Research Project Primus

Predrag Terzic´

e-mail: pedja.terzic@hotmail.com

April 25 , 2016

1 Compositeness tests for $N = k \cdot b^n \pm c$

Definition 1.1. Let $P_m(x) = 2^{-m} \cdot ((x -$ √ $(x^2-4)^m + (x+$ √ $\left(x^2-4\right)^m$, where m and x are nonnegative integers.

Conjecture 1.1.

Let
$$
N = k \cdot b^n - c
$$
 such that $b \equiv 0 \pmod{2}, n > bc, k > 0, c > 0$

and $c \equiv 1, 7 \pmod{8}$ *Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{bk/2}(P_{b/2}(6))$ *, thus If N* is prime then $S_{n-1} \equiv P_{(b/2) \cdot [c/2]}(6) \pmod{N}$

Conjecture 1.2.

Let $N = k \cdot b^n - c$ *such that* $b \equiv 0, 4, 8 \pmod{12}, n > bc, k > 0, c > 0$

and
$$
c \equiv 3, 5 \pmod{8}
$$
.
Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus
If N is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lfloor c/2 \rfloor}(6) \pmod{N}$

Conjecture 1.3.

Let $N = k \cdot b^n - c$ *such that* $b \equiv 2, 6, 10 \pmod{12}, n > bc, k > 0, c > 0$ *and* $c \equiv 3, 5 \pmod{8}$. *Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{bk/2}(P_{b/2}(6))$ *, thus If* N is prime then $S_{n-1} \equiv -P_{(b/2)\cdot |c/2|}(6) \pmod{N}$

Conjecture 1.4.

Let
$$
N = k \cdot b^n + c
$$
 such that $b \equiv 0 \pmod{2}, n > bc, k > 0, c > 0$
and $c \equiv 1, 7 \pmod{8}$
Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus
If N is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lfloor c/2 \rfloor}(6) \pmod{N}$

Conjecture 1.5.

Let $N = k \cdot b^n + c$ *such that* $b \equiv 0, 4, 8 \pmod{12}, n > bc, k > 0, c > 0$

and
$$
c \equiv 3, 5 \pmod{8}
$$
.
Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus
If N is prime then $S_{n-1} \equiv P_{(b/2) \cdot [c/2]}(6) \pmod{N}$

Conjecture 1.6.

Let
$$
N = k \cdot b^n + c
$$
 such that $b \equiv 2, 6, 10 \pmod{12}, n > bc, k > 0, c > 0$
\nand $c \equiv 3, 5 \pmod{8}$.
\nLet $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus
\nIf N is prime then $S_{n-1} \equiv -P_{(b/2) \cdot [c/2]}(6) \pmod{N}$

Proof attempt by mathlove

First of all,

$$
P_{b/2}(6) = 2^{-b/2} \left(\left(6 - 4\sqrt{2} \right)^{b/2} + \left(6 + 4\sqrt{2} \right)^{b/2} \right)
$$

$$
= \left(3 - 2\sqrt{2} \right)^{b/2} + \left(3 + 2\sqrt{2} \right)^{b/2}
$$

$$
= p^b + q^b
$$

where $p =$ √ $2 - 1, q =$ √ $2+1$ with $pq=1$. From

$$
S_0 = P_{bk/2}(P_{b/2}(6)) = 2^{-bk/2} \left(\left(2p^b \right)^{bk/2} + \left(2q^b \right)^{bk/2} \right) = p^{b^2k/2} + q^{b^2k/2}
$$

and $S_i = P_b(S_{i-1})$, we can prove by induction on $i \in \mathbb{N}$ that

$$
S_i = p^{b^{i+2}k/2} + q^{b^{i+2}k/2}.
$$

By the way,

$$
p^{N+1} + q^{N+1} = \sum_{i=0}^{N+1} {N+1 \choose i} (\sqrt{2})^i ((-1)^{N+1-i} + 1)
$$

=
$$
\sum_{j=0}^{(N+1)/2} {N+1 \choose 2j} 2^{j+1}
$$

$$
\equiv 2 + 2^{(N+3)/2} \pmod{N}
$$

$$
\equiv 2 + 4 \cdot 2^{\frac{N-1}{2}} \pmod{N}
$$
 (1)

Also,

$$
p^{N+3} + q^{N+3} = \sum_{i=0}^{N+3} {N+3 \choose i} (\sqrt{2})^i ((-1)^{N+3-i} + 1)
$$

=
$$
\sum_{j=0}^{(N+3)/2} {N+3 \choose 2j} 2^{j+1}
$$

$$
\equiv 2 + {N+3 \choose 2} \cdot 2^2 + {N+3 \choose N+1} \cdot 2^{\frac{N+3}{2}} + 2^{\frac{N+5}{2}} \pmod{N}
$$

$$
\equiv 14 + 12 \cdot 2^{\frac{N-1}{2}} + 8 \cdot 2^{\frac{N-1}{2}} \pmod{N}
$$
 (2)

For $N \equiv \pm 1 \pmod{8}$, since $2^{\frac{N-1}{2}} \equiv 1 \pmod{N}$, from $(1)(2)$, we can prove by induction on $i\in\mathbb{Z}$ that

$$
p^{N+2i-1} + q^{N+2i-1} \equiv p^{2i} + q^{2i} \pmod{N} \tag{3}
$$

For $N \equiv 3, 5 \pmod{8}$, since $2^{\frac{N-1}{2}} \equiv -1 \pmod{N}$, from $(1)(2)$, we can prove by induction on $i\in\mathbb{Z}$ that

$$
p^{N+2i-1} + q^{N+2i-1} \equiv -\left(p^{2i-2} + q^{2i-2}\right) \pmod{N} \tag{4}
$$

To prove $(3)(4)$, we can use

$$
p^{N+2(i+1)-1} + q^{N+2(i+1)-1} \equiv (p^{N+2i-1} + q^{N+2i-1}) (p^2 + q^2) -
$$

$$
- (p^{N+2(i-1)-1} + q^{N+2(i-1)-1}) \pmod{N}
$$

and

$$
p^{N+2(i-1)-1} + q^{N+2(i-1)-1} \equiv (p^{N+2i-1} + q^{N+2i-1}) (p^{-2} + q^{-2}) -
$$

$$
- (p^{N+2(i+1)-1} + q^{N+2(i+1)-1}) \pmod{N}
$$

Now, for $N \equiv \pm 1 \pmod{8}$, from (3), we can prove by induction on $j \in \mathbb{N}$ that

$$
p^{j(N+2i-1)} + q^{j(N+2i-1)} \equiv p^{2ij} + q^{2ij} \pmod{N} \tag{5}
$$

Also, for $N \equiv 3, 5 \pmod{8}$, from (4), we can prove by induction on $j \in \mathbb{N}$ that

$$
p^{j(N+2i-1)} + q^{j(N+2i-1)} \equiv (-1)^j \left(p^{j(2i-2)} + q^{j(2i-2)} \right) \pmod{N} \tag{6}
$$

To prove $(5)(6)$, we can use

$$
p^{(j+1)(N+2i-1)} + q^{(j+1)(N+2i-1)} \equiv (p^{j(N+2i-1)} + q^{j(N+2i-1)}) (p^{N+2i-1} + q^{N+2i-1}) -
$$

$$
- (p^{(j-1)(N+2i-1)} + q^{(j-1)(N+2i-1)}) \pmod{N}
$$

For conjecture 1.1, $N \equiv \pm 1 \pmod{8}$ follows from the conditions $N = k \cdot b^n - c$ such that $b \equiv 0$ $(\text{mod } 2), n > bc, k > 0, c > 0$ and $c \equiv 1, 7 \pmod{8}$. Then, we can say that conjecture 1.1 is true because using (5) and setting $c = 2d - 1$ gives

$$
S_{n-1} = p^{b^{n+1}k/2} + q^{b^{n+1}k/2}
$$

= $p^{(b/2)(N+c)} + q^{(b/2)(N+c)}$
= $p^{(b/2)(N+2d-1)} + q^{(b/2)(N+2d-1)}$
 $\equiv p^{2 \cdot d \cdot (b/2)} + q^{2 \cdot d \cdot (b/2)}$ (mod N)
 $\equiv P_{(b/2) \cdot (c/2]}(6)$ (mod N)
 $\equiv P_{(b/2) \cdot (c/2]}(6)$ (mod N)

Q.E.D.

For conjecture 1.2, $N \equiv 3, 5 \pmod{8}$ follows from the conditions $N = k \cdot b^n - c$ such that $b \equiv$ $0, 4, 8 \pmod{12}, n > bc, k > 0, c > 0, \text{and } c \equiv 3, 5 \pmod{8}.$ Then, we can say that conjecture 1.2 is true because using (6) and setting $c = 2d - 1$ gives

$$
S_{n-1} = p^{b^{n+1}k/2} + q^{b^{n+1}k/2}
$$

= $p^{(b/2)(N+c)} + q^{(b/2)(N+c)}$
= $p^{(b/2)(N+2d-1)} + q^{(b/2)(N+2d-1)}$
 $\equiv (-1)^{b/2} (p^{(b/2)\cdot(2d-2)} + q^{(b/2)\cdot(2d-2)}) \pmod{N}$
 $\equiv P_{(b/2)\cdot(d-1)}(6) \pmod{N}$
 $\equiv P_{(b/2)\cdot\lfloor c/2 \rfloor}(6) \pmod{N}$

Q.E.D.

For conjecture 1.3, $N \equiv 3, 5 \pmod{8}$ follows from the conditions $N = k \cdot b^n - c$ such that $b \equiv$ 2, 6, 10 (mod 12), $n > bc, k > 0, c > 0$, and $c \equiv 3, 5 \pmod{8}$. Then, we can say that conjecture 1.3 is true because using (6) and setting $c = 2d - 1$ gives

$$
S_{n-1} = p^{b^{n+1}k/2} + q^{b^{n+1}k/2}
$$

= $p^{(b/2)(N+c)} + q^{(b/2)(N+c)}$
= $p^{(b/2)(N+2d-1)} + q^{(b/2)(N+2d-1)}$
\equiv $(-1)^{b/2} (p^{(b/2)\cdot(2d-2)} + q^{(b/2)\cdot(2d-2)})$ (mod N)
\equiv $-P_{(b/2)\cdot(c/2)}(6)$ (mod N)

Q.E.D.

For conjecture 1.4, $N \equiv \pm 1 \pmod{8}$ follows from the conditions $N = k \cdot b^n + c$ such that $b \equiv$ 0 (mod 2), $n > bc, k > 0, c > 0$ and $c \equiv 1, 7 \pmod{8}$. Then, we can say that conjecture 1.4 is true because using (5) and setting $c = 2d - 1$ gives

$$
S_{n-1} = p^{b^{n+1}k/2} + q^{b^{n+1}k/2}
$$

= $p^{(b/2)(N-c)} + q^{(b/2)(N-c)}$
= $p^{(b/2)(N-2d+1)} + q^{(b/2)(N-2d+1)}$
= $p^{(b/2)(N+2(-d+1)-1)} + q^{(b/2)(N+2(-d+1)-1)}$
= $p^{2\cdot(-d+1)\cdot(b/2)} + q^{2\cdot(-d+1)\cdot(b/2)}$ (mod N)
= $q^{2\cdot(d-1)\cdot(b/2)} + p^{2\cdot(d-1)\cdot(b/2)}$ (mod N)
 $\equiv P_{(b/2)\cdot(d-1)}(6)$ (mod N)
 $\equiv P_{(b/2)\cdot|c/2|}(6)$ (mod N)

Q.E.D.

For conjecture 1.5, $N \equiv 3, 5 \pmod{8}$ follows from the conditions $N = k \cdot b^n + c$ such that $b \equiv$ $0, 4, 8 \pmod{12}, n > bc, k > 0, c > 0$, and $c \equiv 3, 5 \pmod{8}$. Then, we can say that conjecture 1.5 is true because using (6) and setting $c = 2d - 1$ gives

$$
S_{n-1} = p^{b^{n+1}k/2} + q^{b^{n+1}k/2}
$$

= $p^{(b/2)(N-c)} + q^{(b/2)(N-c)}$
= $p^{(b/2)(N-2d+1)} + q^{(b/2)(N-2d+1)}$
= $p^{(b/2)(N+2(-d+1)-1)} + q^{(b/2)(N+2(-d+1)-1)}$
\equiv $(-1)^{b/2} (p^{(b/2)\cdot(2(-d+1)-2)} + q^{(b/2)\cdot(2(-d+1)-2)})$ (mod N)
\equiv $q^{(b/2)\cdot 2d} + p^{(b/2)\cdot 2d}$ (mod N)
\equiv $P_{(b/2)\cdot d}$ (6) (mod N)
\equiv $P_{(b/2)\cdot [c/2]}(6)$ (mod N)

Q.E.D.

