
PROOF OF COLLATZ’ CONJECTURE

ROBERT DELOIN

Abstract. Collatz’ conjecture (stated in 1937 by Collatz and also named
Thwaites conjecture, or Syracuse, 3n+1 or oneness problem) can be de-
scribed as follows:

Take any positive whole number N. If N is even, divide it by 2. If it
is odd, multiply it by 3 and add 1. Repeat this process to the result over
and over again. Collatz’ conjecture is the supposition that for any positive
integer N, the sequence will invariably reach the value 1.

The main contribution of this paper is to present a new approach to Col-
latz’ conjecture. The key idea of this new approach is to clearly differentiate
the role of the division by two and the role of what we will name here the
jump: a = 3n + 1.

With this approach, the proof of the conjecture is given as well as gen-
eralizations for jumps of the form qn + r and for jumps being polynomials
of degree m >1.
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1. Introduction

A Collatz’ sequence is obtained from a start integer N to which one applies
the iterative function f defined by:

• f0 = N with the integer N 6= 0;
• fi+1 = fi/2 if fi is even;
• fi+1 = 3fi + 1 if fi is odd.

For example, if we start with N = 7, we obtain the infinite list of numbers:
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, ...

The sequence falls into an endless loop (1, 4, 2) but it is arbitrarily accepted
that the sequence is considered done when the first number 1 is reached. This
means that the symbolic test ”if (fi=1) done” is added to the function f ,
transforming it into an algorithm that is usually named Collatz’ algorithm.

Collatz’ conjecture [1][2] is now the supposition that for any positive integer
N , Collatz’ algorithm will always end up at 1.

Let’s just notice two points:

• No information is known about the choice made by Collatz of the func-
tion fi+1 = 3fi + 1;
• The sequence of numbers obtained for any N , also named a trajectory,

is often considered in the literature as a list of undifferentiated numbers.

2. Preliminary notes

2.1. New terms: main function and jump. In order to obtain a list of
differentiated numbers and so, a new vision on Collatz’ problem, we first in-
troduce two new terms:

• the main function: for Collatz’ algorithm, the main function is the
division by two of even values of function f : fi+1 = fi/2 ;
• the jump: for Collatz’ algorithm, the jump is the special treatment
fi+1 = 3fi+1 that is used to replace odd values fi = n by an even value
a usable by the main function and that we will write for convenience
and from now on: a = 3n+ 1.

2.2. The new vision: series of numbers Si. The new vision on Collatz’
problem is now given by representing the use of the main function by commas
and the use of jumps by semi-colons in Collatz’ sequence. Then, Collatz’
algorithm for N = 7 gives the list of “series of numbers”Si:

7 ; 22,11 ; 34,17 ; 52,26,13 ; 40,20,10,5 ; 16,8,4,2,1
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We notice that, if for N = 7 another algorithm is used, based by instance on
the jump a = n + 17 instead of a = 3n + 1, this new algorithm falls into an
endless loop as we have:

7 ; 24,12,6,3 ; 20,10,5 ; 22,11 ; 28,14,7 ;
24,12,6,3 ; 20,10,5 ; 22,11 ; 28,14,7 ;
24,12,6,3 ; 20,10,5 ; 22,11 ; 28,14,7 ;

...

where the last sequence (24,12,6,3 ; 20,10,5 ; 22,11 ; 28,14,7 ;) is looping on
itself without reaching 1. It proves that the condition that detects a loop in
an algorithm different or not of Collatz’ one, is defined by:

Loop condition: if one odd number obtained by the main function
divides the product of all the previously obtained odd numbers.

So, the question that has to be answered to prove Collatz’ conjecture is:
Does Collatz’ algorithm using the jump a = 3n + 1, always ends up at 1

whatever is the start number N and why?
To answer this question, we must first remind a general property of natural

numbers and put forward three new ones.

2.3. Property 1 of natural integers N. From the fundamental theorem of
arithmetic, any natural number N can be factorized in only one way when the
factorization is ordered by increasing primes, as:

N = 2wpα1
1 p

α2
2 pα3

3 ...
where w and αi are positive or null integers and pi are increasing odd primes

or:

Property 1: Any natural number N can be factorized as: N = n2w

where n > 0 is an odd integer, composite or prime
and w is a positive or null integer.

