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1 Compositeness tests for N =k -b" £ ¢
Definition 1.1. Let P,,(z) =27 - <(x —Var—4)" + (z + m)m) :

where m and z are nonnegative integers.

Conjecture 1.1.

Let N =Fk-b" —csuchthatb=0 (mod 2),n > be,k > 0,c>0

Conjecture 1.2.

andc=1,7 (mod 8)
Let S; = Pb(SZ»_l) with Sy = Pbk/2<Pb/2(6)), thus
If N is prime then S,,_1 = P/9).1c/21(6) (mod N)

Let N =k -b" — csuchthatb =0,4,8 (mod 12),n > bc,k > 0,¢ >0

Conjecture 1.3.

and c = 3,5 (mod 8).
Let S; = Pb(SZ»_l) with Sy = Pbk/g(Pb/2(6)), thus
If N is prime then S,_1 = Py/2).c/2)(6) (mod N)

Let N =k -b" — c such thatb = 2,6,10 (mod 12),n > bc,k > 0,¢ > 0

andc=3,5 (mod 8).
Let S; = Pb(Si—l) with Sy = Pbk/Q(Pb/2(6))7 thus
If N is prime then S, _1 = —FP)2).|¢/2)(6) (mod N)



Conjecture 1.4.
Let N =Fk-b" + csuchthatb=0 (mod 2),n > bec,k > 0,¢>0

andc=1,7 (mod 8)
Let Sl = Pb(Sifl) with So = Pbk/g(Pb/g(G)), thus
If N is prime then S,,_1 = P2).|c/2)(6) (mod N)

Conjecture 1.5.
Let N =k -b" 4 csuchthatb = 0,4,8 (mod 12),n > be,k > 0,¢ >0

and c = 3,5 (mod 8).
Let S; = Pb(Sifl) with So = Pbk/2<Pb/2(6)), thus
If N is prime then S, _1 = Py/2).1c/21(6) (mod N)

Conjecture 1.6.
Let N =Fk-b" + csuchthatb=2,6,10 (mod 12),n > bec,k > 0,c>0
and c = 3,5 (mod 8).

Let S; = Pb(Si_l) with Sy = Pbk/2<Pb/2(6)), thus
If N is prime then S,,_1 = —P2).7¢/21(6) (mod N)

Proof attempt by mathlove
First of all,

Pya(6) = 270/2 ((6 — 4\/§)b/2 4 <6+4\/§>b/2>
— (3_2\/§>b/2+ <3+2\/§>b/2
=p"+¢

where p = v2 — 1, = V2 + 1 with pg = 1.
From

_ bk /2 bk /2 2 2
So = Pyoja(Pyy(6)) = 2 bk /2 <(2pb) / n (2qb) / ) _ pPPRI2 | R

and S; = P,(S;_1), we can prove by induction on i € N that

S, = pbi+2k/2 + qb"+2k/2.



By the way,

PN N = Z <N+ 1) (V2) (1M1 4 1)

- 1
=0

(N+1)/2
S (N f1)2j+1
N

=24 202 (mod N)
=244.2"7 (mod N) (D

Also,

N3 g8 = Z (N + 3) (\/5)2 ((_1)N+3—i + 1)

7

N+3)/2
(N¥+3>W+l

B N+3 9 N+3 N+3 Nis
:2+< 5 )-2 +(N+1)-22 +22  (mod N)

=14412-2°7 +8-27  (mod N) )

IOM

For N = £1 (mod 8), since 2% =1 (mod N), from (1)(2), we can prove by induction
on i € Z that
pN+2i71 + qN+2z 1 _p _|_ q (mod N) (3)

For N = 3,5 (mod 8), since 22" = —1 (mod N), from (1)(2), we can prove by induction on
t € Z that
pN+22—1 + qN+2'L—1 = _ (p21—2 + q21—2) (mod N) (4)

To prove (3)(4), we can use
pN—i-Q(i—i-l)—l i qN+2(i+1)—1 = (pN+2i—1 +qN+2i—1) (pz i q2) .

