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A static cosmological metric is derived that accounts for observed cosmic redshift 

without the requirement for an expanding universe. The metric is interpreted in such 

a way as to predict a universal potential that accounts the anomalous acceleration of 

outlying stars of spiral galaxies (the galactic rotation curve), obviating the need for 

dark matter or modifications to general relativity. 

 

 

I. Introduction 

 

The Big Bang (BB) theory has been questioned over its 85-year history for a number of 

fundamental reasons. That all the matter in the universe was created instantly at a single 

point some finite time in the past defies intuition as well as established conservation laws. 

That the dynamic general relativistic Friedmann-Lemaitre-Robertson-Walker (FLRW) 

metric, which forms the basis of the BB theory, is orthogonal in the space and time 

coordinates raises questions about its mathematical validity, a concern expressed by 

Friedmann himself in his original paper of 19221. That Hubble deep-field images 

displaying thousands of distant galaxies reveal no apparent galactic structural evolution 

seems to suggest the universe is much older than the BB theory purports. Well-established 

patterns of stellar evolution indicate some stars predate by billions of years the event of the 

Big Bang, pointing to a flaw in the theory. Questions may also be raised about the 

superluminal expansion predicted by the FLRW metric, implying possible violations of 

locally observed special relativity. That Einstein himself believed singularities can’t exist 

casts doubt on the singular origin of matter. These objections are foundational. 

 

It is also unsatisfying that the BB theory fails to predict more recent observations, such as 

the apparent increase of expansion rate known as cosmic acceleration2,3,4, currently 

explained by reintroducing Einstein’s abandoned cosmological constant Λ and/or by 

postulating an ad hoc mysterious quantity called dark energy. The BB hypothesis also does 

not account for early-epoch cosmic inflation5, nor does it accommodate the unexpectedly 

large rotation velocities of outlying stars in spiral galaxies, whose anomalous centripetal 

acceleration is often attributed to an unidentified substance called dark matter. A further 

defect in the theory is the premise of homogeneity. The universe in fact manifests large-

scale inhomogeneities in the form of clusters, walls and voids. Averaging over these 



density variations has introduced difficulties of its own, a problem known as back-

reaction6. 

 

Generally, astrophysicists as a community acknowledge these problems inherent in the BB 

hypothesis7,8,9. Scores of papers are published annually in peer-reviewed journals such as 

Physical Review D exploring possible solutions to these problems10,11,12. Nevertheless, the 

FLRW metric of the expanding universe remains the basis for modern cosmology, and is 

widely accepted among physicists as a valid model. This standard theory of cosmology has 

been dubbed the Lambda-Cold-Dark-Matter (ΛCDM) model due to its reliance on 

Einstein’s cosmological constant to account for cosmic acceleration, and its appropriation 

of cold dark matter to explain the galactic rotation curve. 

 

The ΛCDM model is the most comprehensive gravitational model of the universe currently 

known, and has a distinct appeal in that it preserves general relativity (GR) in its original 

form. Numerous theories of modified gravity, including bimetric,  bigravity or massive 

gravity theories13,14, scalar-tensor theories (eg. the Brans-Dicke theory15), tensor-vector-

scalar (TeVeS) theories16, vector-tensor theories17, modified Newtonian gravity 

(MOND)18, and f(R) gravity theories that modify Einstein’s field equations (EFE)19,20,21,22, 

have been investigated, but so far none have proven sufficiently compelling to replace GR 

as the prevailing theory of gravity. Many such variations suffer problems in the limit of 

solar system scales, where, to agree with observation, they must predict the same results as 

GR, giving rise to complicated schemes such as the chameleon mechanism23,24,25 and 

Galileon fields26. Many of these theories fail the test of Occam’s Razor. 

 

The present article discusses the results of an investigation into an alternate description of 

the universe. This description obviates the need to modify general relativity, while also 

eliminating any requirement for dark matter. It accounts in a natural way for the redshift-

distance relation, and postulates a simple metric explanation for the galactic rotation curve. 

This paper is organized as follows:  Section II discusses the history of static theories of the 

cosmos. In Section III, the observational evidence for Einstein’s field equations is briefly 

analyzed. A general equation for cosmic redshift and a static metric conforming to 

observed redshift are presented in Section IV. Section V offers a physical interpretation of 

the static metric. The consequences of the interpretation for MOND and the galactic 

rotation curve are discussed in Section VI, with a brief conclusion presented in Section 

VII. 

