
Kannada Spell Checker with Sandhi Splitter
Akshatha A N

Department of ISE

RVCE, Bangalore

Chandana G Upadhyaya
Department of ISE

RVCE, Bangalore

Rajashekara Murthy S
Associate Professor, Department of ISE

RVCE, Bangalore

Abstract—Spelling errors are introduced in text either

during typing, or when the user does not know the correct

phoneme or grapheme. If a language contains complex

words like sandhi where two or more morphemes join

based on some rules, spell checking becomes very tedious.

In such situations, having a spell checker with sandhi

splitter which alerts the user by flagging the errors and

providing suggestions is very useful. A novel algorithm of

sandhi splitting is proposed in this paper. The sandhi

splitter can split about 7000 most common sandhi words in

Kannada language used as test samples. The sandhi splitter

was integrated with a Kannada spell checker and a

mechanism for generating suggestions was added. A

comprehensive, platform independent, standalone spell

checker with sandhi splitter application software was thus

developed and tested extensively for its efficiency and

correctness. A comparative analysis of this spell checker

with sandhi splitter was made and results concluded that

the Kannada spell checker with sandhi splitter has an

improved performance. It is twice as fast, 200 times more

space efficient, and it is 90% accurate in case of complex

nouns and 50% accurate for complex verbs. Such a spell

checker with sandhi splitter will be of foremost significance

in machine translation systems, voice processing, etc. This

is the first sandhi splitter in Kannada and the advantage of

the novel algorithm is that, it can be extended to all Indian

languages.

Keywords— Natural language processing; Morphology;

Computational linguistics; Sandhi splitter; Spell checke.

I. INTRODUCTION

Kannada is an agglutinative language. It is one of the

Dravidian languages, and by the nature of the Dravidian

languages it has very clear rules defined for every aspect

of its structure. Kannada has roughly 40 million native

speakers and it is one of the 40 most spoken languages in

the world [1]. It is influenced greatly by Sanskrit, and

therefore we can find an overlap of words, structure and

grammar rules including the sandhi and lexicon between

the two languages. Like any other language, Kannada has

grown and will continue to grow and change with the

intervention of other languages and accents, and by

people who want to make the language and its words easy

to pronounce, spell and write. There is no specific

boundary to the words in it. In a language like Kannada,

where there are abundant complex structures and

compound words, a spell checker demands a sandhi

splitter for two reasons. First, since any database of

Kannada words cannot store every sandhi word without

huge redundancy, the sandhi splitter would hugely reduce

the dictionary size. Second, sandhi splitters are critical for

recognizing spelling errors arising due to an erroneous

morpheme or an erroneous segment at the morpheme

boundary of a sandhi word.

A morpheme is the smallest meaningful unit in a

language. Joining morphemes to derive complex and

meaningful words without changing the spelling or the

phonetics of the constituent morphemes is called

agglutination. Inflection, on the other hand, is the refitting

of the words to express various grammatical aspects like

gender, tense, mood and number.

In the processing of any language, morphological

analysis, sentence structure analysis and recognition

become the founding pillars. In processing Indian

languages, in addition to the aforementioned factors,

several factors such as sandhis, samaasas, and inflections

specific to gender and tense also play a role. In Kannada,

there are three ways of forming complex words: samaasa,

jodi pada and sandhi.

A. Samaasa, and Jodi Pada

Samaasa is also known as nominal compound.

Morphologically, a samaasa has each noun or adjective in

its stem form with only the last element obtaining the case

inflection. Examples of samaasa include “peetaMbara”

and “vRukoodara”. A jodi pada is a phonemic binding of

two unrelated morphemes separated by a hyphen used in

the Kannada dialect. Examples of jodi pada include

“mane-maTha” and “deevaru-diMDaru”.

B. Sandhi

Sandhi means ‘to join’. In sandhi formation at the

word boundary, several phonological processes take

place to produce the complex word or the sandhi word.

During this process of joining, one or both following

operations occur at the word boundary:

 A new letter will appear at the word boundary.

 A letter will disappear from the end of the first
word (prefix) or from the beginning of the second
word (suffix) at the word boundary.