_ (pN+2(i—1)—1 +qN+2(i—l)—1) (mod N)

and
pN+2(i—1)—1 + qN+2(z'—1)—1 — (pN+2i—1 + qN+2i—1> (p—z + q—2) o

_ (pN-‘rQ(i-l—l)—l +qN+2(i+1)—1) (mod N)

Now, for N = £+1 (mod 8), from (3), we can prove by induction on j € N that
pj(N+2i—1) + qj(N+2i—1) = inj + quj (mod N) (5)
Also, for N = 3,5 (mod 8), from (4), we can prove by induction on j € N that

pj(N+2i—1) + qj(N+2i—1) = (_1)]‘ <pj(2i—2) + qj(2i—2)) (InOd N) (6)



To prove (5)(6), we can use
pUFDINH2i=1) | (G+D(N+2i-1) = (pi(N42i-1) | gi(N42i-D)) (p
— (pUTHW2SD) | GOV (64 )

For conjecture 1.1, N = £1 (mod 8) follows from the conditions N = k- b"™ — c such that b = 0
(mod 2),n > bc,k > 0,¢ > 0and ¢ = 1,7 (mod 8). Then, we can say that conjecture 1.1 is
true because using (5) and setting ¢ = 2d — 1 gives

N+2i—1+ N+2i—1)_

q

n—+1 n—+1
S :pb k/2 +qb k/2

=p
=p
pPd®2) 4 22 (1nod N)
= Pe/2)a(6) (mod N)

= Ply/2)[¢/21(6)  (mod N)

(b/2)(N+c) | q(b/2)(N+C)

(b/2)(N+2d-1) | (b/2)(N+2d-1)

Q.E.D.

For conjecture 1.2, N = 3,5 (mod 8) follows from the conditions N = k-b"—c such that b =
0,4,8 (mod 12),n > bc,k > 0,¢ > 0,and ¢ = 3,5 (mod 8). Then, we can say that conjecture
1.2 is true because using (6) and setting ¢ = 2d — 1 gives

S, = pbn+1k/2 + qbn+1k/2
- p(b/2)(N+C) + q(b/2)(N+C)

pO/DIN+2d=1) | (b/2)(N+2d-1)

= (_1)17/2 (p(b/Q).(2d,—2) + q(b/2)-(2d—2)) (HlOd N)
= Ply/2).(a-1)(6) (mod N)
= P(b/g),LC/QJ (6) (mod N)

Q.E.D.

For conjecture 1.3, N = 3,5 (mod 8) follows from the conditions N = k-b"—c such that b =
2,6,10 (mod 12),n > be,k > 0,¢ > 0,andc = 3,5 (mod 8). Then, we can say that conjecture
1.3 is true because using (6) and setting ¢ = 2d — 1 gives

n-+1 n+1
S :pb k/2 +qb k/2

=p
=P
= (1)Y2 (pO/2r i)y 020(a-2) (1o N)
= —Pu2).(a-1(6) (mod N)
= —Pp/2).(¢/2)(6) (mod N)

(b/2)(N+c) | q(b/2)(N+C)

(b/2)(N+2d-1) | (b/2)(N+2d-1)

Q.E.D.



For conjecture 1.4, N = £1 (mod 8) follows from the conditions N = k-b"+c such that b =
0 (mod 2),n > bc,k > 0,c > 0and ¢ = 1,7 (mod 8). Then, we can say that conjecture 1.4 is
true because using (5) and setting ¢ = 2d — 1 gives

n+1 n+1
Sy = gt TR

=D
=P
=D
= p2 (D 0/2) 4 2 (d1)(0/2)  (nod N)
= 200D 4 2@ (od N)

= Pe/2)-(@-1(6) (mod N)

= Pu2).1¢/2)(6) (mod N)

(B/2(N=e) 4 o (b/2)(N—0)
(b/2)(N—2d+1)) _’_q(b/2)(N72d+1)

(b/2)(N+2(—d+1)-1) + q(b/Q)(N+2(fd+1)71)

Q.E.D.

For conjecture 1.5, N = 3,5 (mod 8) follows from the conditions N = k-b"+c such that b =
0,4,8 (mod 12),n > be,k > 0,¢ > 0,and ¢ = 3,5 (mod 8). Then, we can say that conjecture
1.5 is true because using (6) and setting ¢ = 2d — 1 gives

S, = pbn+1k/2 + qbn+1k/2

_ pDN=0) | (/2N

— pO/DN=2d+1) | ((b/2)(N-2d+1)

— pO/DIN+2A=d+1)=1) | ((0/D(N+2(=d+1)=1)
= (—1)"? (p(b/2)~(2(—d+1)—2) n q(b/2)-(2(—d+1)—2)) (mod N)

gO/D2d | p/22d (nod N

P(b/g)d(6) (HlOd N)
Pv/2)e/21(6)  (mod N)

Q.E.D.