2.4. Property 2 of series of numbers Si.

Property 2: For any given natural number N , the series of numbers Si
are parts of invariant branches Bi of general form: Bi = B(n,w) = n2w

with the odd integer n > 0 and the natural integer w > 0

Proof. Let’s build the following table filled bottom to top by an odd n in
column 0 and adding numbers left to right by recurrently multiplying these
ones by 2.

Table 1. Si are parts of branches B(n,w) = n2w
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for odd n > 0 and w > 0

Br\Cols: C0 C1 C2 C3 C4 C5 C6 C7 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B(15, w): 15 30 60 120 240 480 960 1920 . . .
B(13, w): 13 26 52 104 208 416 832 1664 . . .
B(11, w): 11 22 44 88 176 352 704 1408 . . .
B(9, w): 9 18 36 72 144 288 576 1152 . . .
B(7, w): 7 14 28 56 112 224 448 896 . . .
B(5, w): 5 10 20 40 80 160 320 640 . . .
B(3, w): 3 6 12 24 48 96 192 384 . . .
B(1, w): 1 2 4 8 16 32 64 128 . . .
B(n,w) ↑ B(n, 0) = n ↑ w → 1 2 3 4 5 6 7 . . .

Reading from right to left, each line is a list of numbers that are divided by 2
until they reach an odd number: this is exactly the first part of the definition
of the main function of the algorithm. �

2.5. Property 3 on branches B(n,w).

Property 3: The infinite set of branches B(n,w) is
a covering system of the natural number set N

or:
Any positive integer (even or odd) is present in Table 1.

Proof. This is because all branches B(n,w) are of the form B(n,w) = n2w

where n is odd, which is exactly the general definition of natural numbers
according to the fundamental theorem of arithmetic. �

In Table 1, property 3 is true only for numbers up to 16 as odd numbers are
limited to 15, but it suffices to expand the table upwards to any odd number
2w − 1 to complete the list up to any number 2w.

For N = 7, the result given by Collatz’ algorithm can then be represented
as follows, with a last column indicating the part of branch used by each series
of numbers:

Table 2. Collatz’ trajectory of N = 7
using parts of branches B(n,w = list)

ai , ... , ni branch

a1 = N = 7 , ... , n1 = 7 ; B1 = B(7, w = 0)
a2 = 3n1 + 1 = 22 , ... , n2 = 11 ; B2 = B(11, w = 1, 0)
a3 = 3n2 + 1 = 34 , ... , n3 = 17 ; B3 = B(17, w = 1, 0)
a4 = 3n3 + 1 = 52 , ... , n4 = 13 ; B4 = B(13, w = 2, 1, 0)
a5 = 3n4 + 1 = 40 , ... , n5 = 5 ; B5 = B(5, w = 3, 2, 1, 0)
a6 = 3n5 + 1 = 16 , ... , n6 = 1 B6 = B(1, w = 4, 3, 2, 1, 0)

The trajectory for N = 7 can thus be summed up by the list of parts of
branches:
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B(7, w = 0) ; B(11, w = 1, 0) ; B(17, w = 1, 0) ;
B(13, w = 2, 1, 0) ; B(5, w = 3, 2, 1, 0) ; B(1, w = 4, 3, 2, 1, 0)

where we notice that, for a given N , the ni’s of the branches B(ni, w) are
somewhat erratic.