 



II. Static Models 

 

As a result of the current emphasis on ΛCDM and to some extent on modified gravity 

theories, other models, particularly static universe models, have received less attention in 

recent decades. Einstein’s first cosmological model was that of a static universe, its 

heavenly bodies held in place by a form of background energy described by an ad hoc 

cosmological constant Λ. He abandoned the static universe model when the Hubble 

redshift-distance relation was discovered, as the latter seemed to indicate a dynamic 

expanding universe. This, it turns out, was a misconception, as will be discussed in section 

IV. 

 

Fritz Zwicky reintroduced in 1929 a static model of the cosmos, postulating that photons 

lose energy during their transit across the universe due to an unknown phenomenon called 

tired light, resulting in the observed redshift. However, no verifiable physical mechanism 

for tired light was ever found, and his theory was subsequently discredited. Robert H. 

Dicke in the early 1950’s briefly investigated a static universe theory, according to which 

redshift was induced by a slowing of the speed of light (also proposed by other theorists27) 

due to increasing visible matter along the past null cone, causing a vacuum refractive index 

(also proposed by others28) from Machian induction. Dicke soon abandoned this theory in 

favor of the Brans-Dicke theory, a scalar-tensor variation on general relativity. Recently, 

Dicke’s original static theory has been re-investigated by Alexander Unzicker, who 

demonstrates its consistency with Dirac’s large number hypothesis and, to some extent, 

with observations related to cosmic acceleration29. Other than Unzicker’s treatise, little has 

been published about Dicke’s static theory, and it is difficult to reproduce his variable-

light-speed redshift mechanism. At any rate, in metric theories of gravity, variations in the 

speed of light can be transformed away, and any such redshift cancels. This paper, for 

reasons to be explained in Section IV, focuses exclusively on metric theories. 

 

It is important to recall that the early steady state theories, such as that of Fred Hoyle, 

Hermann Bondi and Thomas Gold, are distinct from static models. Steady state theories 

predict a constant universal mass-energy density preserved by the continuous creation of 

matter in the vacuum between receding galaxies. They are thus dynamic models in which 

redshift arises from recession velocity. 

 

 



III. Observational Evidence for Einstein’s Field Equations 

 

That the Friedmann-Lemaitre-Robertson-Walker metric is an exact solution to Einstein’s 

field equations for uniform cosmic mass-energy density has been touted as a strong 

argument in favor of the Big Bang. To date, no observations have contradicted general 

relativity, and it remains our best descriptive theory of gravity (although as Einstein 

himself admitted, it does not address the origin of gravitational effects). However, one 

important consideration that is often overlooked in the literature is that all tests of GR up to 

the present time have dealt only with the Schwarzschild metric, which is a unique exact 

solution for the vacuum, ie. for 0T   . There have so far been no observational tests of 

GR in the presence of a matter-energy distribution30, ie. for 0T   . Thus, non-vacuum 

solutions of EFE are without observational basis and remain speculative. 

 

In this vein, the FLRW metric, a solution for a uniform mass-energy density, is also 

speculative. As an aside, this leads to the question of whether a complete theory of gravity 

could be constructed from Schwarzschild metrics alone. Some researchers have already 

suggested that elementary particles such as the electron are in fact tiny black holes, and the 

quantum properties of these particles are strikingly consistent with this hypothesis. If 

correct, it would mean the gravitational attraction of bulk matter derives from the 

superposition of numerous Schwarzschild metrics. The gravitational properties of the 

cosmos as a whole might then be approximated by an irregular grid of Schwarzschild 

metrics, one for each galaxy. The first problem with this model is that GR is nonlinear and 

metrics do not linearly superpose, making calculations difficult. Another deeper problem is 

that a Schwarzschild Grid Model (SGM) of the universe, while essentially sound from a 

physical standpoint, provides no obvious explanation for cosmic redshift. The most 

promising candidate redshift mechanism, the frame-dragging of photons as they traverse 

galactic gravitational fields, involves angular momentum and radial distance rather than the 

square of these quantities, causing a cancellation of energy changes for galaxies co-rotating 

and counter-rotating with the photon’s velocity. Explaining cosmic redshift in SGM is 

equivalent to explaining tired light, which has proven elusive. 