For conjecture 1.6, N = 3,5 (mod 8) follows from the conditions N = k-b"+c such that b =
2,6,10 (mod 12),n > be,k > 0,¢ > 0,and ¢ = 3,5 (mod 8). Then, we can say that conjecture
1.6 is true because using (6) and setting ¢ = 2d — 1 gives

S, = pbn+1k/2 + qbn+1k/2
= pl/AWN=c) | ((b/2)(N=c)
— pO/2(N=2d+1) | [ (b/D(N-2d+1)
— pO/RANH2A=d+)=1) | ((b/2)(N+2(=d+1)-1)
= (—1)Y? (p(b/2)~(2(—d+1)—2) +q(b/2)~(2(—d+1)—2)) (mod N)
= _ (q(b/2)-2d +p(b/2)~2d) (mod N)
= —Pu/2).4(6) (mod N)
= —Pu)2).[¢/21(6) (mod N)

Q.E.D.



2 Primality tests for specific classesof NV =L -2" + 1

Throughout this post we use the following notations: Z-the set of integers , N-the set of positive

a

integers , <;>—the Jacobi symbol , (m,n)-the greatest common divisor of m and n , S, (z)-the

sequence defined by Sy(x) = x and Sy, 1(z) = (Sk(x))* —2(k > 0) .
Basic Lemmas and Theorems

Definition 2.1. For P, () € Z the Lucas sequence {V,,(P, )} is defined by V,(P, Q) = 2, V1(P, Q) =
P V,1(P,Q) = PV,(P,Q) — QV,_1(P,Q)(n > 1) Let D = P? — 4Q) . It is known that

V.(P,Q) = (ﬂ) + (P_—\/E)

2

Lemma 2.1. Let P,(Q € Z and n € N. Then

vn<P,@>=[nf - ("‘T>P“T<—@>’"

n—r r
r=0

Theorem 2.1. (Zhi-Hong Sun)
Form € {2,3,4,..} letp = k-2"+1with0 < k < 2™ and k odd . If b,c € Z,

(p,c) = 1 and (2%#) = (2Cij> = — (§> then p is prime if and only if p | S,,_2(x), where
&2k (k-
— .k 2\ __ o T k—2r
=i = 3 gt ) e

Lemma 2.2. Let n be odd positive number , then

<__1) 1, ifn=1 (mod 4)
B -1, ifn=3 (mod4)

Lemma 2.3. Let n be odd positive number , then

n

(2)_ I, ifn=1,7 (mod 8)
-1, ifn=3,5 (mod 8)

Lemma 2.4. Let n be odd positive number , then case 1. (n =1 (mod 4))

1 ifn=1 (mod 3)
3

(—) =49 0 ifn=0 (mod3)
—1 ifn=2 (mod 3)

case 2. (n =3 (mod 4))
1 ifn=2 (mod 3)
(§) = 0 ifn=0 (mod 3)
—1 ifn=1 (mod 3)



Proof. Since 3 = 3 (mod 4) if we apply the law of quadratic reciprocity we have two cases .

Ifn =1 (mod 4) then (2) = (%) and the result follows . If n = 3 (mod 4) then (2) = — (%)

and the result follows .

Lemma 2.5. Let n be odd positive number , then

1 ifn=1,4 (modb5)

5
(—) = 0 ifn=0 (mod?5)
-1 ifn=2,3 (mod}5)

Proof. Since 5 = 1 (mod 4) if we apply the law of quadratic reciprocity we have (2) = (

o3
SN—"

and the result follows .

Lemma 2.6. Let n be odd positive number , then case 1. (n =1 (mod 4))

ifn=1,11 (mod 12)

-3
<—> = 0 ifn=3,9 (mod12)
—1 ifn=5,7 (mod 12)

case 2. (n =3 (mod 4))

1 ifn=57 (mod12)

-3
(—) = 0 ifn=3,9 (mod 12)
-1 ifn=1,11 (mod 12)

) . Applymg the law of quadratic reciprocity we have : if n = 1

3
) If n = 3 (mod 4) then (5) = — (%) . Applying the Chinese

Proof.(3%) = (57) (
(mod 4) then (2) = (2
remainder theorem in both cases several times we get the result .