Sandhis have a set of definite rules that are defined in

Panini’s Ashtadhyayi [2]. Sandhis occur based on the last

letter occurring in the prefix and the first letter occurring

in the suffix. Based on the first letter occurring in the

suffix, Panini classifies the sandhis as vowel (svara) and

consonant (vyaMjana) sandhi in Sanskrit. Kannada

language adapts all the sandhis in Sanskrit and has three

additional sandhis that are confined just to Kannada. In

this paper, the implementation of sandhi splitting of the

four Sanskrit vowel sandhis namely savarNa deergha,

guNa, vrddhi, yaN sandhi and three Kannada sandhis

namely loopa, aagama and aadeesha sandhi, all for the

Kannada language, is discussed, along with its

application in a spell checker.

C. Sandhi Splitter and Spell Checker

A sandhi splitter is the one that separates the

constituent words of a sandhi word using a

comprehensive dictionary and sandhi rules. Since most

words in a language get their meaning based on the

context, sandhi splitting becomes context based at times

and hence poses ambiguity in machine processing. In

manual processing, based on the understanding of the

language, this ambiguity can be resolved. Making a

machine learn the context and to use the grammar rules

accordingly is a major challenge.

As Kannada is a partial phonemic language, there is

partial correspondence between graphemes and

phonemes. This gives a huge scope for spelling mistakes.

The usage of ottakshara and mahapRaNas also contribute

to the errors in the spelling. This makes it necessary to

have a spell checker for Kannada.

A spell checker is a piece of software that verifies if

the word is spelt correctly and alerts the user in the case

of spelling error. In an Indian language, a spelling error

might occur in two forms of words, a sandhi word

(compound word) or a non-sandhi word (root word).

In the case of a sandhi word, the spelling error can

occur at three places.

 Prefix

 Suffix (inflection is also considered as the suffix
in this paper)

 Sandhi place or the word boundary

As Kannada is mostly comprised of complex words,

to make an efficient spell checker either these words must

be split as per their sandhis to find the error or the

dictionary must contain all the compound words to

compare with the misspelt word. It is preferable to have a

sandhi splitter within the spell checker and store only the

morphemes for a non-redundant, effective and

expandable dictionary.

II. RELATED WORK AND BACKGROUND

French scientist Gerard Huet, has developed an online

tool called the ‘Sanskrit Reader Companion’ to segment

and tag simple Sanskrit phrases [3]. To segment the

words, the tool employs simple de-concatenation which

provides several outputs in most of the cases.

The University of Hyderabad, JNU-Hyderabad, IIIT-

Hyderabad, Sanskrit Academy Hyderabad, Poornaprajna

Vidyapeetha Bangalore, Rashtriya Sanskrit Vidyapeetha

Tirupathi and JRR Sanskrit University Jaipur have

together developed an online Sanskrit sandhi splitter. It

can take input in six different encodings as a word. It not

only performs sandhi splitting but also samaasa splitting.

It also has a morphological generator and analyzer with

transliteration [4].

A Sanskrit sandhi splitter has been developed by

Sachin Kumar and Diwakar Mishra for vowel sandhis.

The input is split at every point to output all possible

combinations [5]. Likewise, Marathi Sandhi Splitter has

also been developed by Joshi Shripad S that splits the

sandhi using the sandhi rules [6]. Amba Kulkarni in her

sandhi analyzer has developed a method where the input

is split into two words using the sandhi rules and checked

by the morphological analyzer. If the words aren’t

recognized, then the sandhi splitting is done recursively

[7]. Uma Maheshwar Rao uses an external sandhi splitter

in his Telugu spell checker tool which uses the Generate-

Analyze- Evaluate approach [8].

III. SANDHI RULES

A. Sanskrit Sandhis

 Savarna Deergha Sandhi: Paninian rule ‘akaH

savarnee deerghaHa’ which means if the prefix

ends with a/i/u/R and the suffix begins with

aa/ii/uu/RR the sandhi word will have aa/ii/uu/RR

respectively at the word boundary. E.g. deeva +

aalaya = deevaalaya (a+aa=aa)

 Guna Sandhi: Paninian rule ‘aadguNaHa’. Guna

sandhi is identified when prefix ends with a/aa and

suffix begins with i/ii or u/uu and the sandhi word

contains ee/oo respectively at the word boundary.