2.6. Property 4: Condition to reach 1. From the example for N = 7 and
if the series Si is supposed to be the last one, we deduce that it is always the
last jump from ni−1 to ai = 3ni−1 + 1 that leads to ni = 1. Therefore:

Property 4: Collatz’ algorithm ends up at 1
if there exists a triplet solution (i, ni−1, m) to the equation:

3ni−1 + 1 = 2m

2.7. Solutions n(m) to reach 1. To solve the last equation, we can consider
that either ni−1 (or ni) is a function of m or the converse. We can look for
solutions m(ni) but as ni can be known only by running the algorithm to its
end, this is not a mathematical solution. We have then to look for solutions
ni(m). As the first ai of each branch (except the first when N is odd) is of the
general form:

ai = 3ni−1 + 1

we have first to check if the equation:

(1) 3n+ 1 = 2m

where n and m are independent of i (and thus of N), has always at least one
solution n(m) or not. From equation (1), the solutions n(m) always verify:

n(m) =
2m − 1

3
In the two following subsections we will prove that they can be either integer
or fractional (but, in the last case, invisible because Collatz’ algorithm works
only with integer n’s).

2.7.1. The integer solution n(m). To study this integer solution is equivalent
to study the factorization of the numbers 2m − 1 as equation (1) implies that:

2m − 1 = 3n

We know that when m is even (m = 2k), we algebraically have:

2m − 1 = 22k − 1 = 4k − 1k

4k − 1k = (4− 1)(4k−1 + 4k−2 + 4k−3 + ...+ 4 + 1)
so that:

22k − 1 = 3(4k−1 + 4k−2 + 4k−3 + ...+ 16 + 4 + 1)
22k = 3(4k−1 + 4k−2 + 4k−3 + ...+ 16 + 4 + 1) + 1

Therefore, whatever is N , the integer solution n(m) of the equation 3n+1 = 2m

when m = 2k is:

m = 2k
n(m) = 4k−1 + 4k−2 + 4k−3 + ...+ 16 + 4 + 1
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2.7.2. The fractional solution n(m). We know that when m is odd (m = 2k+
1):

2m − 1 = 22k+1 + (−1)2k+1

22k+1 + (−1)2k+1 = (2 + (−1))(22k + 22k−1 + ...+ (4 + 2) + 1)
but as:

22k + 22k−1 = (2 + 1)22k−1 = 3× 22k−1

we have:
22k+1 − 1 = 3(22k−1 + 22k−3 + ...+ 23 + 21) + 1

22k+1 = (3n+ 1) + 1 = 3n+ 2
which can be written:
22k+1 = 3(n+ 1/3) + 1

This shows that when m = 2k + 1 is odd, the equation 2m = 3n + 1 has no
integer solution n(m) but always a fractional one that verifies:

n(m) =
2m − 1

3
n(m) = (22k−1 + 22k−3 + ...+ 23 + 21) + 1/3

which always gives:
3n+ 1 = 3(22k−1 + 22k−3 + ...+ 23 + 21) + 2 = 3(n− 1/3) + 2 = 22k+1

We have therefore:
Property 5: Independently of N and for any m > 0, the general equation
3n+ 1 = 2m has always a solution for n. This solution is:

either the integer solution of 3n+ 1 = 2m for any even m
or, for any odd m:

the fractional solution of 3n+ 1 = 2m

or the integer solution of 3n+ 2 = 2m

Remark. The fractional solution happens by instance for N = 7 as Collatz’
algorithm ends up at f=1 for n = 682 + 1/3 because:

3(682 + 1/3) + 1 = 3× 682 + 2 = 2048 = 211

Thus, after m = 11 divisions (or commas), the full trajectory for N = 7 being:

7 ; 22,11 ; 34,17 ; 52,26,13 ; 40,20,10,5 ; 16,8,4,2,1

we get the following Table by retaining only the values f ∗ that follow a division
or comma:

Table 3. Details for N = 7
variables val val val val val val val val val val val

m 1 2 3 4 5 6 7 8 9 10 11
f ∗ 11 17 26 13 20 10 5 8 4 2 1
2m 21 22 23 24 25 26 27 28 29 210 211

n(m) 1/3 1 7/3 5 31/7 21 . . . . . . . . . . . . (211 − 1)/3

This shows that jumps (semi-colons) have not to be taken into account in the
calculation of m. This can be illustrated by placing each division in a column



PROOF OF COLLATZ’ CONJECTURE 7

and the jumps ai under the last odd ni−1. This creates a 2-dimensional table
for the trajectory where each branch is isolated in a line, as follows:

Table 4. Trajectory of N = 7 in 11 divisions (commas)
Br\m 0 1 2 3 4 5 6 7 8 9 10 11

1 7
2 22, 11
3 (68) 34, 17
4 (208) (104) 52, 26, 13
5 (640) (320) (160) (80) 40, 20, 10, 5
6 (211) (210) (29) (28) (27) (26) (25) 16, 8, 4, 2, 1.

