl	Acad	Sci.	1929;15:	168–
173.	doi:10.1073/pnas.15.3.168	

35.		 Macdonald	B.	Fractspansion	Model	[Internet].	2014.	Available:	http://figshare.com/articles/Fractspansion_Model/1168744	

36.		 Macdonald	B.	Fractspansion	Model	[Internet].	2014.	Available:	http://figshare.com/articles/Fractspansion_Model/1168744	

37.		 Hubble	E,	Humason	ML.	The	Velocity-Distance	Relation	among	Extra-Galactic	Nebulae.	Astrophys	J.	1931;74:	43.		

doi:10.1086/143323	

38.		 J.	M.	Aguirregabiria	RL.	Tracking	solutions	in	tachyon	cosmology.	2004;	doi:10.1103/PhysRevD.69.123502	

39.		 Guth	AH.	Inflationary	universe:	A	possible	solution	to	the	horizon	and	flatness	problems.	Phys	Rev	D.	1981;23:	347–356.		

doi:10.1103/PhysRevD.23.347	

40.		 Macdonald	B.	Development	of	the	Koch	Snowflake:	Spiral	and	Pulse	Wave	[Internet].	2014.	Available:		

http://figshare.com/articles/Development_of_the_Koch_Snowflake_Spiral_and_Pulse_Wave/1170165	

41.		 Stephenson	NL,	Das	AJ,	Condit	R,	Russo	SE,	Baker	PJ,	Beckman	NG,	et	al.	Rate	of	tree	carbon	accumulation	increases		

continuously	with	tree	size.	Nature.	2014;507:	90–93.	doi:10.1038/nature12914	

42.		 Macdonald	B.	Fractal	Geometry	a	Possible	Explanation	to	the	Accelerating	Growth	Rate	of	Trees	[Internet].	2014.	Available:		

https://www.academia.edu/8583206/Fractal_Geometry_a_Possible_Explanation_to_the_Accelerating_Growth_Rate_of_Trees	

43.		 Castelvecchi	D.	Universe	has	ten	times	more	galaxies	than	researchers	thought.	Nat	News.	doi:10.1038/nature.2016.20809	

44.		 Not-So-Clumpy	Dark	Matter	Poses	Challenge	to	Cosmologists.	In:	Sky	&	Telescope	[Internet].	7	Dec	2016	[cited	9	Dec	2016].		



34	

Available:	http://www.skyandtelescope.com/astronomy-news/smooth-dark-matter-poses-cosmological-challenge/	

45.		 Nottale	L.	Scale	relativity	and	fractal	space-time:	theory	and	applications.	Found	Sci.	2010;15:	101–152.	
doi:10.1007/s10699-010-9170-2	

46.		 Nottale	L.	FRACTAL	SPACE-TIME	AND	MICROPHYSICS	Towards	a	Theory	of	Scale	Relativity.	World	Sci.	1993;	283–307.		

47.		 Rozgacheva	IK,	Agapov	AA.	The	fractal	cosmological	model.	ArXiv11030552	Astro-Ph.	2011;	Available:		

http://arxiv.org/abs/1103.0552	

48.		 Conde-Saavedra	G,	Iribarrem	A,	Ribeiro	MB.	Fractal	analysis	of	the	galaxy	distribution	in	the	redshift	range	0.45	<	z	<	5.0.	

Phys	Stat	Mech	Its	Appl.	2015;417:	332–344.	doi:10.1016/j.physa.2014.09.044	

49.		 Georgi	H.	Another	Odd	Thing	About	Unparticle	Physics.	Phys	Lett	B.	2007;650:	275–278.	
doi:10.1016/j.physletb.2007.05.037	

50.		 Using	Causality	to	Solve	the	Puzzle	of	Quantum	Spacetime.	In:	Scientific	American	[Internet].	[cited	6	Dec	2016].	Available:		

https://www.scientificamerican.com/article/the-self-organizing-quantum-universe/	

51.		 tvochannel.	Renate	Loll	on	the	Quantum	Origins	of	Space	and	Time	[Internet].	Perimeter	Institute	in	Waterloo,	Ontario;		

2010.	Available:	https://www.youtube.com/watch?v=fv2gBjQ8xIo&t=474s	

52.		 Fritz	C,	Curtin	J,	Poitevineau	J,	Morrel-Samuels	P,	Tao	F-C.	Player	preferences	among	new	and	old	violins.	Proc	Natl	Acad	Sci.		

2012;	201114999.	doi:10.1073/pnas.1114999109	

53.		 Macdonald	B.	Lorenz	Curve	of	the	Universe’s	Elements	[Internet].	[cited	29	Sep	2016].	Available:	

	http://www.fractalnomics.com/2016/05/lorenz-curve-of-universes-elements.html	

	

	