E.g. suurya + udaya = suuryoodaya (a+u=oo)

 Vriddhi Sandhi: Paninian rule ‘Vriddhireechi’.

Vriddhi sandhi is identified when the prefix ends

with a/aa and suffix begins with e/ee or o/oo and

the sandhi word contains ee/ai respectively at the

word boundary. Eg. eeka + eeka =eekaika

(a+ee=ai)

 Yan Sandhi: Paninian rule ‘ikooyaNaci’ - Yan

sandhi is identified when prefix ends with i/ii or

u/uu and suffix begins with any vowel other than

i/ii resulting in y/v induced at the word boundary

of the sandhi word. E.g. manu + aMtara =

manvaMtara (u+a=v)

B. Kannada Sandhis

 Loopa Sandhi: Loopa sandhi is identified when

the last vowel is omitted from the prefix at the

word boundary with no restrictions on the

beginning or the ending letters of the two native

Kannada prefix and suffix words. E.g. uuru +

uuru = uuruuru

 Aagama Sandhi: Aagama sandhi is identified

when the letter ‘y’ or ‘v’ is introduced at the word

boundary of two native Kannada prefix and suffix

words. E.g. mara + annu = maravannu

 Aadeesha Sandhi: Aadeesha sandhi is identified

when the letters ‘k’, ‘t’, ‘b’ in the first position of

the suffix is replaced by ‘g’, ‘d’, ‘b’ respectively

in a sandhi word. E.g. maLe + kaala = maLegaala

IV. DICTIONARY AND MORPHOLOGICAL

ANALYZER

A dictionary that contains only the root words and

non-compound words is necessary and sufficient for the

spell checker with sandhi splitter described in this paper.

A list which contains all possible inflections that verbs

and nouns can take in the decreasing order of their

priority is required to identify and remove the inflection

so that the word in its native form is obtained.

A. Directed Acyclic Word Graph (DAWG)

A Directed Acyclic Word Graph, or DAWG, provides

dictionary-like read-only objects. String data in a DAWG

takes 200 times less memory than in a standard dictionary

while maintaining a comparable raw lookup speed [9]. It

also provides fast advanced methods like prefix search.

These features of DAWGs are highly appreciated and

useful for the implementation of the spell checker with

sandhi splitter.

Fig.1. DAWG for avana and avanu

Fig. 2. Linear dictionary storage for avana and avanu

Fig. 3. Reverse DAWG of avanu

In a method where prefix word is read from left to

right and the suffix is read from right to left, a reverse

DAWG structure would be helpful. A reverse DAWG is

obtained by reverting the word and constructing a

DAWG structure of this reversed word. Since DAWG

supports fast prefix search, a reverse DAWG provides

fast methods to search suffix.

B. Morphological Analyzer

 A vibhakti pratyaya is a case marker which consists

of a letter or a bunch of letters attached to the end of a

word. The morphological analyzer discussed in this paper

can identify all the seven vibhakti pratyayas in Kannada

along with the gender and plural markers. A dissected

Kannada word will always be in following form:

[root word][gender marker][plural marker][pratyaya]

In morphological analysis, the word is scanned from

the right till a valid vibhakti pratyaya is found. Though

the main focus is on the nouns, a similar approach can be

used to build an exhaustive morphological analyzer for

all forms of verbs. There is a chance of occurrence of the

sandhis at the joining of the root word and pratyayas. The

sandhi formed is split and the valid pratyaya is removed

successively. Similarly, multiple pratyayas, gender and

plural markers are removed until only root word is left.

 E.g. deevaalayagaLalli

 alli: vibhakti pratyaya

 gaLu: plural marker

 After removal: deevalaya = root word.

V. DESIGN AND IMPLEMENTATION

The concept of “ottakshara”, which is one consonant

immediately following another without an intervening

vowel in Kannada makes it hard to process the Kannada

text in Unicode format. Hence Romanization is

necessary. There are several ways of Romanization and

in this paper the Romanization technique proposed by

Prof. Kavi Narayana Murthy has been adopted [10]. A

one to one mapping of Kannada letters to a homophonic

roman letter or a pair of letters is defined.