For conjecture 1.6, $N \equiv 3, 5 \pmod{8}$ follows from the conditions $N = k \cdot b^n + c$ such that $b \equiv$ 2, 6, 10 (mod 12), $n > bc, k > 0, c > 0$, and $c \equiv 3, 5 \pmod{8}$. Then, we can say that conjecture 1.6 is true because using (6) and setting $c = 2d - 1$ gives

$$
S_{n-1} = p^{b^{n+1}k/2} + q^{b^{n+1}k/2}
$$

\n
$$
= p^{(b/2)(N-c)} + q^{(b/2)(N-c)}
$$

\n
$$
= p^{(b/2)(N-2d+1)} + q^{(b/2)(N-2d+1)}
$$

\n
$$
= p^{(b/2)(N+2(-d+1)-1)} + q^{(b/2)(N+2(-d+1)-1)}
$$

\n
$$
\equiv (-1)^{b/2} (p^{(b/2)\cdot(2(-d+1)-2)} + q^{(b/2)\cdot(2(-d+1)-2)}) \pmod{N}
$$

\n
$$
\equiv -(q^{(b/2)\cdot 2d} + p^{(b/2)\cdot 2d}) \pmod{N}
$$

\n
$$
\equiv -P_{(b/2)\cdot[c/2]}(6) \pmod{N}
$$

Q.E.D.

2 Primality tests for specific classes of $N = k \cdot 2^m \pm 1$

Throughout this post we use the following notations: \mathbb{Z} -the set of integers, \mathbb{N} -the set of positive integers, $\left(\frac{a}{n}\right)$ $\frac{a}{p}$)-the Jacobi symbol, (m, n) -the greatest common divisor of m and n, $S_n(x)$ -the sequence defined by $S_0(x) = x$ and $S_{k+1}(x) = (S_k(x))^2 - 2(k \ge 0)$.

Basic Lemmas and Theorems

Definition 2.1. For $P, Q \in \mathbb{Z}$ the Lucas sequence $\{V_n(P, Q)\}\$ is defined by $V_0(P, Q) = 2, V_1(P, Q) = 2$ $P, V_{n+1}(P,Q) = PV_n(P,Q) - QV_{n-1}(P,Q)$ $(n \ge 1)$ Let $D = P^2 - 4Q$. It is known that

$$
V_n(P,Q) = \left(\frac{P + \sqrt{D}}{2}\right)^n + \left(\frac{P - \sqrt{D}}{2}\right)^n
$$

Lemma 2.1. *Let* $P, Q \in \mathbb{Z}$ *and* $n \in \mathbb{N}$ *. Then*

$$
V_n(P,Q) = \sum_{r=0}^{\lfloor n/2 \rfloor} \frac{n}{n-r} {n-r \choose r} P^{n-2r} (-Q)^r
$$

Theorem 2.1. *(Zhi-Hong Sun)*

For $m \in \{2, 3, 4, ...\}$ *let* $p = k \cdot 2^m \pm 1$ *with* $0 < k < 2^m$ *and* k *odd . If* $b, c \in \mathbb{Z}$, $(p, c) = 1$ and $\left(\frac{2c+b}{p}\right)$ $\left(\frac{2c-b}{p}\right)$ = $\left(\frac{2c-b}{p}\right)$ $\left(\frac{c-b}{p}\right) \ = \ -\left(\frac{c}{p}\right)$ $\left(\frac{c}{p}\right)$ then p is prime if and only if $p \mid S_{m-2}(x)$, where $x = c^{-k} V_k(b, c^2) =$ $\sum^{(k-1)/2}$ $r=0$ k $k - r$ $k - r$ r $(-1)^{r} (b/c)^{k-2r}$

Lemma 2.2. *Let* n *be odd positive number , then*

$$
\left(\frac{-1}{n}\right) = \begin{cases} 1, & \text{if } n \equiv 1 \pmod{4} \\ -1, & \text{if } n \equiv 3 \pmod{4} \end{cases}
$$

Lemma 2.3. *Let* n *be odd positive number , then*

$$
\left(\frac{2}{n}\right) = \begin{cases} 1, & \text{if } n \equiv 1,7 \pmod{8} \\ -1, & \text{if } n \equiv 3,5 \pmod{8} \end{cases}
$$

Lemma 2.4. *Let n be odd positive number, then case 1.* $(n \equiv 1 \pmod{4})$

$$
\left(\frac{3}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{3} \\ 0 & \text{if } n \equiv 0 \pmod{3} \\ -1 & \text{if } n \equiv 2 \pmod{3} \end{cases}
$$

case 2. $(n \equiv 3 \pmod{4}$

$$
\left(\frac{3}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 2 \pmod{3} \\ 0 & \text{if } n \equiv 0 \pmod{3} \\ -1 & \text{if } n \equiv 1 \pmod{3} \end{cases}
$$

Proof. Since $3 \equiv 3 \pmod{4}$ if we apply the law of quadratic reciprocity we have two cases. If $n \equiv 1 \pmod{4}$ then $\left(\frac{3}{n}\right)$ $\left(\frac{3}{n}\right) = \left(\frac{n}{3}\right)$ $\frac{n}{3}$) and the result follows . If $n \equiv 3 \pmod{4}$ then $\left(\frac{3}{n}\right)$ $\left(\frac{3}{n}\right) = -\left(\frac{n}{3}\right)$ $\frac{n}{3}$ and the result follows .

Lemma 2.5. *Let* n *be odd positive number , then*

$$
\left(\frac{5}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 1, 4 \pmod{5} \\ 0 & \text{if } n \equiv 0 \pmod{5} \\ -1 & \text{if } n \equiv 2, 3 \pmod{5} \end{cases}
$$

Proof. Since $5 \equiv 1 \pmod{4}$ if we apply the law of quadratic reciprocity we have $\left(\frac{5}{n}\right)$ $(\frac{5}{n})=(\frac{n}{5})$ $\frac{n}{5}$ and the result follows .

Lemma 2.6. *Let n be odd positive number, then case 1.* $(n \equiv 1 \pmod{4})$

$$
\left(\frac{-3}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 1, 11 \pmod{12} \\ 0 & \text{if } n \equiv 3, 9 \pmod{12} \\ -1 & \text{if } n \equiv 5, 7 \pmod{12} \end{cases}
$$

case 2. $(n \equiv 3 \pmod{4}$

$$
\left(\frac{-3}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 5,7 \pmod{12} \\ 0 & \text{if } n \equiv 3,9 \pmod{12} \\ -1 & \text{if } n \equiv 1,11 \pmod{12} \end{cases}
$$

Proof. $\left(\frac{-3}{n}\right)$ $\left(\frac{-3}{n}\right)$ = $\left(\frac{-1}{n}\right)$ $\left(\frac{-1}{n}\right)\left(\frac{3}{n}\right)$. Applying the law of quadratic reciprocity we have : if $n \equiv 1$ (mod 4) then $\left(\frac{3}{n}\right)$ $\left(\frac{3}{n}\right) = \left(\frac{n}{3}\right)$ $\left(\frac{n}{3}\right)$. If $n \equiv 3 \pmod{4}$ then $\left(\frac{3}{n}\right)$ $\left(\frac{3}{n}\right) = -\left(\frac{n}{3}\right)$ $\frac{n}{3}$). Applying the Chinese remainder theorem in both cases several times we get the result .

Lemma 2.7. Let *n* be odd positive number, then case 1. $(n \equiv 1 \pmod{4})$

$$
\left(\frac{7}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 1, 2, 4 \pmod{7} \\ 0 & \text{if } n \equiv 0 \pmod{7} \\ -1 & \text{if } n \equiv 3, 5, 6 \pmod{7} \end{cases}
$$

case 2. $(n \equiv 3 \pmod{4})$

$$
\left(\frac{7}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 3, 5, 6 \pmod{7} \\ 0 & \text{if } n \equiv 0 \pmod{7} \\ -1 & \text{if } n \equiv 1, 2, 4 \pmod{7} \end{cases}
$$

Proof. Since $7 \equiv 3 \pmod{4}$ if we apply the law of quadratic reciprocity we have two cases. If $n \equiv 1 \pmod{4}$ then $\left(\frac{7}{n}\right)$ $\left(\frac{7}{n}\right) = \left(\frac{n}{7}\right)$ $\left(\frac{n}{7}\right)$ and the result follows . If $n \equiv 3 \pmod{4}$ then $\left(\frac{7}{n}\right)$ $\left(\frac{7}{n}\right) = -\left(\frac{n}{7}\right)$ $\frac{n}{7})$ and the result follows .

Lemma 2.8. Let n be odd positive number, then case 1. $(n \equiv 1 \pmod{4})$

$$
\left(\frac{-6}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 1, 5, 19, 23 \pmod{24} \\ 0 & \text{if } n \equiv 3, 9, 15, 21 \pmod{24} \\ -1 & \text{if } n \equiv 7, 11, 13, 17 \pmod{24} \end{cases}
$$

case 2. $(n \equiv 3 \pmod{4}$

$$
\left(\frac{-6}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 7, 11, 13, 17 \pmod{24} \\ 0 & \text{if } n \equiv 3, 9, 15, 21 \pmod{24} \\ -1 & \text{if } n \equiv 1, 5, 19, 23 \pmod{24} \end{cases}
$$

Proof. $\left(\frac{-6}{n}\right)$ $\left(\frac{-6}{n}\right) = \left(\frac{-1}{n}\right)$ $\left(\frac{1}{n}\right)\left(\frac{2}{n}\right)\left(\frac{3}{n}\right)$. Applying the law of quadratic reciprocity we have : if $n \equiv 1$ (mod 4) then $\left(\frac{3}{n}\right)$ $\left(\frac{3}{n}\right) = \left(\frac{n}{3}\right)$ $\left(\frac{n}{3}\right)$. If $n \equiv 3 \pmod{4}$ then $\left(\frac{3}{n}\right)$ $\left(\frac{3}{n}\right) = -\left(\frac{n}{3}\right)$ $\frac{n}{3}$). Applying the Chinese remainder theorem in both cases several times we get the result .

Lemma 2.9. *Let* n *be odd positive number , then*

$$
\left(\frac{10}{n}\right) = \begin{cases} 1 & \text{if } n \equiv 1, 3, 9, 13, 27, 31, 37, 39 \pmod{40} \\ 0 & \text{if } n \equiv 5, 15, 25, 35 \pmod{40} \\ -1 & \text{if } n \equiv 7, 11, 17, 19, 21, 23, 29, 33 \pmod{40} \end{cases}
$$

Proof. $\left(\frac{10}{n}\right)$ $\frac{10}{n}$ = $\left(\frac{2}{n}\right)$ $\frac{2}{n}$) $\left(\frac{5}{n}\right)$. Applying the law of quadratic reciprocity we have : $\left(\frac{5}{n}\right)$ $\left(\frac{5}{n}\right) = \left(\frac{n}{5}\right)$ $\frac{n}{5}$). Applying the Chinese remainder theorem several times we get the result .

The Main Result

Theorem 2.2. Let $N = k \cdot 2^m - 1$ such that $m > 2$, $3 \mid k$, $0 < k < 2^m$ and

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $k \equiv 1 \pmod{10}$ with $m \equiv 2, 3 \pmod{4}$ $k \equiv 3 \pmod{10}$ with $m \equiv 0, 3 \pmod{4}$ $k \equiv 7 \pmod{10}$ with $m \equiv 1, 2 \pmod{4}$ $k \equiv 9 \pmod{10}$ with $m \equiv 0, 1 \pmod{4}$ *Let* $b = 3$ *and* $S_0(x) = V_k(b, 1)$ *, th*

Let
$$
b = 3
$$
 and $S_0(x) = V_k(b, 1)$, thus
\nN is prime iff $N \mid S_{m-2}(x)$

Proof. Since $N \equiv 3 \pmod{4}$ and $b = 3$ from Lemma 2.2 we know that $\left(\frac{2-b}{N}\right)$ $\frac{2-b}{N}$) = -1 . Similarly, since $N \equiv 2 \pmod{5}$ or $N \equiv 3 \pmod{5}$ and $b = 3$ from Lemma 2.5 we know that $\left(\frac{2+b}{N}\right)$ $\binom{n}{N} = -1$. From Lemma 2.1 we know that $V_k(b, 1) = x$. Applying Theorem 2.1 in the case $c = 1$ we get the result.

Q.E.D.