The numbers in parenthesis are not part of the trajectory but show the pro-
longation of each branch on the left. The observation of this table gives three
other properties:

Property 6. All ni’s of the trajectory of N = 7 have a trajectory that ends
up at 1.

Property 7. Each ai = 2αini.
Property 8. The number B of branches is equal to the number of lines in

Table 4.
We then have:

B = 1 + J where J is the number of jumps

Now, let’s consider the product of the first ai of each branch i (let’s notice that
for N = 7, in the first line of Table 4, 7 is both an ai and an ni):

A =
∏B

i=1 ai =
∏B

i=1 2αini = 2
∑B

i=1 αi
∏B

i=1 ni

As the number of divisions m to go from N to 1 by Collatz’ algorithm is the
same as the number of multiplications by 2 to go back from 1 to N , we have:

(2) m =
B∑
i=1

αi

so that: ∏B
i=1 ai = 2m

∏B
i=1 ni

and:

(3) m = log2

∏B
i=1 ai∏B
i=1 ni

Verification for our case:

m = log2
7.22.34.52.40.16

7.11.17.13.5
= log22

11 = 11

But due to the erratic values ni ending the successive branches, we are still not
sure that one of these erratic values will verify equation (1). The next section
examines this problem.
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2.8. Capability of the algorithm to reach 1. We have seen with Property
3 that the branches B(n,w) = n2w with odd integers n are a covering system
of the set N of natural numbers. But we have also seen that the sequence
of branches used by a trajectory is somewhat erratic, so that it cannot be
mathematically expressed.

Fortunately, there is another set of mathematical objects, different from the
set of branches B(n,w), that give another way to cover the set N of natural
numbers and that can be mathematically expressed.

2.8.1. Cut-out of N by numbers 2m. If we cut out the set N of the natural in-
tegers using the successive powers of 2, we can write the whole set in 2m-type
columns as follows:

Table 5. Cut out of N by powers of 2

. . . . . . . 2m+1 − 1
. . . . . . . . . . . . . . . . . . . . . .
. . . 15 23 39 . . . .
. . . 14 22 38 . . . .
. . . 13 21 37 . . . .
. . . 12 20 36 . . . .
. . 7 11 19 35 . . . .
. . 6 10 18 34 . . . .
. 3 5 9 17 33 . . . 2m+1
1 2 4 8 16 32 . . . 2m

0 1 2 3 4 5 . . . m

where each column m > 0 begins at 2m, ends at (2m+1 − 1) and contains:

(2m+1 − 1)− (2m − 1) = 2m numbers.

2.8.2. Right shifts implied by jumps. With this cut out of N, we can see that:
• the second term (n = 2m+1) in column m is always transferred by the jump
a = 3n+ 1 into column m+ 1 because for n = 2m + 1, we always have:

a = 3n+ 1 = 3(2m + 1) + 1 = (2 + 1)(2m) + 4 = 2m+1 + 2m + 22

which proves that this number a is in column m+ 1.
• the upper term (n = 2m+1 − 1) of a column m > 0 is always transferred by
a = 3n+ 1 into column m+ 2 because for n = 2m+1 − 1, we always have:

a = 3n+ 1 = 3(2m+1 − 1) + 1 = (2 + 1)(2m+1)− 2 = 2m+2 + 2m+1 − 2

which proves that this number a is in column m+ 2.
These two points prove that the first (even) number ai of a series i > 1, pro-
duced by a jump a = 3n + 1, is always obtained by an always existing right
shift of 1 or 2 2m-type columns in N.
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2.8.3. Left shifts implied by the main function. All the even terms t of a 2m-
type column with m > 0 can always be written as:

t = 2m + 2s with 0 6 s 6 2m−1 − 1
so that:

t/2 = 2m−1 + s with 0 6 s 6 2m−1 − 1

This means that a division by two of an even number in column m always
places the result in column m− 1, producing an always existing left shift of 1
column in N.

