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1.  Introduction 
 

   Cryptography, elliptic curves,  algebraic number theory have been brought 

to bear on integer factorization problem. 

   Until now, no algorithm has been published that can factor in deterministic 

polynomial time. For an ordinary computer the best published asymptotic ru- 

nning time is for the general number field sieve (GNFS) algorithm [10,12].    

   The purpose of this paper is to develop a polynomial-time integer factoriz- 

ation algorithm, factoring in deterministic polynomial time. 

    The plan of this paper is as follows.  In Section 2 we reduce integer facto- 

rization problem to some  2-dimensional integer minimization  problem  and 

show that if there exists a nontrivial divisor of  N,  those divisor is a minimi- 

zer of those   2-dimensional integer minimization  problem, and any minimi- 

zer of those integer minimization  problem is a nontrivial divisor of  N. 

    In Section 3 we introduce and investigate a notion of U-equivalent conve- 

rsion of minimization problems for changing properties of the objective fun- 

ctions and preserving the set of minimizers of the original problem. 

    In Section 4 we reduce integer  factorization  problem  to the  polynomial-

time integer minimization problem over the integer points in a  2-dimension- 
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al polyhedron, solvable in time polynomial in log(N).   

    Finally,  we conclude that since we found a polynomial-time  algorithm to 

solve an NP-hard problem, it would mean that P is equal to NP.   

 

2. Reduction to the Integer Programming problem  
 

     Let us reduce integer factorization problem to some integer  minimization 

problem, so that any minimizer that is found solves integer factorization pro- 

blem.     

     The key idea is to construct the objective function and constraints  so that  

any minimizer satisfies the equation:  xy =  N, and, therefore, is a solution of 

the integer factorization problem. 

      Let us consider the following integer minimization problem: 

 

             minimize     xy 

 

                  subject to    xy  ≥   N,                                                                    (1)                                       

 

                                 2  ≤  x  ≤   N – 1,      

 

                                 N/(N – 1)  ≤  y  ≤   N/2, 

 

                                 x ∈ N,  y ∈ N,  N ∈ N. 

 

     Let Ω := { (x, y) ∈ R
2
  |  xy  ≥  N,  2  ≤  x  ≤  N – 1, N/(N – 1) ≤  y ≤  N/2,  

x ∈ R,  y ∈ R }  for a given N ∈ N. 

     Hence,  Ω
I
  =  Ω ∩ Z

2
  is a feasible set of the problem (1). 

     It is clear that if there exists a nontrivial solution  of   integer factorization  

problem xy = N, the objective function: f(x, y) = xy  reaches minimum at the 

integer point of the border  xy  =  N of the region Ω and if there exists a non- 

trivial  solution of integer factorization problem, any minimizer of  the prob- 

lem (1) provides a (nontrivial) solution of integer factorization problem. 

     Thus, in this case, any minimizer of the problem  (1)   guarantees solution 

of integer factorization problem and there exists at least one such minimizer. 

 

Theorem 1.  If there exists a nontrivial solution of integer factorization pro- 

blem, that solution is a minimizer of problem (1) and if there exists a nontri-  

vial solution of integer factorization problem, any minimizer of the problem 

(1) is a nontrivial solution of integer factorization problem. 
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    As a result, we obtain the following Integer Factorization Algorithm. 

 

  Algorithm 1(Integer Factorization Algorithm). 

  Input:      A positive integer number N.      

  Output:   A nontrivial divisor of N(if it exists). 

                    Solve the problem (1):  

                    Based on the input data compute a minimizer ( x min,  y min )  

                    of the problem (1).  

                    if (x min y  min   =   N) 

                    then 

                          Return  a nontrivial divisor x min of  N 

                    else         

                          Return  “N is a prime”        
        

    Let us determine the complexity of the problem (1). 

    Despite in general integer programming is NP-hard or even incomputable,   

see, e.g., Hemmecke et al. [7], for some subclasses of the objective functions  

and constraints it can be computed in time polynomial.   