 Fig.4. Romanization Chart

A. Sandhi Splitter

Sandhi splitting can be done in the following two ways.

1) Sandhi Place Determination and evaluation: A

sandhi is most likely to be occurring in positions of a

word where deergha or ottakshara is found. Two

consecutive vowels constitute a deergha and two

consecutive consonants constitute an ottakshara. Such

positions in a word are identified. By using sandhi rules,

the possible splits are generated and evaluated for

validity. Using a reverse sandhi rule base in the sandhi

word, the sandhi letters are replaced with its

corresponding constituent letters and split at that position

to generate a prefix and a suffix. Prefix and suffix thus

generated are searched in the dictionary for validity. If

not found in the dictionary, there could either be a spell

mistake in the words or it could be an invalid split. If the

prefix and the suffix are found in the dictionary, then the

split is valid. The correct sandhi would be the one whose

rule was applied to get the split. An iterative search is

made until a valid suffix or prefix is found.
E.g. suuryaoodaya

The two deerghas in the word are identified:

 s uu rya oo daya

According to the savarnadeergha sandhi rule,

uu = u + u. By substituting and splitting,

suuryoodaya = su + uryoodaya. Prefix su and suffix

uryoodaya are both not found in the dictionary.

According to the guNa sandhi rule, oo = a + u. By

substituting and splitting, suuryoodaya = surya + udaya.

Prefix surya and suffix udaya are both found in the

dictionary. Therefore, the sandhi here is guNa.

2) The Prefix-Suffix Method: The given compound

word is scanned from the left to find the prefix, which is

looked up in the dictionary DAWG and the word is

scanned from the right to find the suffix, which is looked

up in the reverse DAWG. Using this approach, the

longest valid prefix and suffix for the word are found.

The resultant sandhi letters which are defined in the

sandhi rules, if found at the overlapping letters of the

prefix, sandhi rules are applied to generate a split.

E.g. deevaalaya

Fig 5. Prefix- Suffix Method

 A novel approach which uses both sandhi place

determination method and the prefix-suffix method could

be used to enhance the results. The sandhi word given as

an input is scanned from the left to right to find the

longest prefix. This longest prefix will be referred to as

expected prefix. This expected prefix is removed from the

sandhi word leaving behind the sandhi letters and

expected suffix, referred to as remainder word. The last

letter of the expected prefix is then removed from the

expected prefix and added to the beginning of the

remainder word. The first one or two letters of the

remainder word is most likely to be containing the

resultant sandhi letters. These letters are looked up in the

sandhi rules to identify the sandhi. Using the reverse

sandhi rule base, the sandhi letters are replaced with the

prefix’s ending letter and suffix’s beginning letter

according to the sandhi rules. The expected prefix is then

added to the remainder word and the words are split. The

prefix and suffix thus generated are looked up in the

dictionary. If both prefix and suffix are found, the sandhi

rule which was applied to split the words is the required

sandhi and the process is terminated as the sandhi, prefix

and suffix words are determined successfully. If the

sandhi is not determined, the second longest prefix is

assigned as the expected prefix and the process is

continued until the sandhi is determined or the expected

prefix is null.

Fig. 6. Novel approach example

Fig 7. Pseudo code of the novel approach

B. Spell Checker

The spell checker with sandhi splitter checks the

given word for spell errors and generates suggestions for

misspelt words. The spelling errors in a corpus are mostly

accidental and, usually, just one or two letters in a word

are affected [11]. The Levenshtein distance is used to

generate a list of suggestions for a misspelt word. The

Levenshtein distance between two words is the minimum

number of single-character edits like insertions, deletions

or substitutions required to change one word into the

other [12]. The spell checker with sandhi splitter can spell

check and generate suggestions for all the words with

single character errors.

The two main scenarios for spell checker with sandhi

splitter are:

1)Word is found in the dictionary: If the word is

found in the dictionary, the word is spelled correctly.

2)Word is not found in the dictionary: If the word is

not found in the dictionary, then either the word is a

sandhi word or the word is misspelt.

 a) The word is a sandhi word: The sandhi splitter

would split the word to find a valid sandhi based on

sandhi rules. If a sandhi split results in valid prefix and

suffix, then the word is valid.

 b) The word is misspelt: If the word is not found

in the dictionary and the sandhi split does not result in a

valid prefix and suffix, the word is misspelt.