2.8.4. Property 9 of Collatz’ algorithm. For Collatz’ algorithm, we have seen
that:
• each jump a = 3n+1 between two branches corresponds to an always existing
right shift of 1 or 2 columns in N;
• each division by two corresponds to an always existing left shift of 1 column
in N;
These two points prove that the right and left shifts of 1 column are always
possible and we have:

Property 9a. Collatz’ algorithm provides a continuous screening of the
2m-type columns of N, these columns being a covering system of N.

or:

Property 9b. No 2m-type column of N is left unreachable by Collatz’
algorithm,

particularly column C0 and its number 1.

This property proves the capability of Collatz’ algorithm to end up at 1.

3. Main Result: Proof of Collatz’ conjecture

Now, we have all the necessary properties to prove Collatz’ conjecture:

Proof. • From property 2 we know that Collatz’ algorithm (CA) is an erratic
screening of branches Bi = B(n,w) = n2w. This can be symbolically written:

(4) CA = ErrScr(Bi)

• From property 3 we know that the branches Bi = B(n,w) are a covering
system of N. This can be symbolically written:

Bi = CovSys(N)

Then, with this result, equation (4) becomes:

(5) CA = ErrScr(CovSys(N))

• From property 9a we know that the jumps of Collatz’ algorithm are equivalent
to a continuous screening of the 2m-type columns of N. Then, equation (5)
can be symbolically written:

CA = ContScr(2mcolumns(N))
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We know at this point, from property 9b, that Collatz’ algorithm has the
capability to end up at 1. But does it always do it? The answer comes from
the three last facts:
1− Jumps always provide the even numbers necessary to the main function,
which ensures the continuity of the algorithm from branch to branch;
2− The main function (division by 2) is always a left shift of one 2m-type
column, that is to say a move towards the goal of the algorithm constituted
by column C0 where the number 1 is located.
3− From properties 4 and 5 we know that for any m and independently of
Collatz’ algorithm, the general equation 3n+1 = 2m has always a solution for n.
We also know from equation (3) that, in Collatz’ algorithm, m depends on i =
B, the number of branches Bi necessary to the trajectory. Therefore, an i = B
value always exists such that for any given numberN , the equation 3nj,i−1+1 =
2m has a solution in nj,i−1 when the nj,i are computed by the algorithm or by
incrementing one by one i or m, which proves Collatz’ conjecture. �

4. A generalization for even jumps

A more general approach on Collatz’ problem is obtained by keeping the
division by 2 as main function but by considering the general even jump a =
qn+ r where q and r verify gcd(q, r) = 1.

As in Collatz’ algorithm a jump is used only when n is odd, we choose to
have only odd n’s. As this makes a to be even, this implies that q and r have
to be of same parity. For simplicity, we will use hereafter only odd q’s and odd
r’s with gcd(q, r) = 1.

We will now look for the conditions that odd q’s and r’s have to verify
to make the general algorithm end up at 1 and show that Collatz’ algorithm
verifies them. This almost mimics what has been done for the jumps a = 3n+1
but it enables us to prove the uniqueness of Collatz’ algorithm and other
results.

4.1. Condition 1 to end up at 1. To reach the branch B(1, w) from a given
N and so end up at 1, we know from property 4 that for a given N and at
the end of the branch Bi−1(ni−1, w), the general algorithm has to verify the
condition:

qni−1 + r = 2m

To solve this condition is equivalent to study the factorization of 2m − r as,
ignoring the index of ni−1, we must have:

Condition 1: 2m − r = qn

This shows that the condition that makes the general algorithm reach the
branch B(1, w) and end up at 1 for a given N is that q must be a divisor of
2m − r, which then implies that n = (2m − r)/q is an integer. It appears that
only two cases have to be differentiated.
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4.1.1. Case where q = 1 with any odd r > 0. With q = 1, a = qn + r can be
written a = n+ r and, with odd n and r, condition 1 can be written:

2m − r = n

We see now that the problem of the factorization of 2m − r is transferred
from its factorization qn to the factorization of n only. As, according to the
fundamental theorem of arithmetic, any positive odd number n can be written:

n = pα1
1 p

α2
2 p

α3
3 ... all pi’s being odd

we must have:

2m − r = pα1
1 p

α2
2 p

α3
3 ... all pi’s being odd

This makes appear the result that:
When the trajectory from N to n is possible and j is the number of divisors

dj of n, for each divisor dj of 2m − r, condition 1 is verified and j couples
(mj, rj) determine j couples (qj, nj), or j couples (qj, rj = 1) determine j
couples (mj, nj). This is because for j values, we have:

2mj − rj = dj(n/dj) = n

Then, the last two series always appear as:

2kn, ..., 4n, 2n, n ; n+ r = 2m, 2m−1, ..., 4, 2, 1

and the j algorithms based on j couples (qj, rj = 1) always end up at 1.

4.1.2. Case with odd q>1 and odd r>0. This case is identical to the first case
when we change n into qn.

This makes appear the result that:
When the trajectory from N to n is possible and j is the number of divisors
dj of qn, for each divisor dj of 2m − r, condition 1 is verified and j couples
(mj, rj) determine j couples (qj, nj), or j couples (mj, nj) determine j couples
(qj, rj). This is because for j values, we always have:

2mj − rj = dj(qn/dj) = qn

Again, the last two series always appear as:

2k n, ..., 4n, 2n, n ; qn+ r=2m, 2m−1, ..., 4, 2, 1

and the j algorithms based on j couples (qj, rj = 1) always end up at 1.
As this case includes the couple (q = 3, r = 1), it includes Collatz’ algorithm

and we have the result that:
For a given N , if the trajectory from N to n is possible, condition 1 is

verified for j couples (mj, rj) that determine j couples (qj, nj), or j couples
(qj, rj) whatever is m, and always among them the couple (q1 = 3, r1 = 1), as
Collatz’ conjecture has been proved.

4.2. Condition 2 on the trajectory from N to ni. The two last results
are still conditional to the fact that:

Condition 2: the trajectory from N to n = ni has to be possible.
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Proof. This condition is always verified by Collatz’ algorithm because:
• independently of N , the main function (the division by 2 applied only to
even numbers) and the jumps a = qn+ r, are always defined functions;
• and because Collatz’ algorithm verifies Properties 9a and 9b. �

The last remaining point is to generalize Condition 1 from one given N to
all N ’s, which will give the final result.

4.3. Uniqueness of Collatz’ algorithm.

Proof. We know from 4.1.2 that for a given N , condition 1 is verified for j
couples (qj, rj) that always include (q = 3, r = 1) which defines Collatz’ jump.

But for different N ’s, the number of couples j is generally different from
one N to another. This is because the number of divisors j that divide qn is
generally different from one n to another.

The involved couples in the lists of couples are also generally different from
one list to another.

As we have seen in 4.1.2 that the couple (q = 3, r = 1) is always present in
these lists, independently of N , it proves that for all N ’s, the unique couple
(q, r) with odd r common to all lists that make a general algorithm end up at
1, is the couple (q = 3, r = 1) which defines Collatz’ jump and algorithm. �

Examples:

Table 6. Different jumps a = qn+ 1 that make the algorithm end up at 1
for different N ’s with q checked up to 199

N jumps nb divs = m jump #

N=7 a = 3n+ 1 11 1
N=7 a = 9n+ 1 6 2
N=7 a = 17n+ 1 11 3
N=7 a = 73n+ 1 9 4
. . . . . . . . . . . .

