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Abstract 
At the north pole of Saturn has more than 30 years there is a 

giant storm in the shape of a hexagon, each side of which is greater 
than the diameter of Earth. This hexagon does not move on the 
planet, rotates and maintains its shape. This phenomenon still has no 
explanation. The following is a mathematical model of such a storm 
similar to the mathematical model of an ocean whirlpool (proposed 
earlier by the author). Also in the article shows that the energy 
source, that allows the storm to spin for a long time, is the 
gravitational field of Saturn. 

 

1. Introduction 
For more than 30 years at the north pole of Saturn, there has been 

a huge storm of hexagon shape, which side exceeds the Earth's diameter 

[1, 2]. This hexagon does not travel around the planet, but rotates 

keeping its shape. Existing for more than 30 years, the storm 

demonstrates an amazing stability. Many works is dedicated to building 

mathematical models of this storm, but there has not been a generally 

recognized model yet [3]. 

The external similarity between this storm and the oceanic 

whirlpool is clearly noticeable — see Fig.1 and Fig.2. The main difference  

consists in the shapes of surfaces. We can say, emphasizing this similarity, 

that on Saturn a hexagonal "gas vortex" exists unlike round water 

vortexes in oceans of the Earth. 
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Let's also notice that hexagonal gas vortexes can be observed on 

the Earth as well: analysis of the photos made by space satellites showed 

the presence of hexagonal clouds over the anomalous zone in the 

Atlantic Ocean known as the Bermuda Triangle - see Fig. 3 [4]. 

 

 
Fig. 1. 

 
Fig. 2. 

 
Fig. 3. 

http://cdn.fishki.net/upload/post/201507/10/1592643/d9720342cfcb7aace50ae8f2324d0315.jpg


 

 3 

 

Further on, we're going to build a mathematical model of elliptic 

vortex first. It can be built in the same way as the round vortex model [5] 

based on the solution of Maxwell's equations for gravitomagnetism [6]. 

Then, we will show that hexagonal gas vortex is a sum of elliptic 

gas vortexes. Each gas vortex is determined by its own initial conditions 

in Maxwell's equations. In case of several sets of independent initial 

conditions, several solutions, or elliptic vortexes, occur. As the system of 

Maxwell's equations is linear, then actual solution is a sum of these 

solutions. The sum has a form of a hexagonal vortex. 

 
2. Summary of mathematical model of water 
vortex on the Earth 
In the mathematical model of water vortex [5] a system of quasi-

Maxwell's gravitation equations is used [6]. The model is based on the 
following assumptions: Water flows can be described as mass currents. 
Mass currents in the gravitational field are described by Maxwell's 
equations for gravitomagnetism — quasi-Maxwell's gravitation equations 
[6] (hereinafter - QMG-equations). Interaction between moving masses is 
described by gravitational Lorentz forces (hereinafter — GL-forces), 
which are similar to Lorentz forces between moving electric charges in 
classical electrodynamics.  

Mass currents in the vortex circulate within horizontal sections of 
the vortex, as well as vertically. Kinetic energy is spent on losses due to 
viscous friction. These energy comes from a gravitating body — the 
Earth. Potential energy of the vortex does not change, and therefore is 
not spent, i.e. in this case, there is no conversion of kinetic energy into 
potential energy and vice versa. However, the gravitating body expends 
its energy on creating and maintaining massive currents, i.e. preserving 
the vortex. 

The water vortex, being a type of water flow also satisfies Navier–
Stokes equation for viscous incompressible liquid. In [5] it's shown that 
water pressure in the vortex can be calculated according to Navier–
Stokes equation depending on mass currents. In this case, the locus, 
where vertical pressure component is constant on free surface, occurs to 
be a circle of given radius. Pressure at the free surface reflects the shape 
of the vortex surface. Therefore, the vortex surface shall contain 
concentric projections and deeps corresponding to wavelike dependency 
of pressure on radius. Based on this in work [5] an image of the vortex 
surface is reproduced – see Fig. 4. 
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The similar approach is used below. We only need to prove the 
existence of a solution of Maxwell's equations for elliptic vortex, and 
then, for hexagonal vortex. 

 
Fig. 4. 

 

3. Mathematical model of elliptic vortex 
Maxwell's equations for stationary gravitomagnetic field will be as 

follows: 

  0div H ,      (1) 

0)(div J ,      (2) 

Jrot(H) ,      (3) 

where H  - gravitomagnetic intensities, J  - densities of mass currents. 

Let's consider these equations in elliptic coordinate system z,,   

[7, p. 161] - see also Fig. 5: 
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where 

     22 cosch  ,     (7b) 

а - half-focal distance, 

coordinates z,,   correlate with orthogonal coordinates 

zyx ,,  through the following formulas 

        .,sinsh,cosch zzayax      (7c) 
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With fixed z,  the point draws an ellipse in horizontal plane. 

With fixed z,  the point draws a hyperbola in horizontal plane. 

Particularly, Fig. 5 shows ellipses and hyperbolas drawn in accordance 

with (7c) under 1a in relation to  20,2.10  . Fig. 6a 

demonstrates the same diagrams in logarithmic scale. 
One of possible solutions of equations (4-7a) have the following 

form (as shown in Appendix 1): 
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where constants  hh ,  correlate through the following relation 

0  hh .      (14) 

Diagrams of functions (8-13) under 1,1,1   hha  are 

shown in Fig. 6 on planes  yx, , where  yx,  are defined according to. 