C. Generating Suggestions

 In case of a misspelt root word, all the words in the

dictionary which are at a Levenshtein distance one are

listed as suggestions. If the misspelt word is a sandhi

word, then the suggestions are generated based on the

position of the error and the error might be in one of the

three positions:

1) Spell error in the suffix: The sandhi splitter

identifies the sandhi letters using an expected

prefix. The sandhi is identified and its rules are

applied at the sandhi point based on sandhi

letters. A valid split would generate a valid

prefix and a misspelt suffix. All the words

starting with the suffix beginning letter given

by the sandhi rules and at a Levenshtein

distance of one to the expected suffix would be

the intended suffixes. Each of them are joined

with the prefix using the same sandhi rules with

which it was split and a list of suggestions is

generated.

2) Spell error in the prefix: Locating the sandhi

letters becomes tedious if the prefix is misspelt.

In such cases, the sandhi splitter looks for the

expected suffix and sandhi letters are located.

Based on the sandhi letters, the sandhi is

identified and its rules are applied at the sandhi

position. The sandhi split results in a misspelt

prefix and a valid suffix. All the words ending

with the same letter as the prefix ending letter

given by the sandhi rules and are at a

Levenshtein distance of one to the expected

prefix would be the intended prefixes. Each of

them are joined with the suffix using the same

sandhi with which it was split and a list of

suggestions is generated.

3) Spell error the sandhi letters: Since locating the

sandhi letters is impossible in this case,

expected prefix and suffixes are identified.

Using the ending and beginning letters of the

expected prefix and suffix, all possible

expected sandhis are identified. Sandhi rules of

each expected sandhi is applied to get the

intended sandhi words. All the intended sandhi

words which are at a Levenshtein distance of

one to the misspelt word are added to the list of

suggestions.

The spell checker with sandhi splitter also stores the

last picked suggestion and shows it on top the next time

same error appears. Along with spell checking and

generating suggestions, the spell checker with sandhi

splitter can also be helpful in:

a) Root word extractor: The words containing pratyayas

are most likely to have a sandhi formed between the

pratyayas and the root word. Using the sandhi splitter, the

root word is extracted and the pratyayas are separated.
b) Semantic analyser: The semantic analysis of the word

could be made based on the gender, number and tense.

These indicators on the features mostly contain a sandhi

word. Using a sandhi splitter and spell checker, semantic

analysis of the words could be made.
c) Samasa analyser: Though it is not necessary for a

samaasa word to have a sandhi, in the cases where a

sandhi is found in a samaasa word, the sandhi splitter can

be used to find root words.

VI. EXPERIMENT AND RESULTS

The time and space efficiency and performance of the

spell checker with sandhi splitter is measured and is

compared to other conventional spell checkers. The

DAWG structure used in the spell checker with sandhi

splitter for dictionary is highly space efficient and it takes

200 times less space than a spell checker with linear

storage structure.

The DAWG also provides advanced methods for

prefix search. The spell checker with sandhi splitter has

been tested with a test sample of around 700 nouns and

verbs and its various inflections. A verb takes about 80

inflections whereas a noun takes around 10 inflections.

The verbs change drastically when it takes an inflection

making it difficult for the spell checker with sandhi

splitter. The spell checker with sandhi splitter has an

improved performance of 90% correct result in the case

of nouns and about 50% in the case of complex verbs

compared to a conventional spell checker which has only

60% efficiency with only root words stored in the

dictionary. Clearly, the sandhi splitter used in the spell

checker validates the sandhis and provides with an

enhanced performance. The performance can be

enhanced further by extending the sandhi splitter to split

consonant sandhis. The graphs from the experiment

clearly show that the spell checker with sandhi splitter

performs better than the conventional spell checker.

Fig. 8. Time efficiency of spell checker with sandhi splitter compared

to that of a conventional spell checker

Fig. 9. Sandhi Splitter splitting a Kannada Sandhi word

 This Spell Checker with Sandhi Splitter was

developed with Kannada and English language script

support. Spell Checker with Sandhi Splitter, Sandhi

Splitter and Root Word Extractor are the three functions

of this application. This tool is capable of taking either a

single word or an entire corpus as an input. A simple

semantic analyzer developed using this application also

showed convincing results. Providing to the user an

option to add new words to the dictionary greatly

increased the performance of the application.