N=11 a = 3n+ 1 10 1
N=11 a = 3.31n+ 1 10 2

. . . . . . . . . . . .
N=24 a = 3n+ 1 8 1
N=24 a = 5n+ 1 7 2
N=24 a = 9n+ 1 11 3
N=24 a = 3.7n+ 1 9 4
N=24 a = 5.17n+ 1 11 5

. . . . . . . . . . . .
N=1000 a = 3n+ 1 72 1

. . . . . . . . . . . .
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5. Other results for general even jumps

5.1. A fast check of a general even jump a = qn+r. A fast method to
check if an algorithm using a = qn+ r ends up at 1 is as follows:

• 1- Factorize 2m − 1 for all m’s up to any wanted limit;
• 2- All factors appearing in these factorizations are possible q’s but the

only true solutions are those for which no loop happens for a given N .
If q appears in the factorizations generated by 2m − 1, the given

algorithm will potentially end up at 1.

Example: Check of Collatz’ algorithm where r=1. For 2m ≤ 1000, we have:

Table 7. Check of Collatz’ algorithm

m 2m − 1 factorization

9 512-1=511 7.73
8 256-1=255 3.5.17
7 128-1=127 127
6 64-1=63 32.7
5 32-1=31 31
4 16-1=15 3.5
3 8-1=7 7
2 4-1=3 3
1 2-1=1

As q = 3 appears in the factorizations generated by 2m− 1 for any m, Collatz’
algorithm potentially ends up at 1.
Table 7 also confirms the results of Table 6 as, by instance for N = 7, the
incomplete list of jumps making Collatz’ algorithm end up at 1 are obtained
with q = 3, 9, 17, 73 which are values of Table 7.

5.2. The fastest algorithm based on divisions by 2. On one hand, when
a = qn + r > n, the jump is a ”rear jump” with respect to 1 as the distance
from a to 1 is greater than that of n to 1.

On the other hand, when a = qn + r < n, the jump is a ”front jump”
towards 1. Therefore, with q = 1, a front jump a = n + r is obtained if and
only if r < 0.

As in this case we have q = 1 and a = n+ r with n = (2m− r)/q depending
on m, for some small values of m (the column in N where n is located) it may
happen, if r is too much negative, that a = n + r becomes a big front jump
that skips one or several 2m-type columns of N, leaving them unreachable and
making the algorithm a not continuous screening of the columns.

As the smallest odd ni that does not stop the algorithm is 3, it thus appears
that the only acceptable negative odd value of r that makes the jump a = n+r
to be an acceptable front jump, is r = −1. It gives the exceptional jump:

a = n− 1
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the unique and fastest algorithm that contains only front jumps and so, the
fastest decreasing sequence towards 1.

For N = 1000, this jump a = n− 1 gives:
1000,500,250,125 ; 124,62,31 ; 30,15 ; 14,7 ; 6,3 ; 2,1
with only 9 divisions, much less than the 72 divisions necessary for Collatz’
algorithm with jump 3n+ 1 as mentioned in Table 6. As a comparison:
• the jump a = n+ 1 gives:
1000,500,250,125 ; 126,63 ; 64,32,16,8,4,2,1 with 10 divisions,
• the jump a = n+ 3 gives:
1000,500,250,125 ; 128,64,32,16,8,4,2,1 with 10 divisions,
• the jumps a = n+ 5 and a = n+ 7 give loops on 5,
• the jump a = n+ 9 gives:
1000,500,250,125 ; 134,67 ; 76,38,19 ; 28,14,7 ; 16,8,4,2,1 with 12 divisions,
• the jump a = n+ 11 gives:
1000,500,250,125 ; 136,68,34,17 ; 28,14,7 ; 16,8,4,2,1 with 12 divisions,
• the jump a = n+ 13 gives:
1000,500,250,125 ; 138,69 ; 82,41 ; 54,27 ; 40,20,10,5 ; 18,9 ;
22,11 ; 24,12,6,3 ; 16,8,4,2,1 with 18 divisions.

6. A generalization for jumps being polynomials of degree m >1

As we have seen that Collatz’ algorithm is made of an integer main function
f such that fi+1 = fi/2 and an integer jump function ai = 3fi + 1 used to
replace odd fi values, a full generalization would have to take into account any
combination of any two functions.

Here, we will only consider main functions f that are divisions by any integer
polynomial gi:

fi+1 = fi/gi

and jumps are integer polynomials:

ai+1 = a(fi)

used to replace fi+1 when this value is less than 1. To prove the method in a
simple way, we will do it first on an instance where gi and ai+1 are known.