Lemma 2.7. Let n be odd positive number , then case 1. (n =1 (mod 4))

. fn=1,2,4 (mod?7)
(—) = 0 ifn=0 (mod?7)
-1 ifn=3,5,6 (mod7)
case 2. (n =3 (mod 4))

1 ifn=3,56 (mod7)

(%): 0 ifn=0 (mod?7)
—1 ifn=1,2,4 (mod?7)

Proof. Since 7 = 3 (mod 4) if we apply the law of quadratic reciprocity we have two cases .

Ifn =1 (mod 4) then (£) = (2) and the result follows . If n = 3 (mod 4) then () = — (2)

and the result follows .



Lemma 2.8. Let n be odd positive number , then case 1. (n =1 (mod 4))

ifn=1,5,19,23 (mod 24)
—6
(—) ={ 0 ifn=3,91521 (mod24)
1 ifn=T7,11,13,17 (mod 24)

case 2. (n =3 (mod 4))

. 1 ifn=7,11,13,17 (mod 24)
(_—) =3¢ 0 ifn=3,9,1521 (mod 24)
—1 ifn=1,519,23 (mod 24)

(2) (%) . Applying the law of quadratic reciprocity we have : if n = 1

n

proot. (=) — (=)
(mod 4) then (2) = (%) . If n = 3 (mod 4) then (2) = — (%) . Applying the Chinese

remainder theorem in both cases several times we get the result .

Lemma 2.9. Let n be odd positive number , then

1 ifn=1,3,9,13,27,31,37,39 (mod 40)
10
<g) —{ 0 ifn=5,15,25,35 (mod 40)
-1 ifn=7,11,17,19,21,23,29,33 (mod 40)

Proof.(%) = (2) (%) . Applying the law of quadratic reciprocity we have : (%) = (%) .

n
Applying the Chinese remainder theorem several times we get the result .

The Main Result
Theorem 2.2. Let N = k- 2™ — 1 such thatm > 2,3 |k, 0 < k < 2™ and

1( ) withm = 2,3 (mod 4)
3 (mod 10) with m = 0,3 (mod 4)
=7 (mod 10) withm = 1,2 (mod 4)
9 ( ) withm = 0,1 (mod 4)

Let b =3 and Sy(z) = Vi(b, 1), thus
N is prime iff N | Sp—a(2)

Proof. Since N = 3 (mod 4) and b = 3 from Lemma 2.2 we know that (%) = —1.

Similarly , since N = 2 (mod 5) or N = 3 (mod 5) and b = 3 from Lemma 2.5 we know that

(5%

c = 1 we get the result.
Q.E.D.

) = —1. From Lemma 2.1 we know that V}(b,1) = = . Applying Theorem 2.1 in the case



Theorem 2.3. Let N = k- 2™ — 1 such thatm > 2,3 |k, 0 < k < 2™ and

(k=3 (mod 42) withm = 0,2 (mod 3)
k=9 (mod42) withm =0 (mod 3)
k=15 (mod 42) withm =1 (mod 3)
k=27 (mod 42) withm =1,2 (mod 3)
k=33 (mod 42) withm =0,1 (mod 3)
(k=39 (mod 42) withm =2 (mod 3)

Let b =5 and Sy(x) = Vj(b, 1), thus N is prime iff N | Sp_o(x)

Proof. Since N = 3 (mod 4) and N = 11 (mod 12) and b = 5 from Lemma 2.6 we know
that (%) = —1. Similarly , since N =3 (mod 4) and N =1 (mod 7) or N =2 (mod 7) or
N =4 (mod 7) and b = 5 from Lemma 2.7 we know that (2:2) = —1 . From Lemma 2.1 we
know that V}(b,1) = = . Applying Theorem 2.1 in the case ¢ = 1 we get the result.

Q.E.D.

Theorem 2.4. Let N =k - 2™ + 1 such thatm > 2,0 < k < 2™ and

(k=1 (mod 42) with m = 2,4 (mod 6)
k=5 (mod 42) withm =3 (mod 6)
k=11 (mod 42) withm = 3,5 (mod 6)
k=13 ( Jwithm =4 (mod 6)
k=17 (mod 42) withm =5 (mod 6)
k=19 (mod 42) withm =0 (mod 6)
k=23 (mod 42) withm =1,3 (mod 6)
k=25 (mod 42) withm =0,2 (mod 6)
k=29 (mod 42)withm =1,5 (mod 6)
k=31 (mod 42) withm =2 (mod 6)
k=37 (mod 42) withm = 0,4 (mod 6)
(k=41 (mod 42) withm =1 (mod 6)

Letb =5 and Sy(z) = Vi(b, 1), thus N is prime iff N | Sp—2()

Proof. Since N = 1 (mod 4) and N = 5 (mod 12) and b = 5 from Lemma 2.6 we know
that ((2) = —1. Similarly , since N =1 (mod 4) and N =3 (mod 7) or N =5 (mod 7) or
N =6 (mod 7) and b = 5 from Lemma 2.7 we know that (%2) = —1 . From Lemma 2.1 we
know that Vj,(b, 1) = x . Applying Theorem 2.1 in the case ¢ = 1 we get the result.