    Note that the dimension of the problem (1) is fixed and is equal to 2. 

    A  fixed-dimensional polynomial minimization in integer variables, where 

the objective function is a  convex polynomial and the  convex feasible set is 

described by arbitrary polynomials can be solved in time polynomial, -   see,  

e.g., Khachiyan and Porkolab [8]. 

    A  fixed-dimensional  polynomial minimization over the integer variables,  

where the objective function  f0(x)    is a quasiconvex polynomial with integer 

coefficients  and where the constraints are inequalities fi (x)  ≤ 0,  i = 1, … , k  

with  quasiconvex polynomials fi(x) with  integer coefficients,  fi :    R
n
 → R, 

fi(x), i = 0, … , k  are polynomials of degree at most  p ≥ 2, can be solved  in  

time polynomial in the degrees and the binary encoding of the coefficients, -     

see, e.g., Heinz [6], Hemmecke et al. [7], Lee [9].  

    A mixed-integer minimization of a convex function in a  convex, bounded 

feasible set can be done in time polynomial, according to Baes et al. [2], Oe- 

rtel et al. [11].    

    Since  the objective function  f(x, y) = xy  of the problem (1) is a quasico- 

ncave function in the feasible set Ω  of the problem (1), we cannot use the re- 

sults described in Baes et al. [2], Heinz [6], Hemmecke et al. [7], Khachiyan  

and Porkolab  [8], Oertel et al.  [11] in order to solve the problem (1) in time  
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polynomial in log(N).   Note that  Ω
I 

  is described by quasiconvex polynomi- 

als, since (– xy  +  N) is a quasiconvex function for x > 0, y > 0.      

     In general, since variables x ∈ N, y ∈ N are bounded by the finite bounds  

2  ≤  x  ≤  N –  1, N/(N – 1)  ≤  y  ≤   N/2 , the problem (1) and the respective 

Algorithm 1 are computable [7], but still are  NP-hard, since the problem (1) 

is a quadratically constrained integer programming problem [4]. 

     

3. U-equivalent minimization  
 

    The following results give us a possibility to change the properties of the  

objective function with preservation of the set of minimizers of the original 

problem.  

 

Theorem 2.  Let  O  be  the minimization problem:  

 

                     O  = {minimize   g(x)  subject  to  x ∈ G},  g:  X → R,  G ⊆  X. 

 

                     Let  E  be  the minimization problem:  

 

                     E  = {minimize   U(g(x))  subject  to  x ∈ G},  G ⊆  X, 

 

where   U:    R → R,  U = U(u)  is any increasing  function. 

 

                     Let  MO  be a set of minimizers of problem O and  

 

                     let   ME  be a set of minimizers of problem E.  Then: 

 

                     MO  =  ME .   

 

Proof.   If     x0  ∈ MO  then    g(x0)  ≤  g(x)   for any    x ∈ G.   Hence,  

U(g(x0))  ≤  U(g(x))   for any x ∈ G, since function  U is the increasing func- 

tion  and therefore   x0 ∈ ME   and  MO  ⊆  ME.   If   x0 ∈ ME  then   we have: 

U(g(x0))  ≤  U(g(x))   for any x ∈ G   and  therefore    g(x0)  ≤  g(x)    for any  

x ∈ G, as otherwise  there exists  y0 ∈ G  such that   g(x0)  >  g(y0)  and since 

function U is the increasing function it would mean that U(g(x0))  > U(g(y0))   

in contradiction to the original supposition that  U(g(x0))  ≤  U(g(x))  for any 

x ∈ G.   So, since g(x0)  ≤  g(x) for any  x ∈ G then x0 ∈ MO and  ME  ⊆  MO 

and finally:   MO  =  ME.     
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Definition 1.   We say that the minimization problem: 

 

                       E  = {minimize   U(g(x))  subject  to  x ∈ G}, 

 

is  U–equivalent to the minimization problem: 

 

                       O = {minimize   g(x)  subject  to  x ∈ G}, g:  X → R,  G ⊆  X, 

 

where   U:  R → R,  U = U(u)  is some increasing  function. 