Theorem 2.3. Let $N = k \cdot 2^m - 1$ such that $m > 2$, $3 \mid k$, $0 < k < 2^m$ and

 $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $k \equiv 3 \pmod{42}$ with $m \equiv 0, 2 \pmod{3}$ $k \equiv 9 \pmod{42}$ with $m \equiv 0 \pmod{3}$ $k \equiv 15 \pmod{42}$ with $m \equiv 1 \pmod{3}$ $k \equiv 27 \pmod{42}$ with $m \equiv 1, 2 \pmod{3}$ $k \equiv 33 \pmod{42}$ with $m \equiv 0, 1 \pmod{3}$ $k \equiv 39 \pmod{42}$ with $m \equiv 2 \pmod{3}$

Let $b = 5$ *and* $S_0(x) = V_k(b, 1)$, *thus* N *is prime iff* $N | S_{m-2}(x)$

Proof. Since $N \equiv 3 \pmod{4}$ and $N \equiv 11 \pmod{12}$ and $b = 5$ from Lemma 2.6 we know that $\left(\frac{2-b}{N}\right)$ $\frac{N-1}{N}$ = −1. Similarly, since $N \equiv 3 \pmod{4}$ and $N \equiv 1 \pmod{7}$ or $N \equiv 2 \pmod{7}$ or $N \equiv 4 \pmod{7}$ and $b = 5$ from Lemma 2.7 we know that $\left(\frac{2+b}{N}\right)$ $\frac{R+b}{N}$) = -1 . From Lemma 2.1 we know that $V_k(b, 1) = x$. Applying Theorem 2.1 in the case $c = 1$ we get the result. Q.E.D.

Theorem 2.4. Let $N = k \cdot 2^m + 1$ such that $m > 2$, $0 < k < 2^m$ and

 $\int k \equiv 1 \pmod{42} \; with \; m \equiv 2, 4 \pmod{6}$ $\begin{picture}(20,20) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1$ $k \equiv 5 \pmod{42}$ with $m \equiv 3 \pmod{6}$ $k \equiv 11 \pmod{42}$ with $m \equiv 3, 5 \pmod{6}$ $k \equiv 13 \pmod{42}$ with $m \equiv 4 \pmod{6}$ $k \equiv 17 \pmod{42}$ with $m \equiv 5 \pmod{6}$ $k \equiv 19 \pmod{42}$ with $m \equiv 0 \pmod{6}$ $k \equiv 23 \pmod{42}$ with $m \equiv 1, 3 \pmod{6}$ $k \equiv 25 \pmod{42}$ with $m \equiv 0, 2 \pmod{6}$ $k \equiv 29 \pmod{42}$ with $m \equiv 1, 5 \pmod{6}$ $k \equiv 31 \pmod{42}$ with $m \equiv 2 \pmod{6}$ $k \equiv 37 \pmod{42}$ with $m \equiv 0, 4 \pmod{6}$ $k \equiv 41 \pmod{42}$ with $m \equiv 1 \pmod{6}$

Let $b = 5$ *and* $S_0(x) = V_k(b, 1)$, *thus* N *is prime iff* $N | S_{m-2}(x)$

Proof. Since $N \equiv 1 \pmod{4}$ and $N \equiv 5 \pmod{12}$ and $b = 5$ from Lemma 2.6 we know that $\left(\frac{2-b}{N}\right)$ $\binom{N}{N}$ = −1. Similarly, since $N \equiv 1 \pmod{4}$ and $N \equiv 3 \pmod{7}$ or $N \equiv 5 \pmod{7}$ or $N \equiv 6 \pmod{7}$ and $b = 5$ from Lemma 2.7 we know that $\left(\frac{2+b}{N}\right)$ $\frac{R+b}{N}$) = -1 . From Lemma 2.1 we know that $V_k(b, 1) = x$. Applying Theorem 2.1 in the case $c = 1$ we get the result.

Q.E.D.

Theorem 2.5. Let $N = k \cdot 2^m + 1$ such that $m > 2$, $0 < k < 2^m$ and

Let $b = 8$ *and* $S_0(x) = V_k(b, 1)$, *thus* N *is prime iff* $N | S_{m-2}(x)$

Proof. Since $N \equiv 1 \pmod{4}$ and $N \equiv 17 \pmod{24}$ and $b = 8$ from Lemma 2.8 we know that $\left(\frac{2-b}{N}\right)$ $\frac{N^{1-b}}{N}$ = -1 . Similarly , since $N \equiv 17 \pmod{40}$ or $N \equiv 33 \pmod{40}$ and $b = 8$ from Lemma 2.9 we know that $\left(\frac{2+b}{N}\right)$ $\binom{n+b}{N} = -1$. From Lemma 2.1 we know that $V_k(b, 1) = x$. Applying Theorem 2.1 in the case $c = 1$ we get the result.

Q.E.D.

3 Three prime generating recurrences

Prime number generator I

Let $b_n = b_{n-1} + \text{lcm}(\lfloor \frac{b_n}{b_n} \rfloor)$ √ $[2 \cdot n], b_{n-1}$) with $b_1 = 2$ then $a_n = b_{n+1}/b_n - 1$ is either 1 or prime.

Conjecture 3.1. *1. Every term of this sequence* a_i *is either prime or* 1. 2. Every prime of the form $\lfloor\sqrt{2}\cdot n\rfloor$ is member of this sequence .

Prime number generator II Let $b_n = b_{n-1} + \text{lcm}(\lfloor \frac{b_n}{b_n} \rfloor)$ √ $[3 \cdot n], b_{n-1}$) with $b_1 = 3$ then $a_n = b_{n+1}/b_n - 1$ is either 1 or prime.

Conjecture 3.2. *1. Every term of this sequence* a_i *is either prime or* 1. 2. Every prime of the form $\lfloor \sqrt{3} \cdot n \rfloor$ is member of this sequence .

Prime number generator III Let $b_n = b_{n-1} + \text{lcm}(\lfloor \frac{b_n}{b_n} \rfloor)$ √ n^3 , b_{n-1}) with $b_1 = 2$ then $a_n = b_{n+1}/b_n - 1$ is either 1 or prime.

Conjecture 3.3. *1. Every term of this sequence* a_i *is either prime or* 1. 2. Every prime of the form $\lfloor\sqrt{n^3}\rfloor$ is member of this sequence .

4 Some properties of Fibonacci numbers

Conjecture 4.1. *If* p *is prime* , not 5, and $M \geq 2$ *then* :

 $M^{F_p} \equiv M^{(p-1)\left(1-(\frac{p}{5})\right)/2} \pmod{\frac{M^p-1}{M-1}}$

Conjecture 4.2. *If* p *is prime* , and $M \geq 2$ *then* :

 $M^{F_{p-}(\frac{p}{5})} \equiv 1 \pmod{\frac{M^{p-1}}{M-1}}$

Corollary of Cassini's formula

Corollary 4.1. For
$$
n \ge 2
$$
:

$$
F_n = \begin{cases} \lfloor \sqrt{F_{n-1} \cdot F_{n+1}} \rfloor, & \text{if } n \text{ is even} \\ \lceil \sqrt{F_{n-1} \cdot F_{n+1}} \rceil, & \text{if } n \text{ is odd} \end{cases}
$$

5 A modification of Riesel's primality test

Definition 5.1. Let $P_m(x) = 2^{-m} \cdot ((x -$ √ $(x^2-4)^m + (x+$ √ $\left(\overline{x^2-4}\right)^m$, where m and x are nonnegative integers .

Corollary 5.1. Let $N = k \cdot 2^n - 1$ such that $n > 2$, k odd, $3 \nmid k$, $k < 2^n$, and f is proper factor $of n-2.$ $Let S_i = P_{2^f}(S_{i-1})$ *with* $S_0 = P_k(4)$ *, thus N* is prime iff $S_{(n-2)/f} \equiv 0 \pmod{N}$

6 Primality criteria for specific classes of $N = k \cdot 2^n + 1$

Definition 6.1. Let $P_m(x) = 2^{-m} \cdot \Big(\Big(x -$ √ $(x^2-4)^m + (x+$ √ $\left(\overline{x^2-4}\right)^m$, where m and x are nonnegative integers .

Conjecture 6.1. *Let* $N = 3 \cdot 2^n + 1$ *such that* $n > 2$ *and* $n \equiv 1, 2 \pmod{4}$ *Let* $S_i = P_2(S_{i-1})$ *with* $S_0 =$ $\sqrt{ }$ \int \mathcal{L} $P_3(32)$, *if* $n \equiv 1 \pmod{4}$ $P_3(28)$, *if* $n \equiv 2 \pmod{4}$ *thus , N is prime iff* $S_{n-2} \equiv 0$ (m

Conjecture 6.2. *Let* $N = 5 \cdot 2^n + 1$ *such that* $n > 2$ *and* $n \equiv 1, 3 \pmod{4}$ *Let* $S_i = P_2(S_{i-1})$ *with* $S_0 =$ $\sqrt{ }$ \int \mathcal{L} $P_5(28)$, *if* $n \equiv 1 \pmod{4}$ $P_5(32)$, *if* $n \equiv 3 \pmod{4}$

thus , N is prime iff $S_{n-2} \equiv 0 \pmod{1}$

Conjecture 6.3. *Let* $N = 7 \cdot 2^n + 1$ *such that* $n > 2$ *and* $n \equiv 0, 2 \pmod{4}$ *Let* $S_i = P_2(S_{i-1})$ *with* $S_0 =$ $\sqrt{ }$ \int \mathcal{L} $P_7(8)$, *if* $n \equiv 0 \pmod{4}$ $P_7(32)$, *if* $n \equiv 2 \pmod{4}$ *thus* , *N is prime iff* $S_{n-2} \equiv 0$ (m)

Conjecture 6.4. *Let* $N = 9 \cdot 2^n + 1$ *such that* $n > 3$ *and* $n \equiv 2, 3 \pmod{4}$ *Let* $S_i = P_2(S_{i-1})$ *with*

 $S_0 =$ $\sqrt{ }$ \int \mathcal{L} $P_9(28)$, *if* $n \equiv 2 \pmod{4}$ $P_9(32)$, *if* $n \equiv 3 \pmod{4}$

thus, N *is prime iff* $S_{n-2} \equiv 0 \pmod{1}$

Conjecture 6.5. *Let* $N = 11 \cdot 2^n + 1$ *such that* $n > 3$ *and* $n \equiv 1, 3 \pmod{4}$ *Let* $S_i = P_2(S_{i-1})$ *with* $S_0 =$ $\sqrt{ }$ \int \mathcal{L} $P_{11}(8)$, *if* $n \equiv 1 \pmod{4}$ $P_{11}(28)$, *if* $n \equiv 3 \pmod{4}$ *thus . N is prime iff* S

Conjecture 6.6. *Let* $N = 13 \cdot 2^n + 1$ *such that* $n > 3$ *and* $n \equiv 0, 2 \pmod{4}$ *Let* $S_i = P_2(S_{i-1})$ *with* $S_0 =$ $\sqrt{ }$ \int \mathcal{L} $P_{13}(32)$, *if* $n \equiv 0 \pmod{4}$ $P_{13}(8)$, *if* $n \equiv 2 \pmod{4}$

thus , N *is prime iff* $S_{n-2} \equiv 0 \pmod{N}$

7 Congruence only holding for primes

Theorem 7.1. *(Wilson)*

A natural number $n > 1$ *is a prime iff:*

$$
(n-1)! \equiv -1 \pmod{n}.
$$

Theorem 7.2. A natural number $n > 2$ is a prime iff:

$$
\prod_{k=1}^{n-1} k \equiv n-1 \pmod{\sum_{k=1}^{n-1} k}.
$$

Proof

Necessity: If n is a prime, then

$$
\prod_{k=1}^{n-1} k \equiv n-1 \pmod{\sum_{k=1}^{n-1} k}.
$$

If n is an odd prime, then by Theorem 7.1 we have

$$
\prod_{k=1}^{n-1} k \equiv n-1 \pmod{n}
$$

Hence, $n \mid ((n-1)! - (n-1))$ and therefore $n \mid (n-1)((n-2)! - 1)$. Since $n \mid ((n - 1)$ it follows $n \mid ((n - 2)! - 1)$, hence

$$
\frac{n(n-1)}{2} \mid (n-1)((n-2)!-1),
$$

thus

$$
\prod_{k=1}^{n-1} k \equiv n-1 \pmod{\sum_{k=1}^{n-1} k}.
$$

Sufficiency: If

$$
\prod_{k=1}^{n-1} k \equiv n-1 \pmod{\sum_{k=1}^{n-1} k}
$$

then n is a prime.