 

IV. Cosmic Redshift 

 

That Einstein’s field equations have never been verified for 0T    means the FLRW 

metric is purely theoretical. It is therefore valid to explore alternative metrics to describe 



cosmic space-time curvature. Such metrics, of course, must conform to the observed 

Hubble redshift-distance relation31, as well as to approximate Minkowski space-time in 

local intergalactic neighborhoods 

 

In the following analysis, only metric theories of gravity will be considered. Metric 

theories have the advantage that they represent gravitation as a purely geometrical 

phenomenon. They thus automatically obey the principle of equivalence. Metric theories (a 

category of tensor theory) are also simpler than bimetric, scalar-tensor, and tensor-vector-

scalar theories, and are therefore more likely to pass the test of Occam’s razor. For 

convenience, I will work in two dimensions t and r, since the transverse dimensions 

represented by θ and Φ are usually irrelevant to redshift.  

 

Since any metric tensor g   is an exact solution to EFE for some mass-energy distribution, 

we are free to postulate new metrics without violating GR. What this means is that any 

tensor g   such that 
2 2 2 2

00 11ds g c dt g dr   is consistent with the observed cosmic 

redshift and is approximately Minskowski for nearby intergalactic regions, is a valid 

candidate as a basis for cosmological theory. The question then becomes: what metrics 

other than FLRW approximate local Minkowski space and predict the observed redshift-

distance relation? 

 

Here, a brief digression is in order. In the original formulation of the BB theory, it was 

assumed cosmic redshift was a Doppler effect due to recession velocity. This tacit 

assumption led to the unavoidable conclusion that the universe was dynamic and galaxies 

were flying away from each other. As a result, most researchers rejected the possibility of a 

static universe. Later on, it was realized that cosmic redshift is not a Doppler effect but an 

intrinsic property of the expanding space of the FRW metric. Once it was understood that 

redshift is intrinsic to the metric, one could imagine some theorist might have gone back 

and revisited the Doppler shift assumption that dictated a dynamic description of the 

universe. Their effort might have led to the idea that redshift could be an intrinsic property 

of a static metric, obviating the need for adding a physical tired light mechanism. 

Apparently, this was not done, or if done, was not widely recognized. The present study is 

in part an attempt to rectify this omission. 

 

Bearing this background in mind, we may ask if there exists a static metric that accounts 

for cosmic redshift. To answer this, we will need a general equation for redshift as a 



function of g  Assuming the variables t and r of the metric are orthogonal and separable, 

the line element can be written: 

 

2 2 2 2 2 2 2 2 2 2 2

00 11 ( ) ( ) ( ) ( )r t r tds g c dt g dr f r f t c dt h r h t dr                    (1) 

 

For photons following null geodesics, we set ds=0, producing the differential equation: 
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which can be readily integrated. Using the resultant integral equation to calculate the 

proper time delay between wave crests at the points (t,r) of emission and observation, the 

general equation for redshift as a function of g   turns out to be: 

 

00

00

( )
1 ( )

( )

e oo
c e

e o e

g g
z b r

g g




                                              (2) 

where o  is the proper observed frequency, e  is the proper emitted frequency, subscripts o 

and e indicate evaluation at observation point ( , )o ot r  and emission point ( , )e et r  

respectively, and cb  is a monotonically increasing function of .er  Here eg  and og  are 

functions of time given by: 
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Solving the equation 1+ z = b, for b a function of photon travel distance ,er r   we obtain 

a family of static or time-independent metrics, ie metrics for which ft(t) = ht(t) = 1, as will 

be shown. Recall first that the Schwarzschild metric is also static and produces a distance-

dependent redshift. One important difference between the Schwarzschild metric and 

cosmological metrics is that in the former case, the observer is assumed to be away from 

the origin, while in the latter, the observer is located at the origin. Stated another way, in 

the Schwarzschild case, a photon traveling toward the observer follows a path of increasing 

r, while in the cosmological case, it follows a path of decreasing r. Therefore, to formally 

compare the two metrics, the radial coordinate r needs to be inverted by some 

transformation  '.r r  This will be discussed in section V. 