Diagrams of functions (8-13) under 1,1,1   hha are shown on 

Fig. 6 on planes  yx, , where  yx,  are defined according to function 

(7c) in relation to  20,0 max  . 

The left column in Fig. 7 states functions )(),(),(   zHHH  

under the stated value of  . Furthermore, a solid line, dots and a dashed 

line show these functions under 67.3,83.1,05.1  respectively. 

The right column in Fig. 7 states functions )(),(),(   zHHH  

under the stated value of  . Furthermore, a solid line, dots and a dashed 

line show these functions under 4.1,7.0,4.0  respectively. 

Finally, Fig. 8 states functions )(),(),(   zJJJ and 

)(),(),(   zJJJ  in the same way. 
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4. Mathematical model of hexagonal vortex 
The image shown in Fig. 4 is determined by the initial conditions – 

– massive currents in the bottom of the vortex. In case of several sets of 
independent initial conditions, several solutions in the specified form 
occur. As the system of Maxwell's equations is linear, then actual solution 
is a sum of these several solutions. If the group of initial conditions 
determines a group of elliptic vortices with a common center, then the 
common solution will determine the vortex, shaping total ellipses. 

It can be shown that the shape of total ellipses represents a closed 
curve Г. This means that the locus of points with constant vertical vector 
of pressure on a free surface differs from a circle of the stated radius 
having a form of a closed curve Г. The value of the vertical vector of 
pressure on this curve Г will be of the same value. Consequently, in this 
case the surface of the vortex would be concentric curves Г instead of 
concentric circles.  

Each closed convex curve Г can be decomposed into a sum of 
ellipses. Evidence may be as follows. Any such curve can be represented 
with two functions of angle  :  

 xfx  ,       (1) 

 yfy  .      (2) 

Discrete functions (1, 2) represented in this way can be 
decomposed into trigonometrical series of the following kind:  
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Here, each pair of summands  nn yx ,  is an ellipse. Consequently, the 

curve Г is a sum of ellipses. 
Appendix 2 describes expansion of the hexagon into ellipses. The 

solution for elliptic vortex is stated above. Consequently, there is a 
possible group of initial conditions for a hexagonal vortex. Observations 
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of Saturn and the Bermuda triangle proved existence of the above-
mentioned combination of initial conditions.  

 

Appendix 1. Solution of Maxwell's equations 
in cylindrical coordinates 
Section 3 describes Maxwell's equations in elliptic coordinates 

z,,   (3.4- 3.7a). 

Let's find the solution of these equations assuming that all variables 

are unchanged along axis z. In this case, equations (2, 11-13, 14) will be 

as follows: 
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From (1, 8-13) we find that 
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2222

5
cossinchsh

3
hh

a
J z 


    (15) 

By substitution of (2, 3) into (4), we will obtain the following 

       

0
11

1
cossin

1
chsh

1

22

2






















































zz

zz

H

a

H

a

H

a

H

a
 

or 

        0cossinchsh 





















 zz HH

.   (16) 

From (6, 7) we find that 
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   
 

   
 

0cossinchsh
22

















 





 .   (17) 

Comparing (16, 17), we can notice that 
2zH .       (18) 

From (2, 3, 18), we obtain: 

 










21

a
J ,      (19) 

 










21

a
J .      (20) 

or, taking (6, 7) into account, 

    cossin
2

5


a
J ,     (21) 

    chsh
2

5


a
J .     (22) 

Thus, if variables .H and H  are determined according to (8, 9), 

respectively, then variables zH , J , J , zJ  are determined according to 

(18, 21, 22, 15), respectively, and condition (14) is satisfied. 
 

Appendix 2. Decomposition of hexagon into 
ellipses. 
Let's consider a hexagon shown in Fig. 1. It can be represented by 

two functions of angle  : 

 xfx  ,       (1) 

 yfy  .       (2) 

a1a5

a6

a4

a3

a2



y

x

 
Fig. 1. 
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These functions are shown in Fig. 2. Let's represent these functions 
as a set of points. In Fig. 2 each line section is represented by three 

points: 3n , and line section [a1, a2] is duplicated. In this case each 

function is described by nN 7  points. Discrete functions (1, 2) 
determined in such a way can be decomposed into the trigonometric 
series of the form (4.1, 4.2). 

a1 a5 a6a4a3a2

-1 0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

a1

 xfx

 yfy


 
Рис. 2. 

 

Modeling showed that for 1n  the constant values of first 
components can be neglected.  Therefore, functions (1, 2) in polar and 

cylindrical coordinates can be approximated by  1N  functions, which 

describe ellipses. The sum of these functions represents a hexagon. For 
example, Fig. 3 and Fig. 4 show geometric objects obtained as a result of 

such approximation for 3n  and 9n , respectively. Fig. 6 shows the 

first 4 ellipses in the decomposition of the hexagon for 3n . The first 
ellipse is shown in dots. 
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1
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Fig.3, n=3Saturn.m
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-0.5

0

0.5
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-0.5
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1
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Fig.4, n=9Saturn.m
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