Suppose *n* is a composite and *p* is a prime such that $p \mid n$, then since $\sum_{n=1}^{n-1}$ $k=1$ $k =$ $n(n-1)$ $\frac{1}{2}$ it

follows
$$
p \mid \sum_{k=1}^{n-1} k
$$
. Since

$$
\prod_{k=1}^{n-1} k \equiv n-1 \pmod{\sum_{k=1}^{n-1}}
$$

we have

$$
\prod_{k=1}^{n-1} k \equiv n-1 \pmod{p}.
$$

 $k=1$

 $(k),$

However, since $p \leq n - 1$ it divides \prod^{n-1} $k=1$ k , and so

$$
\prod_{k=1}^{n-1} k \equiv 0 \pmod{p},
$$

a contradiction. Hence n must be prime.

Q.E.D.

8 Primality test for $N = 2 \cdot 3^n - 1$

Definition 8.1. Let $P_m(x) = 2^{-m} \cdot \Big(\Big(x -$ √ $(x^2-4)^m + (x+$ √ $\left(\overline{x^2-4}\right)^m$, where m and x are nonnegative integers .

Conjecture 8.1. *Let* $N = 2 \cdot 3^n - 1$ *such that* $n > 1$. $Let S_i = P_3(S_{i-1})$ *with* $S_0 = P_3(a)$ *, where* $a =$ $\sqrt{ }$ $\left\vert \right\vert$ \mathcal{L} 6, *if* $n \equiv 0 \pmod{2}$ 8, *if* $n \equiv 1 \pmod{2}$

thus , *N is prime iff* $S_{n-1} \equiv a \pmod{N}$

9 Compositeness tests for specific classes of generalized Fermat numbers

Definition 9.1. Let $P_m(x) = 2^{-m} \cdot \Big(\big(x -$ √ $(x^2-4)^m + (x+$ √ $\left(x^2-4\right)^m$, where m and x are nonnegative integers .

Conjecture 9.1. Let $F_n(b) = b^{2^n} + 1$ such that $n > 1$, b is even, $3 \nmid b$ and $5 \nmid b$. *Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(P_{b/2}(8))$, *thus If* $F_n(b)$ *is prime then* $S_{2^n-2} \equiv 0 \pmod{F_n(b)}$

Conjecture 9.2. Let $F_n(6) = 6^{2^n} + 1$ such that $n > 1$. *Let* $S_i = P_6(S_{i-1})$ *with* $S_0 = P_3(P_3(32))$, *thus If* $F_n(6)$ *is prime then* $S_{2^n-2} \equiv 0 \pmod{F_n(6)}$

10 Primality tests for specific classes of $N = k \cdot 6^n - 1$

Definition 10.1. Let $P_m(x) = 2^{-m} \cdot \left((x -$ √ $(x^2-4)^m + (x+$ √ $(x^2-4)^m$, where m and x are nonnegative integers .

Conjecture 10.1.

Let $N = k \cdot 6^n - 1$ *such that* $n > 2, k > 0$, $k \equiv 2, 5 \pmod{7}$ and $k < 6^n$. *Let* $S_i = P_6(S_{i-1})$ *with* $S_0 = P_{3k}(P_3(5))$, *thus N* is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 10.2.

Let $N = k \cdot 6^n - 1$ *such that* $n > 2, k > 0$, $k \equiv 3, 4 \pmod{5}$ *and* $k < 6^n$. *Let* $S_i = P_6(S_{i-1})$ *with* $S_0 = P_{3k}(P_3(3))$, *thus N* is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Incomplete proof by mathlove

I'm going to prove that

if N is prime, then $S_{n-2} \equiv 0 \pmod{N}$

for both conjectures.

(For the first conjecture) First of all,

$$
P_3(5) = 2^{-3} \cdot \left(\left(5 - \sqrt{21} \right)^3 + \left(5 + \sqrt{21} \right)^3 \right) = 110
$$

So,

$$
S_0 = P_{3k}(P_3(5)) = P_{3k}(110) = 2^{-3k} \cdot \left(\left(110 - \sqrt{110^2 - 4} \right)^{3k} + \left(110 + \sqrt{110^2 - 4} \right)^{3k} \right)
$$

=
$$
\left(\frac{110 - \sqrt{110^2 - 4}}{2} \right)^{3k} + \left(\frac{110 + \sqrt{110^2 - 4}}{2} \right)^{3k}
$$

=
$$
\left(55 - 12\sqrt{21} \right)^{3k} + \left(55 + 12\sqrt{21} \right)^{3k}
$$

=
$$
(a^2)^{3k} + (b^2)^{3k}
$$

=
$$
a^{6k} + b^{6k}
$$

where $a = 2\sqrt{7} - 3$ $\sqrt{3}$, $b = 2\sqrt{7} + 3\sqrt{3}$ with $ab = 1$.

From this, we can prove by induction that

$$
S_i = a^{6^{i+1}k} + b^{6^{i+1}k}.
$$

Thus,

$$
S_{n-2} = a^{\frac{N+1}{6}} + b^{\frac{N+1}{6}} = \left(\frac{\sqrt{7}}{2} - \frac{\sqrt{3}}{2}\right)^{\frac{N+1}{2}} + \left(\frac{\sqrt{7}}{2} + \frac{\sqrt{3}}{2}\right)^{\frac{N+1}{2}} =
$$

= $2^{-\frac{N+1}{2}} \left((\sqrt{7} - \sqrt{3})^{\frac{N+1}{2}} + (\sqrt{7} + \sqrt{3})^{\frac{N+1}{2}} \right).$

By the way, for N prime,

$$
(\sqrt{7} - \sqrt{3})^{N+1} + (\sqrt{7} + \sqrt{3})^{N+1} = \sum_{i=0}^{N+1} {N+1 \choose i} (\sqrt{7})^i ((-\sqrt{3})^{N+1-i} + (\sqrt{3})^{N+1-i})
$$

$$
= \sum_{j=0}^{(N+1)/2} {N+1 \choose 2j} (\sqrt{7})^{2j} \cdot 2(\sqrt{3})^{N+1-2j}
$$

$$
= \sum_{j=0}^{(N+1)/2} {N+1 \choose 2j} 7^j \cdot 2 \cdot 3^{\frac{N+1}{2} - j}
$$

$$
\equiv 2 \cdot 3^{\frac{N+1}{2}} + 7^{\frac{N+1}{2}} \cdot 2 \pmod{N}
$$

$$
\equiv 2 \cdot 3 + (-7) \cdot 2 \pmod{N}
$$

$$
\equiv -8 \pmod{N}
$$

This is because $N \equiv 2 \pmod{3}$ and $N \equiv \pm 2 \cdot (-1)^n - 1 \equiv 1, 4 \pmod{7}$ implies that

$$
3^{(N-1)/2} \equiv 1 \pmod{N}, \quad 7^{(N-1)/2} \equiv -1 \pmod{N}.
$$

From this, since $2^{N-1} \equiv 1 \pmod{N}$,

$$
2^{N+1}S_{n-2}^2 = (\sqrt{7} - \sqrt{3})^{N+1} + (\sqrt{7} + \sqrt{3})^{N+1} + 2 \cdot 4^{\frac{N+1}{2}}
$$

\n
$$
\equiv -8 + 2 \cdot 2^{N-1} \cdot 4 \pmod{N}
$$

\n
$$
\equiv 0 \pmod{N}
$$

Thus, $S_{n-2} \equiv 0 \pmod{N}$.

Q.E.D.

(For the second conjecture)

$$
P_3(3) = 2^{-3} \cdot \left(\left(3 - \sqrt{5} \right)^3 + \left(3 + \sqrt{5} \right)^3 \right) = 18
$$

$$
S_0 = P_{3k}(P_3(3)) = 2^{-3k} \cdot \left(\left(18 - \sqrt{18^2 - 4} \right)^{3k} + \left(18 + \sqrt{18^2 - 4} \right)^{3k} \right)
$$

$$
= (9 - 4\sqrt{5})^{3k} + (9 + 4\sqrt{5})^{3k} = c^{6k} + d^{6k}
$$

where $c =$ $5 - 2, d =$ $5 + 2$ with $cd = 1$.

We can prove by induction that

$$
S_i = c^{6^{i+1}k} + d^{6^{i+1}k}
$$

Thus,

$$
S_{n-2} = c^{\frac{N+1}{6}} + d^{\frac{N+1}{6}} = \left(\frac{\sqrt{5}}{2} - \frac{1}{2}\right)^{\frac{N+1}{2}} + \left(\frac{\sqrt{5}}{2} + \frac{1}{2}\right)^{\frac{N+1}{2}} =
$$

= $2^{-\frac{N+1}{2}} \left(\left(\sqrt{5} - 1\right)^{\frac{N+1}{2}} + \left(\sqrt{5} + 1\right)^{\frac{N+1}{2}} \right).$

By the way, for N prime,

$$
\left(\sqrt{5}-1\right)^{N+1} + \left(\sqrt{5}+1\right)^{N+1} = \sum_{i=0}^{N+1} {N+1 \choose i} (\sqrt{5})^i \left((-1)^{N+1-i} + 1^{N+1-i}\right)
$$

$$
= \sum_{j=0}^{(N+1)/2} {N+1 \choose 2j} (\sqrt{5})^{2j} \cdot 2
$$

$$
= \sum_{j=0}^{(N+1)/2} {N+1 \choose 2j} 5^j \cdot 2
$$

$$
\equiv 2 + 5^{\frac{N+1}{2}} \cdot 2 \pmod{N}
$$

$$
\equiv 2 + (-5) \cdot 2 \pmod{N}
$$

$$
\equiv -8 \pmod{N}
$$

This is because $N \equiv 2, 3 \pmod{5}$ implies that

$$
5^{\frac{N-1}{2}} \equiv -1 \pmod{N}.
$$

From this, since $2^{N-1} \equiv 1 \pmod{N}$,

$$
2^{N+1}S_{n-2}^2 = (\sqrt{5} - 1)^{N+1} + (\sqrt{5} + 1)^{N+1} + 2 \cdot 4^{\frac{N+1}{2}}
$$

\n
$$
\equiv -8 + 2 \cdot 2^{N-1} \cdot 4 \pmod{N}
$$

\n
$$
\equiv 0 \pmod{N}
$$

Thus, $S_{n-2} \equiv 0 \pmod{N}$. Q.E.D.

11 Compositeness tests for specific classes of $N = k \cdot b^n - 1$

Definition 11.1. Let $P_m(x) = 2^{-m} \cdot ((x -$ √ $(x^2-4)^m + (x+$ √ $\left(x^2-4\right)^m$, where m and x are nonnegative integers .

Conjecture 11.1. Let $N = k \cdot b^n - 1$ such that $n > 2$, k is odd, $3 \nmid k$, b is even, $3 \nmid b$, $k < b^n$. *Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{bk/2}(P_{b/2}(4))$, *thus if* N *is prime then* $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 11.2. Let $N = k \cdot b^n - 1$ such that $n > 2$, $k < b^n$ and $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $k \equiv 3 \pmod{30}$ with $b \equiv 2 \pmod{10}$ and $n \equiv 0,3 \pmod{4}$ $k \equiv 3 \pmod{30}$ with $b \equiv 4 \pmod{10}$ and $n \equiv 0, 2 \pmod{4}$ $k \equiv 3 \pmod{30}$ with $b \equiv 6 \pmod{10}$ and $n \equiv 0, 1, 2, 3 \pmod{4}$ $k \equiv 3 \pmod{30}$ with $b \equiv 8 \pmod{10}$ and $n \equiv 0, 1 \pmod{4}$

Let $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{bk/2}(P_{b/2}(18))$, *thus If* N is prime then $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 11.3. Let $N = k \cdot b^n - 1$ such that $n > 2$, $k < b^n$ and

 $k \equiv 9 \pmod{30}$ with $b \equiv 2 \pmod{10}$ and $n \equiv 0, 1 \pmod{4}$ \int $\overline{\mathcal{L}}$ $k \equiv 9 \pmod{30}$ with $b \equiv 4 \pmod{10}$ and $n \equiv 0, 2 \pmod{4}$ $k \equiv 9 \pmod{30}$ with $b \equiv 6 \pmod{10}$ and $n \equiv 0, 1, 2, 3 \pmod{4}$ $k \equiv 9 \pmod{30}$ with $b \equiv 8 \pmod{10}$ and $n \equiv 0,3 \pmod{4}$

Let $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{bk/2}(P_{b/2}(18))$, *thus If* N *is prime then* $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 11.4. Let $N = k \cdot b^n - 1$ such that $n > 2$, $k < b^n$ and $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $k \equiv 21 \pmod{30}$ with $b \equiv 2 \pmod{10}$ and $n \equiv 2,3 \pmod{4}$ $k \equiv 21 \pmod{30}$ with $b \equiv 4 \pmod{10}$ and $n \equiv 1, 3 \pmod{4}$ $k \equiv 21 \pmod{30}$ with $b \equiv 8 \pmod{10}$ and $n \equiv 1, 2 \pmod{4}$

Let $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{bk/2}(P_{b/2}(3))$, *thus If* N *is prime then* $S_{n-2} \equiv 0 \pmod{N}$

12 Compositeness tests for specific classes of $N = k \cdot 3^n \pm 2$

Definition 12.1. Let $P_m(x) = 2^{-m} \cdot ((x -$ √ $(x^2-4)^m + (x+$ √ $\left(x^2-4\right)^m$, where m and x are nonnegative integers .