Fig. 10. Suggestions generated by spell checker with sandhi splitter

VII. CONCLUSION

The spell checker with sandhi splitter achieves overall

80% accuracy with an efficient dictionary. Since

Kannada has a lot of complex words, a sandhi splitter

boosts the performance of the spell checker by a

considerable amount. The novel algorithm proposed

could be extended to split consonant sandhis. Using the

dictionary and sandhi rules of any Indian language, the

application will be able to spilt sandhis of that language.

The Spell Checker with Sandhi Splitter can be improved

upon further to provide a list of exhaustive suggestions

by taking into consideration the semantics and the context

of the word. The sandhi splitter can also be used as a root

word extractor in machine translations systems and can

be used as a basic tool for semantic analysis. The tool can

be enhanced to identify complex samasa words and

resolve them. This application will be helpful in solving

many Natural Language Processing problems efficiently.

REFERENCES

[1] Mikael Parkvall, "Världens 100 största språk 2007" (The World's
100 Largest Languages in 2007), in Nationalencyklopedin

[2] "The Astadhyayi of Panini (6 Vols.) by Rama Nath Sharma at
Vedic Books". www.vedicbooks.net. Retrieved 2016-09-22.

[3] Gerard Huet. ‘Towards the Computational Processing of Sanskrit’
http://yquem.inria.fr/~huet/PUBLIC/icon.pdf,
http://sanskrit.inria.fr/DICO/reader.html

[4] Sanskrit Sandhi Splitter by seven universities. http://tdil-
dc.in/san/transliteration/index_dit.html

[5] Kumar, Sachin, Girish Nath Jha. 2005, “A Paninian Sandhi
Analyzer for Sanskrit” In the Souvenir Abstracts of Platinum
Jubilee International Conference of the Linguistic Society of
India, University of Hyderabad, Hyderabad, pp. 36-37.
http://sanskrit.jnu.ac.in/sandhi/viccheda.jsp

[6] Sandhi Splitting of Marathi Compound Words by Joshi Shripad
S, JNT University, Hyderabad, ISSN (Print): (2319- 2526) Vol.
2 Issue-2, 2013.

[7] Amba Kulkarni, Vineet Chaitanya, Akshar Bharti, Rajeev
Sangal “Anusaaraka., Machine translation in stages”
http://www.iiit.ac.in/~sangal/files/papers/mt_stg_97vivek.pdf

[8] Uma Maheshwar Rao, Amba P. Kulkarni, Christopher Mala,
Parameshwari K. 'Telugu Spell- Checker',
http://sanskrit.uohyd.ernet.in/faculty/amba/PUBLICATIONS/ITI
C-ss.pdf.

[9] Python documentation on DAWG:
https://readthedocs.org/projects/dawg/

[10] Roman Transliteration of Indic Scripts by Kavi Narayana Murthy
and Srinivasu Badugu of University of Hyderabad

[11] Fast and Accurate Misspelling Correction in Large Corpora,
Octavian Popescu and Ngoc Phuoc An Vo

 http://emnlp2014.org/papers/pdf/EMNLP2014171.pdf

[12] Levenshtein, V. I. (1965), "Binary codes capable of correcting
deletions, insertions, and reversals.", Doklady Akademii Nauk
SSSR 163 (4): 845–848

http://en.wikipedia.org/wiki/Kannada
https://en.wikipedia.org/wiki/Nationalencyklopedin
http://www.vedicbooks.net/astadhyayi-panini-vols-p-5273.html
http://www.vedicbooks.net/astadhyayi-panini-vols-p-5273.html
http://sanskrit.inria.fr/DICO/reader.html
http://sanskrit.uohyd.ernet.in/faculty/amba/PUBLICATIONS/ITIC-ss.pdf
http://sanskrit.uohyd.ernet.in/faculty/amba/PUBLICATIONS/ITIC-ss.pdf
https://readthedocs.org/projects/dawg/