 

To solve 1 ( )ez b r   from the general redshift formula of Eq. (2), note that eg and og are 

functions of time and are therefore equal to unity for a static metric. Thus we have 

 

1
oo o

oo e

g
z

g
   

 

where 00g is a function of r alone. Hence from Eqs. (2) and (3): 
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The value 1 + z should conform, at least approximately for our present purpose, to current 

astronomically observed redshift as a function of distance. We can turn to standard 

cosmology to find out what this redshift relation is. For simplicity, we will use the standard 

model prior to postulation of cosmic acceleration. This model was based on the FLRW 

metric, which in the case of a flat (k=0) universe is given by 

 

2 2 2 2 2( )ds c dt a t dr   

 

Here 
2

3( )a t t is a scale function derived from thermodynamic equations for pressure 

and density. Redshift as a function of time is thus 
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as can be seen by substitution into Eq.(2). To express this as a function of r rather than t, 

we assume as an approximation that the speed dr/dt of light is constant over universal 

distances, so that ( )e o o er r c t t   for incoming photons. Since 0or   for an observer at the 

origin, we have ( )e o er c t t   and therefore 
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Now, if we arbitrarily define a constant oR ct , where ot  is the present time or the time 

elapsed since t=0, then R is the distance light has traveled since t=0. Substituting into the 

above gives: 
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and thus 
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Hence rf  as a general function of r is given by 

2 3

( ) 1r

r
f r

R

 
  
 

 

as can be seen by evaluating ( 0)r of r  = 1 for the numerator of Eq. (4). Inserting this into 

the static line element of Eq.(1), with functions of t set to unity, we obtain: 
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                                      (5) 

 

This represents a family of static metrics that predict the standard cosmic redshift. Note 

that according to Eq. (2), ( )rh r  does not affect redshift, and so can be any appropriate 

function. 

 

The metric element 00 (1 )g q r R   where q(x) is some monotonic function of x, can be 

tailored to fit any redshift anomalies such as cosmic acceleration. While this may seem an 

arbitrary feature of the theory, it is irrelevant to the main point, which is that static metrics 

are capable of producing the observed cosmological redshift. 

 

The constant R has several interpretations in the BB theory. For instance, in a closed 

FLRW metric (k=1), the cosmos forms a topological hypersphere for which R is often 

associated with the radius of the universe. R might also be interpreted as the distance light 

has traveled since moment of the BB. In addition, R is sometimes associated with the 



distance to the redshift horizon, meaning the distance from which approaching light is 

infinitely redshifted. In the static model described by the above line element, R is 

obviously a singularity of some sort, since at r=R, the time component of the metric 

vanishes. At the very least, R is an event horizon beyond which matter cannot be visually 

observed. R can therefore be called the radius of the visible universe. This does not mean 

that matter cannot exist beyond this radius, only that we cannot see it. It is still possible to 

detect such matter gravitationally, much as we might detect the matter inside a black hole. 

Thus the visible radius R is distinct from the physical radius of the universe uR . There is 

nothing to prevent uR  from being located at infinity. 

 

Before investigating the properties of the static cosmological metric, it is instructive first to 

evaluate the redshift equation for the static Schwarzschild metric. We have, from Eq. (2),  
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where, for a fixed emission point er , sb  is a monotonically increasing function of 

observation point or  due to an increase with or  of the numerator. In the case of the static 

cosmological metric of Eqs.(1) and.(3), on the other hand, cb is a monotonically increasing 

function of emission point er  due to an decrease with er  of the denominator. Thus, 

comparing the two cases, we have redshifts that seem, at first glance, to be counter-

increasing with r: 

 

2(1 / ) vs. (1 2 / )r R GM c r   

 

but which in fact both increase with distance once we have inverted the r coordinate such 

that 'r r , as previously mentioned. The inversion function is defined in the next section. 

 

V. Interpretation of the Static Metric 

 

How is a static cosmological metric as expressed by Eq.(3) to be interpreted physically, ie, 

what kind of material universe might give rise to such a metric? I will refrain from 

calculating until a later paper the plethora of Christoffel symbols 

  and curvatures R  



required for substitution into EFE with 0T  , which might not even be physically 

correct, and claim that 00 (1 / )g q r R   is the general form of the time component of the 

metric for an inverted quasi-black hole, to be defined. This result can be derived by first 

applying the radial inversion relation 
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r r
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This relation is symmetric in r and r’, and turns functions that decrease with r into 

functions that increase with r’, as is needed to formally compare cosmological and 

Schwarzschild metrics. Note that when r is equal to R, r’ is also equal to R, and when r 

approaches zero, r’ approaches infinity and vice versa. 