Conjecture 12.1. Let $N = k \cdot 3^n - 2$ such that $n \equiv 0 \pmod{2}$, $n > 2$, $k \equiv 1 \pmod{4}$ and $k > 0$. *Let* $S_i = P_3(S_{i-1})$ *with* $S_0 = P_{3k}(4)$ *, thus*

If N is prime then $S_{n-1} \equiv P_1(4) \pmod{N}$

Conjecture 12.2. Let $N = k \cdot 3^n - 2$ such that $n \equiv 1 \pmod{2}$, $n > 2$, $k \equiv 1 \pmod{4}$ and $k > 0$. *Let* $S_i = P_3(S_{i-1})$ *with* $S_0 = P_{3k}(4)$, *thus*

If N *is prime then* $S_{n-1} \equiv P_3(4) \pmod{N}$

Conjecture 12.3. *Let* $N = k \cdot 3^n + 2$ *such that* $n > 2$, $k \equiv 1, 3 \pmod{8}$ *and* $k > 0$. *Let* $S_i = P_3(S_{i-1})$ *with* $S_0 = P_{3k}(6)$, *thus If* N is prime then $S_{n-1} \equiv P_3(6) \pmod{N}$

Conjecture 12.4. *Let* $N = k \cdot 3^n + 2$ *such that* $n > 2$, $k \equiv 5, 7 \pmod{8}$ *and* $k > 0$. *Let* $S_i = P_3(S_{i-1})$ *with* $S_0 = P_{3k}(6)$, *thus If* N *is prime then* $S_{n-1} \equiv P_1(6) \pmod{N}$

13 Compositeness tests for $N = b^n \pm b \pm 1$

Definition 13.1. Let $P_m(x) = 2^{-m} \cdot \left((x -$ √ $(x^2-4)^m + (x+$ √ $(x^2-4)^m$, where m and x are nonnegative integers.

Conjecture 13.1. *Let* $N = b^n - b - 1$ *such that* $n > 2$, $b \equiv 0, 6 \pmod{8}$ *. Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(6)$ *, thus if* N *is prime, then* $S_{n-1} \equiv P_{(b+2)/2}(6) \pmod{N}$. **Conjecture 13.2.** *Let* $N = b^n - b - 1$ *such that* $n > 2$, $b \equiv 2, 4 \pmod{8}$ *. Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(6)$ *, thus if* N *is prime, then* $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$. **Conjecture 13.3.** *Let* $N = b^n + b + 1$ *such that* $n > 2$, $b \equiv 0, 6 \pmod{8}$ *. Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(6)$ *, thus if* N *is prime, then* $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$. **Conjecture 13.4.** *Let* $N = b^n + b + 1$ *such that* $n > 2$, $b \equiv 2, 4 \pmod{8}$ *. Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(6)$ *, thus if* N *is prime, then* $S_{n-1} \equiv -P_{(b+2)/2}(6) \pmod{N}$. **Conjecture 13.5.** *Let* $N = b^n - b + 1$ *such that* $n > 3$, $b \equiv 0, 2 \pmod{8}$ *. Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(6)$ *, thus if* N *is prime, then* $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$. **Conjecture 13.6.** *Let* $N = b^n - b + 1$ *such that* $n > 3$, $b \equiv 4, 6 \pmod{8}$ *. Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(6)$ *, thus if* N *is prime, then* $S_{n-1} \equiv -P_{(b-2)/2}(6) \pmod{N}$.

Conjecture 13.7. *Let* $N = b^n + b - 1$ *such that* $n > 3$, $b \equiv 0, 2 \pmod{8}$ *. Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(6)$ *, thus if N is prime, then* $S_{n-1} \equiv P_{(b-2)/2}(6) \pmod{N}$.

Conjecture 13.8. *Let* $N = b^n + b - 1$ *such that* $n > 3$, $b \equiv 4, 6 \pmod{8}$ *. Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_{b/2}(6)$ *, thus*

if N is prime, then $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$ *.*

Proof attempt by mathlove

First of all,

$$
S_0 = P_{b/2}(6) = 2^{-\frac{b}{2}} \cdot \left(\left(6 - 4\sqrt{2} \right)^{\frac{b}{2}} + \left(6 + 4\sqrt{2} \right)^{\frac{b}{2}} \right)
$$

= $\left(3 - 2\sqrt{2} \right)^{\frac{b}{2}} + \left(3 + 2\sqrt{2} \right)^{\frac{b}{2}}$
= $\left(\sqrt{2} - 1 \right)^b + \left(\sqrt{2} + 1 \right)^b$
= $p^b + q^b$

where $p =$ √ $2 - 1, q =$ √ $2+1$ with $pq=1$.

Now, we can prove by induction that

$$
S_i = p^{b^{i+1}} + q^{b^{i+1}}.
$$

By the way,

$$
p^{N+1} + q^{N+1} = \sum_{i=0}^{N+1} {N+1 \choose i} (\sqrt{2})^i ((-1)^{N+1-i} + 1)
$$

=
$$
\sum_{j=0}^{(N+1)/2} {N+1 \choose 2j} 2^{j+1}
$$

$$
\equiv 2 + 2^{(N+3)/2} \pmod{N}
$$

$$
\equiv 2 + 4 \cdot 2^{\frac{N-1}{2}} \pmod{N}
$$
 (1)

Also,

$$
p^{N+3} + q^{N+3} = \sum_{i=0}^{N+3} {N+3 \choose i} (\sqrt{2})^i ((-1)^{N+3-i} + 1)
$$

=
$$
\sum_{j=0}^{(N+3)/2} {N+3 \choose 2j} 2^{j+1}
$$

$$
\equiv 2 + {N+3 \choose 2} \cdot 2^2 + {N+3 \choose N+1} \cdot 2^{\frac{N+3}{2}} + 2^{\frac{N+5}{2}} \pmod{N}
$$

$$
\equiv 14 + 12 \cdot 2^{\frac{N-1}{2}} + 8 \cdot 2^{\frac{N-1}{2}} \pmod{N}
$$
 (2)

Here, for $N \equiv \pm 1 \pmod{8}$, since $2^{\frac{N-1}{2}} \equiv 1 \pmod{N}$, from $(1)(2)$, we can prove by induction that

$$
p^{N+2i-1} + q^{N+2i-1} \equiv p^{2i} + q^{2i} \pmod{N} \tag{3}
$$

For $N \equiv 3, 5 \pmod{8}$, since $2^{\frac{N-1}{2}} \equiv -1 \pmod{N}$, from $(1)(2)$, we can prove by induction that

$$
p^{N+2i-1} + q^{N+2i-1} \equiv -\left(p^{2i-2} + q^{2i-2}\right) \pmod{N} \tag{4}
$$

To prove $(3)(4)$, we can use

$$
p^{N+2(i+1)-1} + q^{N+2(i+1)-1} \equiv (p^{N+2i-1} + q^{N+2i-1}) (p^2 + q^2) -
$$

$$
- (p^{N+2(i-1)-1} + q^{N+2(i-1)-1}) \pmod{N}
$$

and

$$
p^{N+2(i-1)-1} + q^{N+2(i-1)-1} \equiv (p^{N+2i-1} + q^{N+2i-1}) (p^{-2} + q^{-2}) -
$$

$$
- (p^{N+2(i+1)-1} + q^{N+2(i+1)-1}) \pmod{N}
$$

(Note that (3)(4) holds for **every integer** *i* (not necessarily positive) because of $pq = 1$.) Conjecture 13.1 is true because from (3)

$$
S_{n-1} = p^{N+b+1} + q^{N+b+1}
$$

\n
$$
\equiv p^{b+2} + q^{b+2} \pmod{N}
$$

\n
$$
\equiv P_{(b+2)/2}(6) \pmod{N}
$$

Conjecture 13.2 is true because from (4)

$$
S_{n-1} = p^{N+b+1} + q^{N+b+1}
$$

$$
\equiv -(p^b + q^b) \pmod{N}
$$

$$
\equiv -P_{b/2}(6) \pmod{N}
$$

Conjecture 13.3 is true because from (3)

$$
S_{n-1} = p^{N-b-1} + q^{N-b-1}
$$

$$
\equiv p^{-b} + q^{-b} \pmod{N}
$$

$$
\equiv q^{b} + p^{b} \pmod{N}
$$

$$
\equiv P_{b/2}(6) \pmod{N}
$$

Conjecture 13.4 is true because from (4)

$$
S_{n-1} = p^{N-b-1} + q^{N-b-1}
$$

\n
$$
\equiv -(p^{-b-2} + q^{-b-2}) \pmod{N}
$$

\n
$$
\equiv -(q^{b+2} + p^{b+2}) \pmod{N}
$$

\n
$$
\equiv -P_{(b+2)/2}(6) \pmod{N}
$$

Conjecture 13.5 is true because from (3)

$$
S_{n-1} = p^{N+b-1} + q^{N+b-1}
$$

$$
\equiv p^b + q^b \pmod{N}
$$

$$
\equiv P_{b/2}(6) \pmod{N}
$$

Conjecture 13.6 is true because from (4)

$$
S_{n-1} = p^{N+b-1} + q^{N+b-1}
$$

\n
$$
\equiv -(p^{b-2} + q^{b-2}) \pmod{N}
$$

\n
$$
\equiv -P_{(b-2)/2}(6) \pmod{N}
$$

Conjecture 13.7 is true because from (3)

$$
S_{n-1} = p^{N-b+1} + q^{N-b+1}
$$

\n
$$
\equiv p^{-b+2} + q^{-b+2} \pmod{N}
$$

\n
$$
\equiv q^{b-2} + p^{b-2} \pmod{N}
$$

\n
$$
\equiv P_{(b-2)/2}(6) \pmod{N}
$$

Conjecture 13.8 is true because from (4)

$$
S_{n-1} = p^{N-b+1} + q^{N-b+1}
$$

\n
$$
\equiv -\left(p^{-b} + q^{-b}\right) \pmod{N}
$$

\n
$$
\equiv -\left(q^{b} + p^{b}\right) \pmod{N}
$$

\n
$$
\equiv -P_{b/2}(6) \pmod{N}
$$

Q.E.D.

14 Primality test for $N = 8 \cdot 3^n - 1$

Definition 14.1. Let $P_m(x) = 2^{-m} \cdot ((x -$ √ $(x^2-4)^m + (x+$ √ $\left(x^2-4\right)^m$, where m and x are nonnegative integers .

Conjecture 14.1. *Let* $N = 8 \cdot 3^n - 1$ *such that* $n > 1$. *Let* $S_i = P_3(S_{i-1})$ *with* $S_0 = P_{12}(4)$ *thus , N* is prime iff $S_{n-1} \equiv 4 \pmod{N}$

Incomplete proof by David Speyer Let's unwind your formula.

$$
S_{n-1} = P_{4\cdot 3^n}(4) = (2+\sqrt{3})^{4\cdot 3^n} + (2-\sqrt{3})^{4\cdot 3^n}
$$

$$
= (2+\sqrt{3})^{4\cdot 3^n} + (2+\sqrt{3})^{-4\cdot 3^n} = (2+\sqrt{3})^{(N+1)/2} + (2+\sqrt{3})^{-(N+1)/2}.
$$

You are testing whether or not $S_{n-1} \equiv 4 \mod N$ or, on other words,

$$
(2+\sqrt{3})^{(N+1)/2} + (2+\sqrt{3})^{-(N+1)/2} \equiv 4 \bmod N. \quad (*)
$$

If N is prime: (This section is rewritten to use some observations about roots of unity. It may therefore look a bit less motivated.) The prime N is $-1 \mod 24$, so $N^2 \equiv 1 \mod 24$ and the finite field \mathbb{F}_{N^2} contains a primitive 24-th root of unity, call it η . We have $(\eta + \eta^{-1})^2 = 2 + \sqrt{3}$, for one of the two choices of $\sqrt{3}$ in \mathbb{F}_N . (Since $N \equiv -1 \mod 12$, we have $\left(\frac{3}{N}\right)$ $\frac{3}{N}$ = 1.) Now, $\eta \notin \mathbb{F}_N$. However, we compute $(\eta + \eta^{-1})^N = \eta^N + \eta^{-N} = \eta^{-1} + \eta$, since $N \equiv -1 \mod 24$. So $\eta \neq \eta N$. However, we compute $(\eta + \eta) = \eta + \eta = \eta$
 $\eta + \eta^{-1} \in \mathbb{F}_N$ and we deduce that $2 + \sqrt{3}$ is a square in \mathbb{F}_N .