Q.E.D.



Theorem 2.5. Let N = k- 2™ + 1 such thatm > 2,0 < k < 2™ and

k=1 (mod6)andk=1,7 (mod 10) withm =0 (mod 4)
k=5 (mod6)andk=1,3 (mod 10)withm =1 (mod 4)
k=1 (mod6)andk=3,9 (mod 10)withm =2 (mod 4)
k=5 (mod6)andk=7,9 (mod 10)withm =3 (mod 4)

Letb =8 and Sy(x) = Vi(b, 1), thus N is prime iff N | Sp—2()

Proof. Since N =1 (mod 4) and N = 17 (mod 24) and b = 8 from Lemma 2.8 we know
that (%42) = —1. Similarly , since N = 17 (mod 40) or N = 33 (mod 40) and b = 8 from
Lemma 2.9 we know that (2:2) = —1 . From Lemma 2.1 we know that V; (b, 1) = = . Applying
Theorem 2.1 in the case ¢ = 1 we get the result.

Q.E.D.

3 Three prime generating recurrences

Prime number generator I
Let b, = b,_1 + lem(|v/2 - n],b,_1) with b; = 2 then a,, = by, /b, — 1 is either 1 or prime .

Conjecture 3.1. . Every term of this sequence a; is either prime or 1 .
2. Every prime of the form L\/§ - n| is member of this sequence .

Prime number generator 11
Let b, = b,_1 + lem(|v/3 - n],b,_1) with b; = 3 then a,, = by, /b, — 1 is either 1 or prime .

Conjecture 3.2. . Every term of this sequence a; is either prime or 1 .
2. Every prime of the form L\/g - n| is member of this sequence .

Prime number generator 111
Let b, = b,_1 + lem(|vn?]|,b,_1) with b; = 2 then a,, = b,,.1/b, — 1 is either 1 or prime .

Conjecture 3.3. . Every term of this sequence a; is either prime or 1 .
2. Every prime of the form |V/n3| is member of this sequence .

4 Some properties of Fibonacci numbers

Conjecture 4.1. If p is prime , not 5, and M > 2 then :

_(b
MP = ]\/[(1)—1)(1 (§))/2 (mod 1\]\/141’:11)

Conjecture 4.2. If p is prime , and M > 2 then :

M™® =1 (mod ML)

10



Corollary of Cassini’s formula

Corollary 4.1. Forn > 2 :
F o= \VE 1 Foil|, ifniseven
! " Fn—l'Fn+1-‘7 lfnlSOdd

5 A modification of Riesel’s primality test

Definition 5.1. Let P, (z) =27 - <(m — Va2 — 4)m + (z + Va? — 4)m> , where m and x are
nonnegative integers .

Corollary 5.1. Let N = k-2" — 1 suchthatn > 2, kodd, 31k, k < 2", and f is proper factor
ofn—2.

Let S; = Pys(S;_1) with Sy = Pi(4) , thus

N is prime iff S(,—2)/ =0 (mod N)

6 Primality criteria for specific classesof N =L -2" + 1

Definition 6.1. Let P, (z) =27 - ((.73 —Va?— 4)m + (z + Va2 — 4)m> , where m and x are
nonnegative integers .