 

Corollary 1.   If   E  is U-equivalent to O then E and O  have the same set of 

minimizers. 

 

Proof.      It follows from Theorem 2 and Definition 1.      

 

    Thus, using  U-equivalence we can convert original minimization problem 

into  minimization problem that has objective function with desired properti- 

es, so that both problems, - the original one, and U-equivalent have the same 

set of minimizers and share the same feasible set. 

     Hence, as a result of the  U-equivalent conversion the original feasible set  

and the original set of minimizers remain unchanged,  whereas the  objective 

function is being changed to obtain desired properties (e.g.,  faster minimiza- 

tion), which can consider it(U-equivalence) as a flexible and effective tool. 

     U-equivalent conversion can be considered as unary operation defined on    

the set of minimization problems, having the same feasible set. 

Example 1.  Suppose, the  problem (1) is the original minimization problem.    

Let q be  e
u
-equivalent to the problem (1). The objective function of the pro- 

blem (1) is xy, whereas the objective function of q is f(x, y)   =  e
xy

. 

Both problems, due to  the Theorem 2  have the same set of minimizers  (and 

each such minimizer is a solution of the integer factorization problem, accor-

ding to the Theorem 1).  Note that if  N  is not a prime, minimum q =  e
N
.       

     However, no  U-equivalent conversion applied to the original problem (1) 

in order to get a quasiconvex objective function exists, since if a function    g  

is quasiconcave and a function U is increasing, then a function  f,  defined as  

f (x, y) = U(g(x, y))  is still quasiconcave. 

 

4. Linearization. Polynomial-time integer factorization. 

    Minimum Principle.  
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    It was shown in  Del Pia et al.  [4]  that problem of minimizing a quadratic  

polynomial with integer coefficients over the integer points in a general two-

dimensional rational polyhedron is solvable in time bounded by a  polynomi- 

al in the input size and it was further extended to all homogeneous polynom- 

ials in Del Pia et al. [5]. 

     

    Del Pia et al. [4] consider the following  problem: 

 

    min{ f
k
 (z) : z ∈  P ∩ Z

n
  }, where  f

k   
is a polynomial function of degree at  

most k with integer coefficients, and P is a rational polyhedron in R
n
. We re- 

call that a rational polyhedron is the set of points that satisfy a system of lin- 

ear inequalities with rational data. According to Del Pia et al. [4], this probl- 

em can be solved in time polynomial for n = k = 2. 

 

Theorem 3(Theorem 1.1 in Del Pia et al. [4]).     If n = k = 2, problem  min{ 

f
k
 (z) : z ∈  P ∩ Z

n
 }  can be solved in polynomial time.  

 

    We are going now to reformulate the original problem  (1)  by replacing it 

with the equivalent problem, having the same target function, but feasible set 

as the integer points in some two-dimensional rational polyhedron(polygon), 

which therefore can be solved in polynomial time according to    Theorem 3( 

Theorem 1.1 in Del Pia et al. [4]). 

 

     Let  us  construct the corresponding polyhedron  G,   as  having the edges  

MiMi+1, where the vertex Mi is a point on the portion xy = N of the boundary   

of region Ω of (1), the point, corresponding to x = i,  2 ≤  i  ≤ N – 2, so   Mi = 

(i, N/i),  plus edges M2A and  MN-1A, along two other portions(parallel to the  

x  axis and y axis correspondingly) of three portions of the boundary of regi- 

Ω, where the vertex A := (N – 1, N/2).    Polyhedron G can be described as a  

set of points that satisfy the corresponding system of linear inequalities  with   

rational data, each inequality corresponds to one edge of G and can be descr-  

ibed in the form:  ax + by ≤ c,  wherein a,b  and c are  rational and depend on 

N,  and wherein (x, y) ∈ R
2
. 