 

Applying Eq.(7) to the static time component 00 (1 / )g q r R   yields 00 (1 / ')g q R r  . 

Now, if we assume
2~ 2 /uR GM c  (twice the “universal radius” 

2~ /u uR GM c  in standard 

terminology), where uM  is the estimated mass of the universe often assumed in the 

literature, the metric time component in terms of r’ becomes 

 

2

00 (1 2 ')ug GM c r                                             (8) 

 

This is the time component of the Schwarzschild metric for a mass uM , and might be 

imagined to describe a black hole of Schwarzschild radius 
2' 2 ~s ur R GM c R  . Why 

would this describe a black hole as opposed to some other extended mass distribution? To 

answer this question requires further interpretation. First, since ' 0r   as r  , the 

metric component of Eq.(8) would be associated with a “black hole” centered on r at 

infinity. Loosely speaking, we, the observers at r=0, would thus be completely surrounded 

by this imagined black hole, whose center is an infinitely large sphere at r   , and whose 

event horizon is an enclosed concentric sphere at r R . 

 

For this to be a physical black hole, its center must lie at a physical point r’=0. Thus, a 

sphere of infinite radius r    would coincide with a point r’=0. Geometrically, this 

requires that spheres centered on the observer at r=0 increase in size with increasing radius 

up to some maximum value, then decrease in size and “wrap back around” into a point at 

r   , somewhat like latitude circles get bigger with increasing distance from the south 

pole, then “wrap back around” into a point at the north pole. The difference is that the 

earth’s radius is finite, while the universe would be a closed topological hypersphere of 



infinite radius. These are attempts at visualizing the implications of the mathematics, 

which, despite any limitations in our imagination, is rigorous within the framework of 

assumptions. 

 

Now we can discuss why Eq.(8) would be associated with a “black hole” rather than a 

more extended mass. The first reason is Olber’s paradox. Were we completely surrounded 

by a sphere of visually observable matter, the night sky would not be dark. If instead we 

are surrounded by an event horizon at r=R, from which any approaching photons are 

infinitely redshifted, the night sky would be black as observed. The matter uM  in Eq.(8) 

must therefore lie on the other side of the event horizon, as it would for a black hole. The 

second reason is that postulating an event horizon at r=R is consistent with common 

cosmological thinking. 

 

I have been placing “black hole” in quotes because the complete inverted cosmological 

metric is not precisely that of a black hole. So far, we have examined only the time 

component 00g . When we consider the space component 11g , which by analogy would be 
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and substitute this into the cosmological metric, we must also transform the differential 

dr according to Eq.(7), with the result 
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This introduces a factor of  
4 4/ 'R r  into 11g  Furthermore, the standard redshift-distance 

relation imposes a function 2/3( ) ~q x x  on both 00g and 11g , rendering them different from 

the g of the Schwarzschild metric. 

 

Combining the above considerations, the line element for a static universe with observed 

cosmic redshift is given, in terms of orthogonal coordinates (t,r’), by: 
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where ( , ')( ) k t rq x x  for some exponential function k ~ 2/3 to be determined by redshift 

observations. The mathematical form of this line element resembles that of a 

Schwarzschild metric in terms of inverted coordinate r’, and so will be said to represent an 

inverted quasi-black hole. 

 

VI. Consequences for MOND 

 

It was recognized in the first half of the twentieth century, and famously noted by Fritz 

Zwicky, that the rotation rates of outlying stars in spiral galaxies were too high to be 

explained by the Newtonian gravitational attraction of visible matter alone. The fall-off 

rate of rotation velocity as a function of r is called the galactic rotation curve32. In 

particular, the rotation curve would be expected to fall off as 1/r in regions far from the 

nucleus where galactic matter can be approximated as a point mass. What is actually 

observed, however, is a rotation curve that increases with r as expected in the inner regions 

of galaxies, but which approaches a constant velocity independent of r in outlying regions. 

General relativity cannot account for the discrepancy, since the outer stars orbit at low 

velocity and acceleration, making relativistic corrections negligible. Lacking an alternative 

explanation, astronomers postulated that the nuclei of spiral galaxies were surrounded by a 

halo of unidentified invisible matter which would account for the unexplained centripetal 

acceleration. This came to be called dark matter. However, after decades of searching both 

theoretically and experimentally for massive particles that do not interact with light, no 

viable dark matter candidates have been verified to exist. This discrepancy led to the 

development of a number of theories of modified gravity intended to obviate the need for 

dark matter. 