Conjecture 6.1. Let N = 3 -2" + 1 such thatn > 2 andn = 1,2 (mod 4)
Let S; = Py(S;_1) with

P3(32), if n=1 (mod 4)

P5(28), if n=2 (mod 4)
thus, N is prime iff S,—o = 0 (mod N)

Conjecture 6.2. Let N =5 - 2" + 1 such thatn > 2 andn = 1,3 (mod 4)
Let Sl = PQ(SZ'_l) with

P5(28), if n=1 (mod 4)
P5(32), if n=3 (mod 4)
thus, N is prime iff S,—o = 0 (mod N)

Conjecture 6.3. Let N = 7-2" + 1 such that n > 2 andn = 0,2 (mod 4)
Let S; = Py(S;_1) with

P:(8), if n=0 (mod 4)

P;(32), if n=2 (mod 4)
thus , N is prime iff S,,—2 = 0 (mod N)

S(]:

Conjecture 6.4. Ler N =9 - 2" + 1 such that n > 3 and n = 2,3 (mod 4)
Let S; = PQ(Si_l) with

11



Py(28), if n=2 (mod 4)
Py(32), if n=3 (mod 4)
thus, N is prime iff S,,_o = 0 (mod N)

Conjecture 6.5. Ler N = 11 -2" + 1 such thatn > 3 andn = 1,3 (mod 4)
Let Sz = PQ(Si_l) with

P (8), ifn=1 (mod4)
P11(28), if n=3 (mod 4)
thus, N is prime iff S,—o = 0 (mod N)

Conjecture 6.6. Let N = 13 - 2" + 1 such thatn > 3 and n = 0,2 (mod 4)
Let S@ = Pg(Sz',l) with

P13(32), lf n=0 (mod 4)
Pi3(8), if n=2 (mod 4)
thus, N is prime iff S,—2 = 0 (mod N)

7 Congruence only holding for primes

Theorem 7.1. (Wilson)
A natural number n > 1 is a prime iff:

(n—1)!'=-1 (mod n).

Theorem 7.2. A natural number n > 2 is a prime iff:

n—1 n—1
HkEn—l (mod Zk)
k=1 k=1

Proof
Necessity: If n is a prime, then

n—1 n—1
szn—l (mod Zk)
k=1 k=1
If n is an odd prime, then by Theorem 7.1 we have
n—1
H k=n-—1 (modn)
k=1

Hence, n | ((n — 1)! — (n — 1)) and therefore n | (n — 1)((n — 2)! — 1).
Since n |/(n — 1) it follows n | ((n — 2)! — 1) , hence

D - 1) 21 ),

12



thus
n—1 n—1
szn—l (mod Zk)
k=1 k=1
Sufficiency: If
n—1 n—1
szn—l (mod Zk)
k=1 k=1

then 7 is a prime.

n—1
-1
Suppose n is a composite and p is a prime such that p | n, then since Z k = % it
k=
n—1 '
follows p | Z k . Since
k=1
n—1 n—1
[[k=n—-1 (mod > k),
k=1 k=1
we have .
szn—l (mod p).
k=
n—1
However , since p < n — 1 it divides H k, and so
k=1

n—1
H k=0 (mod p),
k=1

a contradiction . Hence n must be prime.
Q.E.D.

8 Primality test for N =2-3" —1

Definition 8.1. Let P,,(7) =27 - ((a: — VT —4)" + (x + V22— 4)m) , where m and z are
nonnegative integers .

Conjecture 8.1. Let N =2 -3" — 1 such thatn > 1.
Let S; = P5(S;_1) with Sy = Ps(a), where

6, ifn=0 (mod 2)

8, ifn=1 (mod 2)

a =

thus, N is prime iff S,,—1 = a (mod N)

13



9 Compositeness tests for specific classes of generalized Fer-

mat numbers

Definition 9.1. Let P, (z) =27 - <(x —Va? — 4)m + (z + V22— 4)m> , where m and x are
nonnegative integers .

Conjecture 9.1. Let F,(b) = b*" + 1 such thatn > 1, biseven,3tband51b.
Let S; = Pb(Sz'—l) with Sy = Pb/Q(Pb/2(8)) , thus
If F,(b) is prime then Son_5 = 0 (mod F, (b))

Conjecture 9.2. Let F,,(6) = 62" + 1 such thatn > 1.
Let S; = P@(Si_l) with So = Pg(P3(32)) , thus
If F,(6) is prime then Son_o = 0 (mod F,(6))

10 Primality tests for specific classesof N =L -6" — 1

Definition 10.1. Let P, (z) =27 <(gc —Va? — 4)m + (z+ Va2 — 4)m), where m and z are
nonnegative integers .