 S_0 $(2 + \sqrt{3})^{(N-1)/2} \equiv 1 \mod N$ and $(2 + \sqrt{3})^{(N+1)/2} \equiv (2 + \sqrt{3}) \mod N$. Similarly, $(2 + \sqrt{3})^{-(N+1)/2} \equiv (2 + \sqrt{3})^{-1} \equiv 2 - \sqrt{3} \mod N$ and (*) holds.

If N is not prime. Earlier, I said that I saw no way to control whether or not $(*)$ held when N was composite. I said that there seemed to be no reason it should hold and that, furthermore, it was surely very rare, because N is exponentially large, so it is unlikely for a random equality to hold modulo N.

Since then I had a few more ideas about the problem, which don't make it seem any easier, but clarify to me why it is so hard. To make life easier, let's assume that $N = p_1 p_2 \cdots p_j$ is square free. Of course, $(*)$ holds modulo N if and only if it holds modulo every p_i .

Let η be a primitive 24-th root of unity in an appropriate extension of \mathbb{F}_{p_j} . The following equations all take place in this extension of \mathbb{F}_{p_j} . It turns out that $(*)$ factors quite a bit:

$$
(2+\sqrt{3})^{(N+1)/2} + (2+\sqrt{3})^{-(N+1)/2} = 4
$$

$$
(2+\sqrt{3})^{(N+1)/2} = 2 \pm \sqrt{3}
$$

$$
(\eta + \eta^{-1})^{(N+1)} = (\eta + \eta^{-1})^2 \text{ or } (\eta^5 + \eta^{-5})^2
$$

$$
(\eta + \eta^{-1})^{(N+1)/2} \in {\eta + \eta^{-1}, \ \eta^3 + \eta^{-3}, \ \eta^5 + \eta^{-5}, \eta^7 + \eta^{-7}}. \tag{\dagger}
$$

Here is what I would like to do at this point, to follow the lines of the Lucas-Lehmer test, but cannot.

(1) I'd like to know that $(\eta + \eta^{-1})^{(N+1)/2} = \eta + \eta^{-1}$, not one of the other options in (†). (This is what actually occurs in the N prime case, as shown previously.) This would imply that $(\eta + \eta^{-1})^{(N-1)/2} = 1 \in \mathbb{F}_{p_j}.$

(2) I'd like to know that the order of $\eta + \eta^{-1}$ was precisely $(N - 1)/2$, not some divisor thereof.

(3) I'd like to thereby conclude that the multiplicative group of \mathbb{F}_{p_i} was of order divisible by $(N-1)/2$, and thus $p_j \ge (N-1)/2$. This would mean that there was basically only room for one p_j , and we would be able to conclude primality.

Now, (1) isn't so bad, because you could directly compute in the ring $\mathbb{Z}/(N\mathbb{Z})[\eta]/(\eta^8 - \eta^4 + 1)$, rather than trying to disguise this ring with elementary polynomial formulas. So, while I don't see that your algorithm checks this point, it wouldn't be hard.

And $(2) \implies (3)$ is correct.

But you have a real problem with (2). This way this works in the Lucas-Lehmer test is that but you have a real problem with (2). This way this works in the Euca
you are trying to prove that $2 + \sqrt{3}$ has order precisely 2^p in the field \mathbb{F}_{2^p-1} $[\sqrt{3}] \cong \mathbb{F}_{(2^p-1)^2}$. You solution are divided by prove that $2 + \sqrt{3}$ and solution precisely $2^{\sqrt{3}}$ in the held $\frac{1}{2}$ $\frac{p-1}{\sqrt{3}}$ $\frac{p}{2}$ = $\frac{1}{2}$ $\frac{p-1}{\sqrt{3}}$ already know that $(2 + \sqrt{3})^{2^p} = 1$. So it is enough to check that

In the current situation, the analogous thing would be to check that $(\eta + \eta^{-1})^{(N-1)/(2q)} \neq 1$ for every prime q dividing $(N - 1)/2$. But I have no idea which primes divide q! This seems like an huge obstacle to a proof that $(*)$ implies N is prime.

To repeat: I think it may well be true that $(*)$ implies N is prime, simply because there is no reason that (†) should hold once $N \neq p_j$, and the odds of (†) happening by accident are exponentially small. But I see no global principle implying this.

Q.E.D.

15 Generalization of Kilford's primality theorem

Conjecture 15.1. *Natural number* n *greater than two is prime iff :*

$$
\prod_{k=1}^{n-1} (b^k - a) \equiv \frac{a^n - 1}{a - 1} \pmod{\frac{b^n - 1}{b - 1}}
$$

where $b > a > 1$.

16 Prime generating sequence

Definition 16.1. Let $b_n = b_{n-2} + \text{lcm}(n-1, b_{n-2})$ with $b_1 = 2$, $b_2 = 2$ and $n > 2$. Let $a_n = b_{n+2}/b_n - 1$

Conjecture 16.1. *1. Every term of this sequence* a_i *is either prime or* 1.

2. Every odd prime number is member of this sequence .

3. Every new prime in sequence is a next prime from the largest prime already listed .

Incomplete proof by Markus Schepherd

This is the full argument for conjectures 2 and 3. First we need the general relation between gcd (a, b) and lcm $[a, b]$: $a \cdot b = (a, b) \cdot [a, b]$. Then we note that the lowest common multiple $[n-1, b_{n-2}]$ is in particular a multiple of b_{n-2} , say kb_{n-2} with $1 \leq k \leq n-1$. Hence we have $b_n = b_{n-2}(k+1)$, so in every step the term b_n gets a new factor between 2 and n which means in particular that all prime factors of b_n are less or equal to n. Now we rearrange a_n with the above observation to $a_n = \frac{n+1}{(n+1)h}$ $\frac{n+1}{(n+1,b_n)}$. Let p be a prime. Then $(p, b_{p-1}) = 1$ since all prime factors of b_{p-1} are strictly smaller than p. But then $a_{p-1} = \frac{p}{(p,b_{p-1})} = p$ as claimed in conjecture 2. Further, we have obviously $a_n \leq n+1$ for all n, so the first index for which the prime p can appear in the sequence is $p - 1$ which immediately implies conjecture 3.

Q.E.D.

17 Primality test using Euler's totient function

Theorem 17.1. *(Wilson)*

A positive integer n is prime iff $(n - 1)! \equiv -1 \pmod{n}$

Theorem 17.2. A positive integer n is prime iff $\varphi(n)! \equiv -1 \pmod{n}$.

Proof Necessity : *If* n *is prime then* $\varphi(n)! \equiv -1 \pmod{n}$ If *n* is prime then we have $\varphi(n) = n - 1$ and by Theorem 17.1 : $(n-1)! = -1 \pmod{n}$, hence $\varphi(n)! \equiv -1 \pmod{n}$. Sufficiency : *If* $\varphi(n)! \equiv -1 \pmod{n}$ *then n is prime* For $n = 2$ and $n = 6$: $\varphi(2)! \equiv -1 \pmod{2}$ and 2 is prime. $\varphi(6)! \not\equiv -1 \pmod{6}$ and 6 is composite. For $n \neq 2, 6$: Suppose *n* is composite and *p* is the least prime such that $p \mid n$, then we have $\varphi(n)! \equiv -1 \pmod{p}$. Since $\varphi(n) \geq$ √ \overline{n} for all *n* except $n = 2$ and $n = 6$ and $p \leq$ √ \overline{n} it follows $p \mid \varphi(n)!$, hence $\varphi(n)! \equiv 0 \pmod{p}$ a contradiction . Therefore , n must be prime. Q.E.D.

18 Primality tests for specific classes of Proth numbers

Theorem 18.1. *Let* $N = k \cdot 2^n + 1$ *with* $n > 1$, $k < 2^n$, $3 \mid k$, and $\binom{k}{k} = 3 \pmod{30}$ *with* $n \equiv 1, 2 \pmod{4}$ \int $\overline{\mathcal{L}}$ $k \equiv 3 \pmod{30}$, *with* $n \equiv 1, 2 \pmod{4}$ $k \equiv 9 \pmod{30}$, *with* $n \equiv 2, 3 \pmod{4}$ $k \equiv 21 \pmod{30}$, *with* $n \equiv 0, 1 \pmod{4}$ $k \equiv 27 \pmod{30}$, *with* $n \equiv 0,3 \pmod{4}$ *thus, N* is prime iff $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$. Proof Necessity : *If* N is prime then $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ Let N be a prime, then by Euler criterion : $5^{\frac{N-1}{2}} \equiv \left(\frac{5}{N}\right)$ $\frac{5}{N}$ (mod N) If N is a prime then $N \equiv 2, 3 \pmod{5}$ and therefore : $\left(\frac{N}{5}\right) = -1$.

Since $N \equiv 1 \pmod{4}$ according to the law of quadratic reciprocity it follows that : $\left(\frac{5}{N}\right)$ $(\frac{5}{N}) = -1$. Hence , $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Sufficiency : *If* $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ *then N is prime* If $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then by Proth's theorem N is prime. Q.E.D.

Theorem 18.2. Let $N = k \cdot 2^n + 1$ with $n > 1$, $k < 2^n$, $3 \mid k$, and

 $k \equiv 3 \pmod{42}$, *with* $n \equiv 2 \pmod{3}$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $k \equiv 9 \pmod{42}$, *with* $n \equiv 0, 1 \pmod{3}$ $k \equiv 15 \pmod{42}$, *with* $n \equiv 1, 2 \pmod{3}$ $k \equiv 27 \pmod{42}$, *with* $n \equiv 1 \pmod{3}$ $k \equiv 33 \pmod{42}$, *with* $n \equiv 0 \pmod{3}$ $k \equiv 39 \pmod{42}$, *with* $n \equiv 0, 2 \pmod{3}$ *thus* , N *is prime iff* $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$

Proof

Necessity : *If* N is prime then $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$

Let N be a prime, then by Euler criterion :

 $7^{\frac{N-1}{2}} \equiv \left(\frac{7}{N}\right)$ $\frac{7}{N}$ (mod N)

If N is prime then $N \equiv 3, 5, 6 \pmod{7}$ and therefore : $\left(\frac{N}{7}\right) = -1$. Since $N \equiv 1 \pmod{4}$ according to the law of quadratic reciprocity it follows that : $\left(\frac{7}{N}\right)$ $\frac{7}{N}$) = -1. Hence , $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Sufficiency : *If* $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ *then N is prime* If $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then by Proth's theorem N is prime. Q.E.D.

Theorem 18.3. *Let* $N = k \cdot 2^n + 1$ *with* $n > 1$, $k < 2^n$, $3 \mid k$, and $\binom{k}{k} = 3 \pmod{66}$ with $n = 1, 2, 6, 8, 0 \pmod{10}$ $\begin{array}{c} \hline \end{array}$ $k \equiv 3 \pmod{66}$, *with* $n \equiv 1, 2, 6, 8, 9 \pmod{10}$ $k \equiv 9 \pmod{66}$, *with* $n \equiv 0, 1, 3, 4, 8 \pmod{10}$ $k \equiv 15 \pmod{66}$, *with* $n \equiv 2, 4, 5, 7, 8 \pmod{10}$ $k \equiv 21 \pmod{66}$, *with* $n \equiv 1, 2, 4, 5, 9 \pmod{10}$ $k \equiv 27 \pmod{66}$, *with* $n \equiv 0, 2, 3, 5, 6 \pmod{10}$ $k \equiv 39 \pmod{66}$, *with* $n \equiv 0, 1, 5, 7, 8 \pmod{10}$ $k \equiv 45 \pmod{66}$, *with* $n \equiv 0, 4, 6, 7, 9 \pmod{10}$ $k \equiv 51 \pmod{66}$, *with* $n \equiv 0, 2, 3, 7, 9 \pmod{10}$ $k \equiv 57 \pmod{66}$, *with* $n \equiv 3, 5, 6, 8, 9 \pmod{10}$ $k \equiv 63 \pmod{66}$, *with* $n \equiv 1, 3, 4, 6, 7 \pmod{10}$

thus,

N is prime iff $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$

Proof

Necessity : *If* N is prime then $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ Let N be a prime, then by Euler criterion : $11^{\frac{N-1}{2}} \equiv \left(\frac{11}{N}\right)$ $\frac{11}{N}$ (mod N) If N is prime then $N \equiv 2, 6, 7, 8, 10 \pmod{11}$ and therefore : $\left(\frac{N}{11}\right) = -1$. Since $N \equiv 1 \pmod{4}$ according to the law of quadratic reciprocity it follows that : $\left(\frac{11}{N}\right)$ $\frac{11}{N}$) = -1. Hence , $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Sufficiency : *If* $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ *then N is prime* If $11^{\frac{N-1}{2}} \equiv -1 \pmod{N}$ then by Proth's theorem N is prime. Q.E.D.