  

Theorem 4.     Ω ∩ Z
2

  =  G ∩ Z
2

 . 

Proof.   It follows from definitions of  Ω and G and their convexity and con- 

vexity of G follows from the convexity of  Ω.       

 

Theorem 5.     Problem (1) is equivalent to the problem: 
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                        min{ xy :  (x,y)  ∈  G ∩ Z
2

  }                                      (2) 
 

Proof.   It follows from Theorem 4 and problem (1).               

 

Theorem 6(Minimum Principle).  If  N is not a prime, any minimizer of (2)  

is a solution of integer factorization problem for  N and any solution of inte- 

ger factorization problem for N is a minimizer of  (2).   

 

Proof.   It follows from Theorem 1 and Theorem 5.        

 

     Problem (2) completely satisfies   Del Pia et al. [4]   and therefore (2) and  

integer factorization problem can be solved in time polynomial in log(N).   

     Finally, we obtain the following algorithm. 

 

  Algorithm 2(Integer Factorization Algorithm). 

  Input:      A positive integer number N.                                  

  Output:   A nontrivial divisor of N(if it exists).       

            

                     Solve the problem (2) using algorithms [4]:  

                     Based on the input data compute  

                     a minimizer  ( x min,  ymin )  

                     of the problem (2).  

                     if (x min ymin   =   N) 

                     then 

                          Return  a nontrivial divisor x 1 min of  N 

                     else         

                          Return  “N is a prime”              
                                      

    So, Algorithm 2 runs in time polynomial in log(N).                                                                  

    Thus, factoring is in FP(the class FP is the set of function problems which 

can be solved by a deterministic Turing machine in polynomial time(see e.g. 

Cormen et al. [3]). 

 

Theorem 7.   Integer factorization is in FP. 

 

   Algorithm 2 can be modified to serve the decision problem version as well 

- given an integer N and an integer q with 1 ≤   q   ≤  N, does N have a factor 

d with 1 < d < q? 
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   Let   Ωq  := { (x, y) ∈ R
2
 |    xy ≥  N,     2  ≤  x  ≤   q – 1 ,  N/( q  – 1 ) ≤  y  

≤   N/2,  x ∈ R,  x ∈ R } for a given q, 3  ≤  q  ≤  N, N ∈ N. 

   Let Gq the polyhedron, corresponding to Ωq. Let  Gq
I    

=   Gq  ∩ Z
2

  

   Let us replace (2) by the problem over the feasible set  Gq
I   

and
   
denote the 

modified minimization problem (corresponding to the problem (2)) 
 
as  (3). 

  

  Algorithm 3(Integer Factorization Algorithm). 

  Input:       Positive integer numbers N,  q < N.                               

  Output:    Existence of a factor d with 1 <  d  <  q.   

              

Solve the problem (3) using algorithms [4]:  

                     Based on the input data compute  

                     a minimizer  ( x min,  ymin )  

                     of the problem (3) 

                     if (x min y min   =   N) 

                     then 

                          Return  “The corresponding factor exists”    
                     else         

                          Return  “The corresponding factor does not exist”    
                         

   Hence, Algorithm 3 runs in time polynomial in log(N) as well.                          

   Thus, factoring is in P. The class  P  is the class of sets accepted by a deter- 

ministic polynomial-time Turing machines (see, e.g., Cormen et al. [3]). 

 

Theorem 8.   Integer factorization is in P. 

 

    Note that algorithms 2-3 can be considered as polynomial-time   primality 

tests and the only provably polynomial-time primality test was developed by 

Agrawal et al. [1].    

 

    We developed polynomial-time Algorithms 2-3 in order to find minimize-    

rs of  (2) which is equivalent (due to Theorem 5) to NP-hard problem (1).  It 

is well known that if there is a polynomial-time algorithm for any    NP-hard 

problem, then, there are polynomial-time algorithms for all  problems in NP, 

and hence, we would conclude that P is equal to NP.                                                                                                                        
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