Conjecture 10.1.
Let N =k -6" — 1 such thatn > 2,k > 0,

k=25 (mod7)andk < 6".
Let S; = Ps(S;_1) with Sy = P (P3(5)), thus
N is prime iff S, o =0 (mod N)
Conjecture 10.2.
Let N =k -6" — 1 suchthatn > 2,k > 0,
k=3,4 (modb)andk <6".
Let S; = Ps(S;—1) with Sy = Psx(P5(3)), thus
N isprime iff S,—o =0 (mod N)

Incomplete proof by mathlove
I’'m going to prove that
if N is prime, then S,,_» =0 (mod N)

for both conjectures.
(For the first conjecture)
First of all,

Py(5) =27°- ((5 - @)3 + (5+ @>3> =110
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So,
3k 3k
So = Py(Py(5)) = Py, (110) = 273 . <<110 ~ V112 — 4) + (110 V1102 — 4) >
B <11o — V1107 — 4)3’“ . (110 +V/110% — 4)3’“
B 2

2
_ (55 - 12\/ﬁ> ¥ (55 + 12@) *
— (@)% + (1)

— a6k + ka

where @ = 2v/7 — 3v/3,b = 2¢/7 + 3v/3 with ab = 1.
From this, we can prove by induction that

S‘ o a6i+1k + b6i+1k
P = .

Thus,

=2 (VT -V (VT V)T

By the way, for N prime,

WiV Wy = 3 (V) () (v ey

— N+1 7. 9. 3%t
- 27

N+1

2.3%% 4777 .2 (mod N)
=2-3+(=7)-2 (mod N)
= -8 (mod N)

This is because N = 2 (mod 3)and N = £2- (—1)" — 1= 1,4 (mod 7) implies that
3W-D2 =1 (mod N), 7™Y2=_1 (mod N).
From this, since 2V~ =1 (mod N),

VS, = (VT VBN 4 (VT + VBN £ 2.4
=-8+2-2"1.4 (mod N)
=0 (mod N)
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Thus, S,,_2 =0 (mod N).
Q.E.D.
(For the second conjecture)

Py(3) =27 ((3— \/5)3 + (3+\/5)3> =18

So = Pa(P5(3)) =277 <(18 - \/m)gk + (18 + m>3k>

— (9 o 4\/5)3]6 + (9+4\/3)3k — Cﬁk‘ +d6k

where ¢ = /5 — 2,d = /5 + 2 with ed = 1.
We can prove by induction that

S‘ _ C6i+1k + d6i+1k
P =

Thus,

N+1 N+1

V5 1)’ Vi 1) ¢
S .= Nl gNe 1 1 _
2ot wa > ~32) Tl 73

N+1

o (Vo) T (VBen) ).

From this, since 2V~! =1 (mod N),

Sy = (VB )Y (VB )Y 2
=-8+2-2"1.4 (mod N)
=0 (mod N)

Thus, S,,_2 =0 (mod N).
Q.E.D.
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11 Compositeness tests for specific classesof N =L - 0" — 1
Definition 11.1. Let P,,(z) = 27 - <(x — VT —4)" + (z + V27— 4)m) , where m and z
are nonnegative integers .

Conjecture 11.1. Let N = k- b" — 1 such thatn > 2, kisodd, 31k, biseven,31b, k <b".
Let S; = Pb(Si—l) with S() = Pbk/g(Pb/2(4)) , thus
if N is prime then S,,_» =0 (mod N)

Conjecture 11.2. Let N = k - 0" — 1 such thatn > 2, k < b" and

k =3 (mod 30) with b =2 (mod 10) and n = 0,3 (mod 4)

k =3 (mod 30) with b =4 (mod 10) andn = 0,2 (mod 4)

k =3 (mod 30) withb=6 (mod 10) andn =0,1,2,3 (mod 4)
(k=3 (mod 30) withb=8 (mod 10) andn = 0,1 (mod 4)

Let S; = Pb(Si—l) with Sy = Pbk/2(Pb/2(]—8)) , thus
If N is prime then S,,_5 =0 (mod N)

Conj{ecture 11.3. Let N = k- b" — 1 such thatn > 2, k < b" and
k=9 (mod 30) withb=2 (mod 10) andn = 0,1 (mod 4)
k=9 (mod 30) withb=4 (mod 10) andn = 0,2 (mod 4)
k=9 (mod 30) withb=6 (mod 10) andn =0,1,2,3 (mod 4)

k=9 (mod 30) withb =8 (mod 10) andn = 0,3 (mod 4)

A~~~ —~ —~

Let S; = Pb(Si—l) with So = Pbk/g(Pb/2(18)) , thus
If N is prime then S,,_» = 0 (mod N)

Conjecture 11.4. Let N = k- 0" — 1 such thatn > 2, k < b" and
k =21 (mod 30) with b =2 (mod 10) andn = 2,3 (mod 4)
k =21 (mod 30) withb =4 (mod 10) andn = 1,3 (mod 4)
k =21 (mod 30) withb =8 (mod 10) andn = 1,2 (mod 4)
)

Let S; = Pb(SZ-_l) with Sy = Pbk/2(Pb/2(3 ) , thus
If N is prime then S,,_5 =0 (mod N)

12 Compositeness tests for specific classes of N =k - 3" 4 2

Definition 12.1. Let P,,(z) = 27 - <(x — VT —4)" + (z + V27— 4)m) , where m and z
are nonnegative integers .