19 Generalization of Wilson's primality theorem

Theorem 19.1. *For* $m > 1$ *number n* greater than one is prime iff :

 $(n^m - 1)! \equiv (n - 1)$ $\left[\frac{(-1)^{m+1}}{2}\right]$ 1 $\cdot n^{\frac{n^m - mn + m - 1}{n-1}} \pmod{n^{\frac{n^m - mn + m + n - 2}{n-1}}}$

20 Primality test for Fermat numbers using quartic recurrence equation

Let us define sequence S_i as :

$$
S_i = \begin{cases} 8 & \text{if } i = 0; \\ (S_{i-1}^2 - 2)^2 - 2 & \text{otherwise.} \end{cases}
$$

Theorem 20.1. $F_n = 2^{2^n} + 1, (n \ge 2)$ *is a prime if and only if* F_n *divides* $S_{2^{n-1}-1}$.

Proof

Let us define $\omega = 4 + \sqrt{15}$ and $\bar{\omega} = 4 - \sqrt{15}$ √ $\overline{15}$ and then define L_n to be $\omega^{2^{2n}} + \overline{\omega}^{2^{2n}}$, we get $L_0 = \omega + \bar{\omega} = 8$, and $L_{n+1} = \omega^{2^{2n+2}} + \bar{\omega}^{2^{2n+2}} = (\omega^{2^{2n+1}})^2 + (\bar{\omega}^{2^{2n+1}})^2 = (\omega^{2^{2n+1}} +$ $(\bar{\omega}^{2^{2n+1}})^2 - 2\cdot \omega^{2^{2n+1}}\cdot \bar{\omega}^{2^{2n+1}}\, =\, =\, ((\omega^{2^{2n}} + \bar{\omega}^{2^{2n}})^2 - 2\cdot \omega^{2^{2n}}\cdot \bar{\omega}^{2^{2n}})^2 - 2\cdot \omega^{2^{2n+1}}\cdot \bar{\omega}^{2^{2n+1}}\, =\,$ $= ((\omega^{2^{2n}} + \bar{\omega}^{2^{2n}})^2 - 2 \cdot (\omega \cdot \bar{\omega})^{2^{2n}})^2 - 2 \cdot (\omega \cdot \bar{\omega})^{2^{2n+1}}$ and since $\omega \cdot \bar{\omega} = 1$ we get : $L_{n+1} = (L_n^2 - 2)^2 - 2$ Because the L_n satisfy the same inductive definition as the sequence S_i , the two sequences must be the same .

Proof of necessity

If $2^{2^n} + 1$ is prime then $S_{2^{n-1}-1}$ is divisible by $2^{2^n} + 1$

We rely on simplification of the proof of Lucas-Lehmer test by Oystein J. R. Odseth .First notice that 3 is quadratic non-residue (mod F_n) and that 5 is quadratic non-residue (mod F_n). Euler's criterion then gives us : $3^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$ and $5^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$ On the other hand 2 is a quadratic-residue $(\text{mod } F_n)$, Euler's criterion gives: $2^{\frac{F_n-1}{2}} \equiv 1 \pmod{F_n}$

Next define $\sigma = 2\sqrt{15}$, and define X as the multiplicative group of $\{a + b\sqrt{15} | a, b \in Z_{F_n}\}\$.We will use following lemmas :

Lemma 1. $(x+y)^{F_n} = x^{F_n} + y^{F_n} \pmod{F_n}$ Lemma 2. $a^{F_n} \equiv a \pmod{F_n}$ (Fermat little theorem)

Then in group X we have :

(6+ σ)^{F_n} = (6)^{F_n} +(σ)^{F_n} (mod F_n) = = 6+(2 $\sqrt{15}$)^{F_n} (mod F_n) = = 6+2^{F_n}·15^{F_n-1}⁻¹ √ 15 $\pmod{F_n} = 6 + 2 \cdot 3^{\frac{F_n-1}{2}} \cdot 5^{\frac{F_n-1}{2}}$ $^{\perp}$ ″ $15 \pmod{F_n} = 6 + 2 \cdot (-1) \cdot (-1) \cdot (-1)$ √ $15 \pmod{F_n} =$ $(\text{mod } r_n) = 6 + 2\sqrt{15} \pmod{F_n} = (6 + \sigma) \pmod{F_n}$

We chose σ such that $\omega = \frac{(6+\sigma)^2}{24}$. We can use this to compute $\omega^{\frac{F_n-1}{2}}$ in the group X: $\omega^{\frac{F_n-1}{2}}=\frac{(6+\sigma)^{F_n-1}}{F_n-1}$ $\frac{(\delta+\sigma)^{F_n-1}}{24^{\frac{F_n-1}{2}}}=\frac{(6+\sigma)^{F_n}}{(6+\sigma)\cdot 24^{\frac{F_n}{F_n}}}$ $\frac{(6+\sigma)^{F_n}}{(6+\sigma)\cdot 24^{\frac{F_n-1}{2}}} \equiv \frac{(6+\sigma)}{(6+\sigma)\cdot (-1)} \pmod{F_n} = -1 \pmod{F_n}$ where we use fact that : $24^{\frac{F_n-1}{2}} = (2^{\frac{F_n-1}{2}})^3 \cdot (3^{\frac{F_n-1}{2}}) \equiv (1^3) \cdot (-1) \pmod{F_n} = -1 \pmod{F_n}$ So we have shown that : $\omega^{\frac{F_n-1}{2}} \equiv -1 \pmod{F_n}$

If we write this as $\omega^{\frac{2^{2^{n}}+1-1}{2}} = \omega^{2^{2^{n}-1}} = \omega^{2^{2^{n}-2}} \cdot \omega^{2^{2^{n}-2}} \equiv -1 \pmod{F_n}$, multiply both sides by $\bar{\omega}^{2^{n}-2}$, and put both terms on the left hand side to write this as : $\omega^{2^{2^{n}-2}} + \bar{\omega}^{2^{2^{n}-2}} \equiv 0$ $p(\mod{F_n}) \omega^{2^{2(2^{n-1}-1)}} + \overline{\omega}^{2^{2(2^{n-1}-1)}} \equiv 0 \pmod{F_n} \Rightarrow S_{2^{n-1}-1} \equiv 0 \pmod{F_n}$

Since the left hand side is an integer this means therefore that S_{2n-1-1} must be divisible by $2^{2^n}+1$.

Proof of sufficiency

If $S_{2^{n-1}-1}$ is divisible by $2^{2^n} + 1$, then $2^{2^n} + 1$ is prime.

We rely on simplification of the proof of Lucas-Lehmer test by J. W. Bruce .If $2^{2^n} + 1$ is not prime then it must be divisible by some prime factor F less than or equal to the square root of $2^{2^n} + 1$. From the hypothesis $S_{2^{n-1}-1}$ is divisible by $2^{2^n} + 1$ so $S_{2^{n-1}-1}$ is also multiple of F , so we can write : $\omega^{2^{2(2^{n-1}-1)}} + \overline{\omega}^{2^{2(2^{n-1}-1)}} = K \cdot F$, for some integer K. We can write this equality as : $\omega^{2^{n}-2} + \bar{\omega}^{2^{n}-2} = K \cdot F$ Note that $\omega \cdot \bar{\omega} = 1$ so we can multiply both sides by $\omega^{2^{2^{n}-2}}$ and rewrite this relation as : $\omega^{2^{2^{n}-1}} = K \cdot F \cdot \omega^{2^{2^{n}-2}} - 1$. If we square both sides we get : $\omega^{2^{2^n}} = (K \cdot F \cdot \omega^{2^{2^n-2}} - 1)^2$ Now consider the set of numbers $a + b$ √ $\overline{Y} \cdot F \cdot \omega^{2^{2^{\omega}-2}} - 1)^{2}$ Now consider the set of numbers $a + b\sqrt{15}$ for integers a and b where $a + b\sqrt{15}$ and $c + d\sqrt{15}$ are considered equivalent if a and c differ by a multiple of F, and the same is true for b and d. There are $F²$ of these numbers, and addition and multiplication can be verified to be well-defined on sets of equivalent numbers. Given the element ω (considered as representative of an equivalence class) , the associative law allows us to use exponential notation for repeated products : $\omega^n = \omega \cdot \omega \cdot \cdot \cdot \omega$, where the product contains n factors and the usual rules for exponents can be justified. Consider the sequence of elements $\omega, \omega^2, \omega^3, \ldots$. Because ω has the inverse $\bar{\omega}$ every element in this sequence has an inverse. So there can be at most $F^2 - 1$ different elements of this sequence. Thus there must be at least two different exponents where $\omega^j = \omega^k$ with $j < k \leq F^2$. Multiply j times by inverse of ω to get that $\omega^{k-j} = 1$ with $1 \leq k - j \leq F^2 - 1$. So we have proven that ω satisfies $\omega^n = 1$ for some positive exponent n less than or equal to $F^2 - 1$. Define the order of ω to be smallest positive integer d such that $\omega^d = 1$. So if n is any other positive integer satisfying $\omega^n = 1$ then n must be multiple of d. Write $n = q \cdot d + r$ with $r < d$. Then if $r \neq 0$ we have $1 = \omega^n = \omega^{q \cdot d + r} = (\omega^d)^q \cdot \omega^r = 1^q \cdot \omega^r = \omega^r$ contradicting the minimality of d so $r = 0$ and n is multiple of d. The relation $\omega^{2^{2^n}} = (K \cdot F \cdot \omega^{2^{2^n-2}} - 1)^2$ shows that $\omega^{2^{n}} \equiv 1 \pmod{F}$. So that $2^{2^{n}}$ must be multiple of the order of ω . But the relation

 $\omega^{2^{n}-1} = K \cdot F \cdot \omega^{2^{2^{n}-2}} - 1$ shows that $\omega^{2^{2^{n}-1}} \equiv -1 \pmod{F}$ so the order cannot be any proper factor of 2^{2^n} , therefore the order must be 2^{2^n} . Since this order is less than or equal to $F^2 - 1$ and F is less or equal to the square root of $2^{2^n} + 1$ we have relation : $2^{2^n} \le F^2 - 1 \le 2^{2^n}$. This is true only if $2^{2^n} = F^2 - 1 \Rightarrow 2^{2^n} + 1 = F^2$. We will show that Fermat number cannot be square of prime factor .

Theorem : Any prime divisor p of $F_n = 2^{2^n} + 1$ is of the form $k \cdot 2^{n+2} + 1$ whenever n is greater than one .

So prime factor F must be of the form $k \cdot 2^{n+2} + 1$, therefore we can write : $2^{2^n} + 1 =$ $(k \cdot 2^{n+2} + 1)^2 2^{2^n} + 1 = k^2 \cdot 2^{2n+4} + 2 \cdot k \cdot 2^{n+2} + 1 2^{2^n} = k \cdot 2^{n+3} \cdot (k \cdot 2^{n+1} + 1)$

The last equality cannot be true since $k \cdot 2^{n+1} + 1$ is an odd number and 2^{2^n} has no odd prime factors so $2^{2^n} + 1 \neq F^2$ and therefore we have relation $2^{2^n} < F^2 - 1 < 2^{2^n}$ which is contradiction so therefore $2^{2^n} + 1$ must be prime.

Q.E.D.

21 Prime number formula

$$
p_n = 1 + \sum_{k=1}^{2 \cdot (\lfloor n \ln(n) \rfloor + 1)} \left(1 - \left\lfloor \frac{1}{n} \cdot \sum_{j=2}^k \left\lceil \frac{3 - \sum_{i=1}^j \left\lfloor \frac{j}{i} \right\rfloor}{j} \right\rceil \right) \right)
$$

22 Primality criterion for specific class of $N = 3 \cdot 2^n - 1$

Definition 22.1. Let $P_m(x) = 2^{-m} \cdot ((x -$ √ $(x^2-4)^m + (x+$ √ $\left(x^2-4\right)^m$, where m and x are nonnegative integers .

