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An approach to deriving tidal accelerations is presented using a modified solution approach based
on velocity dependence of acceleration for a weak field. Further explorations of this approach are
investigated using general relativity to see how it might fit into its framework and whether any
modifications may need to be suggested.

I. INTRODUCTION

In a recent paper it was proposed that
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will hold in a weak field. Applicable to strong fields the
Schwarzschild result is
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where µ = GM/c2 and r is measured from the center and
outside the mass. This equation follows from a solution
to the field equations of general relativity1 for a static,
non-rotating, spherical mass
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−r2dθ2 − r2 cos2 θdφ2.

II. ANALYSIS

The Newtonian equation for tidal accelerations is

atidal = da =
2GM

r3
dr, (4)

where dr is the radial separation distance of two points
in a gravitational field, and objects at an outward ra-
dial distance dr accelerate away from the observer at a
distance r.

Alternatively, we can derive the expected tidal forces
consistent with Eq. (1). We have
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Now, letting γ = 1√
1−v2/c2

and finding a common de-

nominator we find
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where we have eliminated vanishing differential terms as
dr � r. The velocity dependent term γ implies that tidal
forces will tend to reduce for higher velocities.

III. SCHWARZSCHILD METRIC

Now, beginning from Eq. (2), but letting rs = 2µ, we
have
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for the tidal acceleration for the Schwarzschild metric,
see Appendix A for a detailed derivation.

For the case where r � rs the Schwarzschild radius,
we have

da =
2GMdr
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(3− 2γ2)

γ2
. (8)

Now, if we let γ = 1 + ε then γn ≈ 1 + nε and so, to first

order, (3−2γ2)
γ2 ≈ (1 − 4ε)(1 − 2ε) ≈ 1 − 6ε ≈ 1

γ6 and so

twice the relativistic effect as the weak field formula in
Eq. (5). Also, we can see that for relativistic velocities
the tidal forces become compressive when γ2 > 3/2 or
about 58% of the speed of light.

For the non-relativistic limit when γ → 1, we have

da =
2GMdr

r3
, (9)

which agrees with the Newtonian formula, in Eq. (4), as
expected.

For the ultra-relativistic case with γ →∞ we find

da = −4GMdr

r3
, (10)

so that nearby objects now accelerate towards the ob-
server at twice the separation rate of the Newtonian case.
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IV. DISCUSSION

The tidal acceleration between point objects separated
by a distance dr is shown by the method above to also
be dependent on the initial velocities of the falling ob-
jects, as shown in Eq. (6). This is only a first weak field
approximation. A more exact solution will be acquired
by looking at the General Relativity case. The first at-
tempt will be to see how this fits into either Schwarzschild
or the geodesic equations to see where and how General
Relativity deals with the velocity dependence.

Appendix A: Schwarzschild metric

We have the tidal acceleration
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Using a common denominator we produce
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Expanding the brackets we find
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Now, as we let dr → 0 only the last term will be signifi-
cant leaving
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