 

One compelling argument for modifying gravity itself arose from the fact that extensive 

statistical sampling of galactic rotation curves revealed a pattern common to nearly all 

spiral galaxies: Regardless of the galaxy’s mass or size, its rotation curve begins to flatten 

at just that radius where the centripetal acceleration takes on the small value 

8 2

0 1.2 10 cm/seca x  =
2 / 'c R , where 'R  is a cosmic-scale distance defined by this 

equation and approximately equal to 3.5 times the radius R of the visible universe . This 

value 0a  appears to be a universal constant applying to all galaxies. Dark matter 

distributions, on the other hand, would be expected to vary from galaxy to galaxy, and 

would not give rise to uniform behavior. 



 

One theory of modified gravity first proposed by Milgromm, called Modified Newtonian 

Dynamics (MOND), is especially useful for analysis. MOND, a purely phenomenological 

descriptive formalism, applies curve fitting to a large statistical sample of galaxies to arrive 

at a mathematical equation for the average galactic rotation curve18. This equation is 

expressed as an interpolation formula joining the curve of the Newtonian inner region with 

that of the anomalous outer region. A central force law can be calculated from this formula 

and used to validate other causal theories, hence its usefulness. This MOND central force 

falls off as roughly 21/ r  for r << 0R  and 1/ r  for r>> 0R , where 0R  is a critical radius, 

called the MOND radius, usually located near the visible edge of the galaxy. The MOND 

radius 0R  is defined as that radius where the Newtonian acceleration 
2( ) /Na Gm r r due to 

enclosed visible matter is equal to the observed anomalous acceleration 0a . This leads to 

the value 0 '/ 2sR r R , where sr  is the Schwarzschild radius of the galaxy’s visible 

matter, and R’ ~ 3.5R is the cosmic-scale distance defined above. 

 

The MOND acceleration 0a can be expressed in terms of 'R  and R, with the result 

2 2

0 / ' ~ / 3.5a c R c R . That the universal constant 0a  is determined from observations 

independent of the mass uM or radius R of the visible universe, yet involves a constant 'R  

that is this close in value to R seems a remarkable coincidence. Indeed, it suggests that the 

rotation curve anomaly is not due to an unexpected feature of local gravity but rather to 

some unknown cosmic-scale phenomenon. 

 

One candidate for such a cosmic-scale phenomenon is the inverted quasi-black hole 

derived in previous sections. As can be seen from the general relation 
2

00 1 2g c    for 

Schwarzschild metrics, the quasi-black hole line element of Eq. (9) suggests a potential 

2/ ' / 2 'uGM r Rc r   . Expressing this in terms of r, where 
2 / 'r R r , we have  

2 / 2rc R  . The acceleration a  associated with   can be found by differentiating with 

respect to r, giving 2 / 2a c R  . This is remarkably close to the characteristic MOND 

acceleration 
2

0 / 3.5a c R  derived above. The interpretation would be that outer galactic 

stars are accelerated not only by the gravitational potential of the galaxy but also by that of 

the surrounding cosmic inverted quasi-black hole. The latter field, being very small, is 



normally undetectable, but becomes observable in the particular case of very small 

accelerations at the outer edges of galaxies. 

 

VII. Conclusion 

 

Within the framework of a cosmic-scale inverted quasi-black hole, the anomalous galactic 

rotation curve can be approximately accounted for without resorting to modifications of 

general relativity, and without positing the existence of dark matter. The theory is derived 

from the single assumption that universal space-time is described by a static metric which 

approximates Minkowski space-time for local intergalactic regions and conforms to the 

observed redshift-distance relation. All specifics of the theory are deduced from this 

assumption. The inverse black hole cosmological theory is not necessarily a theory of 

modified gravity, since there is no reason to expect the inverted quasi-black hole metric is 

not a solution to Einstein’s field equations for some physical distribution of matter. If the 

concept of a quasi-black hole centered at infinity seems paradoxical, one should bear in 

mind that the existence of the universe is itself paradoxical, and therefore its ultimate 

explanation should logically require a paradox of equal magnitude. 
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