Conjecture 22.1. *Let* $N = 3 \cdot 2^{n} - 1$ *such that* $n > 2$ *and* $n \equiv 2 \pmod{4}$ *Let* $S_i = P_2(S_{i-1})$ *with* $S_0 =$ $\sqrt{ }$ \int \mathcal{L} $P_3(32)$, *if* $n \equiv 2 \pmod{8}$ $P_3(36)$, *if* $n \equiv 6 \pmod{8}$ *thus , N is prime iff* $S_{n-2} \equiv 0 \pmod{N}$

23 Probable prime tests for generalized Fermat numbers

Definition 23.1. Let $P_m(x) = 2^{-m} \cdot \left((x -$ √ $(x^2-4)^m + (x+$ √ $(x^2-4)^m$, where m and x are nonnegative integers.

Theorem 23.1. Let $F_n(b) = b^{2^n} + 1$ such that $n \ge 2$ and b is even number. *Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_b(6)$ *, thus if* $F_n(b)$ *is prime, then* $S_{2^n-1} \equiv 2 \pmod{F_n(b)}$ *.* The following proof appeared for the first time on MSE forum in August 2016 . Proof by mathlove . First of all, we prove by induction that

$$
S_i = \alpha^{b^{i+1}} + \beta^{b^{i+1}} \tag{1}
$$

where $\alpha = 3 - 2$ $\sqrt{2}$, $\beta = 3 + 2\sqrt{2}$ with $\alpha\beta = 1$. Proof for (1) :

$$
S_0 = P_b(6)
$$

= $2^{-b} \cdot \left(\left(6 - 4\sqrt{2} \right)^b + \left(6 + 4\sqrt{2} \right)^b \right)$
= $2^{-b} \cdot \left(2^b (3 - 2\sqrt{2})^b + 2^b (3 + 2\sqrt{2})^b \right)$
= $\alpha^b + \beta^b$

Suppose that (1) holds for *i*. Using the fact that

$$
(\alpha^m + \beta^m)^2 - 4 = (\beta^m - \alpha^m)^2
$$

we get

$$
S_{i+1} = P_b(S_i)
$$

= $2^{-b} \cdot \left(\left(\alpha^{b^{i+1}} + \beta^{b^{i+1}} - \sqrt{(\alpha^{b^{i+1}} + \beta^{b^{i+1}})^2 - 4} \right)^b + \left(\alpha^{b^{i+1}} + \beta^{b^{i+1}} + \sqrt{(\alpha^{b^{i+1}} + \beta^{b^{i+1}})^2 - 4} \right)^b \right)$
= $2^{-b} \cdot \left(\left(\alpha^{b^{i+1}} + \beta^{b^{i+1}} - \sqrt{(\beta^{b^{i+1}} - \alpha^{b^{i+1}})^2} \right)^b + \left(\alpha^{b^{i+1}} + \beta^{b^{i+1}} + \sqrt{(\beta^{b^{i+1}} - \alpha^{b^{i+1}})^2} \right)^b \right)$
= $2^{-b} \cdot \left(\left(2\alpha^{b^{i+1}} \right)^b + \left(2\beta^{b^{i+1}} \right)^b \right)$
= $\alpha^{b^{i+2}} + \beta^{b^{i+2}}$

Let $N := F_n(b) = b^{2^n} + 1$. Then, from (1),

$$
S_{2^n-1} = \alpha^{b^{2^n}} + \beta^{b^{2^n}} = \alpha^{N-1} + \beta^{N-1}
$$

Since $\alpha\beta = 1$,

$$
S_{2^{n}-1} = \alpha^{N-1} + \beta^{N-1}
$$

= $\alpha\beta(\alpha^{N-1} + \beta^{N-1})$
= $\beta \cdot \alpha^{N} + \alpha \cdot \beta^{N}$
= $3(\alpha^{N} + \beta^{N}) - 2\sqrt{2} (\beta^{N} - \alpha^{N})$ (2)

So, in the following, we find $\alpha^N + \beta^N \pmod{N}$ and $\sqrt{2} (\beta^N - \alpha^N) \pmod{N}$. Using the binomial theorem,

$$
\alpha^{N} + \beta^{N} = (3 - 2\sqrt{2})^{N} + (3 + 2\sqrt{2})^{N}
$$

=
$$
\sum_{i=0}^{N} {N \choose i} 3^{i} \cdot ((-2\sqrt{2})^{N-i} + (2\sqrt{2})^{N-i})
$$

=
$$
\sum_{j=1}^{(N+1)/2} {N \choose 2j-1} 3^{2j-1} \cdot 2(2\sqrt{2})^{N-(2j-1)}
$$

Since $\binom{N}{2j-1} \equiv 0 \pmod{N}$ for $1 \le j \le (N-1)/2$, we get

$$
\alpha^N + \beta^N \equiv \binom{N}{N} 3^N \cdot 2(2\sqrt{2})^0 \equiv 2 \cdot 3^N \pmod{N}
$$

Now, by Fermat's little theorem,

$$
\alpha^N + \beta^N \equiv 2 \cdot 3^N \equiv 2 \cdot 3 \equiv 6 \pmod{N}
$$
 (3)

Similarly,

$$
\sqrt{2} (\beta^N - \alpha^N) = \sqrt{2} ((3 + 2\sqrt{2})^N - (3 - 2\sqrt{2})^N)
$$

= $\sqrt{2} \sum_{i=0}^N {N \choose i} 3^i \cdot ((2\sqrt{2})^{N-i} - (-2\sqrt{2})^{N-i})$
= $\sqrt{2} \sum_{j=0}^{(N-1)/2} {N \choose 2j} 3^{2j} \cdot 2(2\sqrt{2})^{N-2j}$
= $\sqrt{2} {N \choose 0} 3^0 \cdot 2(2\sqrt{2})^N \pmod{N}$
\equiv $2^{N+1} \cdot 2^{(N+1)/2} \pmod{N}$
\equiv 4 \cdot 2^{(N+1)/2} \pmod{N} (4)

By the way, since b is even with $n \geq 2$,

$$
N = b^{2^n} + 1 \equiv 1 \pmod{8}
$$

from which

$$
2^{(N-1)/2} \equiv \left(\frac{2}{N}\right) \equiv (-1)^{(N^2-1)/8} \equiv 1 \pmod{N}
$$

follows where $\left(\frac{q}{q}\right)$ p denotes the Legendre symbol . So, from (4) ,

$$
\sqrt{2} \left(\beta^N - \alpha^N \right) \equiv 4 \cdot 2^{(N+1)/2} \equiv 4 \cdot 2 \equiv 8 \pmod{N}
$$
 (5)

Therefore, finally, from $(2)(3)$ and (5) ,

$$
S_{2^{n}-1} \equiv 3(\alpha^{N} + \beta^{N}) - 2\sqrt{2} (\beta^{N} - \alpha^{N}) \equiv 3 \cdot 6 - 2 \cdot 8 \equiv 2 \pmod{F_{n}(b)}
$$

as desired.

Q.E.D.

Theorem 23.2. *Let* $E_n(b) = \frac{b^{2^n} + 1}{2}$ $\frac{+1}{2}$ such that $n > 1$, b is odd number greater than one. *Let* $S_i = P_b(S_{i-1})$ *with* $S_0 = P_b(6)$ *, thus if* $E_n(b)$ *is prime, then* $S_{2^n-1} \equiv 6 \pmod{E_n(b)}$ *.*

The following proof appeared for the first time on MSE forum in August 2016 .

Proof by mathlove . First of all, we prove by induction that

$$
S_i = p^{2b^{i+1}} + q^{2b^{i+1}}
$$
 (6)

where $p =$ √ $2 - 1, q =$ √ $2 + 1$ with $pq = 1$. Proof for (6) :

$$
S_0 = P_b(6) = 2^{-b} \cdot \left(\left(6 - 4\sqrt{2} \right)^b + \left(6 + 4\sqrt{2} \right)^b \right) = (3 - 2\sqrt{2})^b + (3 + 2\sqrt{2})^b = p^{2b} + q^{2b}
$$

Supposing that (6) holds for *i* gives

$$
S_{i+1} = P_b(S_i)
$$

= $2^{-b} \cdot \left(\left(S_i - \sqrt{S_i^2 - 4} \right)^b + \left(S_i + \sqrt{S_i^2 - 4} \right)^b \right)$
= $2^{-b} \cdot \left(\left(p^{2b^{i+1}} + q^{2b^{i+1}} - \sqrt{(q^{2b^{i+1}} - p^{2b^{i+1}})^2} \right)^b + \left(p^{2b^{i+1}} + q^{2b^{i+1}} + \sqrt{(q^{2b^{i+1}} - p^{2b^{i+1}})^2} \right)^b \right)$
= $2^{-b} \cdot \left(\left(p^{2b^{i+1}} + q^{2b^{i+1}} - \left(q^{2b^{i+1}} - p^{2b^{i+1}} \right) \right)^b + \left(p^{2b^{i+1}} + q^{2b^{i+1}} + \left(q^{2b^{i+1}} - p^{2b^{i+1}} \right) \right)^b \right)$
= $2^{-b} \cdot \left(\left(2p^{2b^{i+1}} \right)^b + \left(2q^{2b^{i+1}} \right)^b \right)$
= $p^{2b^{i+2}} + q^{2b^{i+2}}$

Let $N := 2^n - 1, M := E_n(b) = (b^{N+1} + 1)/2$. From (6), we have

$$
S_{2^{n}-1} = S_{N}
$$

= $p^{2b^{N+1}} + q^{2b^{N+1}}$
= $p^{2(2M-1)} + q^{2(2M-1)}$
= $p^{4M-2} + q^{4M-2}$
= $(pq)^{2}(p^{4M-2} + q^{4M-2})$
= $3(p^{4M} + q^{4M}) - 2\sqrt{2}(q^{4M} - p^{4M})$

Now using the binomial theorem and Fermat's little theorem,

$$
p^{4M} + q^{4M} = (17 - 12\sqrt{2})^{M} + (17 + 12\sqrt{2})^{M}
$$

=
$$
\sum_{i=0}^{M} {M \choose i} 17^{i}((-12\sqrt{2})^{M-i} + (12\sqrt{2})^{M-i})
$$

=
$$
\sum_{j=1}^{(M+1)/2} {M \choose 2j-1} 17^{2j-1} \cdot 2(12\sqrt{2})^{M-(2j-1)}
$$

=
$$
{M \choose M} 17^{M} \cdot 2(12\sqrt{2})^{0} \pmod{M}
$$

\equiv 17 \cdot 2 \pmod{M}
\equiv 34 \pmod{M}

Similarly,

$$
2\sqrt{2} (q^{4M} - p^{4M}) = 2\sqrt{2} ((17 + 12\sqrt{2})^{M} - (17 - 12\sqrt{2})^{M})
$$

\n
$$
= 2\sqrt{2} \sum_{i=0}^{M} {M \choose i} 17^{i} ((12\sqrt{2})^{M-i} - (-12\sqrt{2})^{M-i})
$$

\n
$$
= 2\sqrt{2} \sum_{j=0}^{(M-1)/2} {M \choose 2j} 17^{2j} \cdot 2(12\sqrt{2})^{M-2j}
$$

\n
$$
= \sum_{j=0}^{(M-1)/2} {M \choose 2j} 17^{2j} \cdot 4 \cdot 12^{M-2j} \cdot 2^{(M-2j+1)/2}
$$

\n
$$
\equiv {M \choose 0} 17^{0} \cdot 4 \cdot 12^{M} \cdot 2^{(M+1)/2} \qquad \text{(mod } M)
$$

\n
$$
\equiv 4 \cdot 12 \cdot 2 \qquad \text{(mod } M)
$$

\n
$$
\equiv 96 \qquad \text{(mod } M)
$$

since $2^{(M-1)/2} \equiv (-1)^{(M^2-1)/8} \equiv 1 \pmod{M}$ (this is because $M \equiv 1 \pmod{8}$ from $b^2 \equiv 1, 9$ (mod 16))

It follows from these that

$$
S_{2^{n}-1} = 3(p^{4M} + q^{4M}) - 2\sqrt{2} (q^{4M} - p^{4M})
$$

\n
$$
\equiv 3 \cdot 34 - 96 \qquad \text{(mod } M)
$$

\n
$$
\equiv 6 \qquad \text{(mod } E_n(b))
$$

as desired.

Q.E.D.