6.1. A first step. In a first step, let’s choose the divisor function:

gi = i2 + 1

where i is an integer (not a complex number). If we choose that this algorithm
ends up at 1 when m = 4, we consider the four first values of gi: g1,4 =
{2, 5, 10, 17} whose product is 1700. Let’s generate the sequence with f0 =
N = 1700. We get the sequence with no jumps:

f0 = N, f1 = f0/g1, f2 = f1/g2, f3 = f2/g3, f4 = f3/g4
which gives:

f0 = 1700, f1 = 1700/2 = 850, f2 = 850/5 = 170,
f3 = 170/10 = 17, f4 = 17/17 = 1



PROOF OF COLLATZ’ CONJECTURE 15

and we get that the sequence ends up at 1 with f4 as expected.
This proves that there always exists an algorithm beginning with any number

N and ending at 1 when the divisor function g(i) is an integer polynomial that
generates the exact list of the factors gi of N .

6.2. A possible second step. A possible second step can be to find which
jumps can be associated with f that can allow to start the sequence with an
f0 different from N = 1700.

To do that, we have to choose a value of i that makes the jump ai+1 replace
a disqualified fi+1 = fi/gi+1 < 1 coming from an integer N ′ different of N .
By instance, let’s choose i = 2 such that a2 = f2 = 170 replaces a disqualified
value f2 = f1/g2 < 1. Here, the divisor function gi = i2 + 1 is already defined
but not the jump. Let’s choose by instance the jump:

ai+1 = (fi)
2 + b

which fixes b to the odd complements to f2 = 170 of these squares:

b = 170− (fi)
2

All the possible jumps are then:

ai+1 = (fi)
2 + 161 for fi = 3

ai+1 = (fi)
2 + 145 for fi = 5

ai+1 = (fi)
2 + 121 for fi = 7

ai+1 = (fi)
2 + 89 for fi = 9

ai+1 = (fi)
2 + 49 for fi = 11

ai+1 = (fi)
2 + 1 for fi = 13

Choosing fi = f1 = 3, we have b = 161 and the sequence is:

f0 = 2f1 = 6, f1 = 3, f2 = 3/5 < 1 replaced by a2 = 32 + 161 = 170,
f3 = 170/10 = 17, f4 = 17/17 = 1

For all the possible odd values of b above and their associated values fi, the
sequences are:

for fi = 3, b = 161: ai+1 = (fi)
2 + 161 fi = 6, 3; 170, 17, 1

for fi = 5, b = 145: ai+1 = (fi)
2 + 145 fi = 10, 5; 170, 17, 1

for fi = 7, b = 121: ai+1 = (fi)
2 + 121 fi = 14, 7; 170, 17, 1

for fi = 9, b = 89: ai+1 = (fi)
2 + 89 fi = 18, 9; 170, 17, 1

for fi = 11, b = 49: ai+1 = (fi)
2 + 49 fi = 22, 11; 170, 17, 1

for fi = 13, b = 1: ai+1 = (fi)
2 + 1 fi = 26, 13; 170, 17, 1

This proves that for all the odd values 3 to 13 and all the even values {3.to.13}21,
all different of N = 1700, the algorithm defined by:

fi+1 = fi/gi+1, gi = i2 + 1 and ai = i2 + b

ends up at f=1.

6.3. Proof of the generalization.
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Proof. The above proof has been built upon chosen instances of N , g(i) and
a(i). It does not allow, at this stage, to generalize to all combinations of integer
polynomials f(i), g(i) and a(i).

But, as according to the fundamental theorem of arithmetic, any integer
number f(i) generated by an integer function f can be factorized in only one
way when the factorization is ordered by increasing primes, it is also true for
any number:

N =
m∏
i=1

f(i)

So, as it is always possible by a system of m equations to find a rational
polynomial function g(i) that generates the list of divisors of N , it is always
possible to find an algorithm ending up at 1 for any value of m and N , which
proves the generalization. �
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