Conjecture 12.1. Let N = k - 3" — 2 such thatn = 0 (mod 2), n > 2, k=1 (mod 4) and
k>0.

Let S; = Py(S;_1) with Sy = Psi(4) , thus

If N is prime then S,,_1 = P;(4) (mod N)

17



Conjecture 12.2. Let N = k - 3" — 2 such thatn =1 (mod 2), n > 2, k=1 (mod 4) and
k>0.

Let S; = P3(S;_1) with Sy = Psi(4) , thus

If N is prime then S,,_; = P3(4) (mod N)

Conjecture 12.3. Let N = k- 3" + 2 such thatn > 2, k= 1,3 (mod 8) and k > 0.
Let S; = P3(Si_1) with Sy = ng(6) , thus
If N is prime then S,,_1 = P3(6) (mod N)

Conjecture 12.4. Let N = k- 3" + 2 suchthatn > 2,k =5,7 (mod 8) and k > 0.
Let S@ = Pg(Sz',l) with SO = ng(6> , thus
If N is prime then S,,_; = P;(6) (mod N)

13 Compositeness tests for N = 0" £ b+ 1

Definition 13.1. Let P, (z) =27 <(3c —Va? — 4)m + (2 + Va2 — 4)m), where m and z are
nonnegative integers.

Conjecture 13.1. Let N = b" — b — 1 such thatn > 2, b= 0,6 (mod 8).
Let S; = Py(Si—1) with Sy = Py5(6),

thus

if N is prime, then S,,_1 = P12)/2(6) (mod N).

Conjecture 13.2. Let N = b" — b — 1 such thatn > 2, b = 2,4 (mod 8).
Let S; = Py(S;i—1) with Sy = P,/5(6),

thus

if N is prime, then S,_1 = —PFy5(6) (mod N).

Conjecture 13.3. Let N = b" + b+ 1 such thatn > 2, b= 0,6 (mod 8).
Let S; = Py(S;—1) with Sy = Py/5(6),

thus

if N is prime, then S,_1 = P,/2(6) (mod N).

Conjecture 13.4. Ler N = b" + b+ 1 such thatn > 2, b= 2,4 (mod 8).
Let S; = Py(Si—1) with Sy = Py5(6),

thus

if N is prime, then S, _1 = —P19)/2(6) (mod N).

Conjecture 13.5. Let N = b" — b+ 1 such thatn > 3, b= 0,2 (mod 8).
Let S; = Py(S;—1) with Sy = Py/5(6),

thus

if N is prime, then S,_1 = P,/5(6) (mod N).

Conjecture 13.6. Let N = b" — b+ 1 such thatn > 3, b= 4,6 (mod 8).
Let S; = Py(S;—1) with Sy = Py5(6),

thus

if N is prime, then S,_1 = —P_9)/2(6) (mod N).
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Conjecture 13.7. Let N = b" 4+ b — 1 such thatn > 3, b= 0,2 (mod 8).
Let S; = Py(S;—1) with Sy = Py5(6),

thus

if N is prime, then S,_1 = Py_2)/2(6) (mod N).

Conjecture 13.8. Let N = b" + b — 1 such thatn > 3, b = 4,6 (mod 8).
Let S; = Py(Si—1) with Sy = Py5(6),

thus

if N is prime, then S,_1 = —Py5(6) (mod N).

Proof attempt by mathlove
First of all,

(SIS

SO — Pb/2<6) - 27

-((6—4\/§)g+ (6+4\/§)3)
_ (3_2\/§>g+ (3+2\/§)g

= <\/§—1)b+<\/§+1)b

—pht g

where p = v2 — 1, ¢ = V2 + 1 with pg = 1.
Now, we can prove by induction that

Si _ pbi+1 + qbi+1 '

By the way,
N+1
N+1 i i
PHL N = Z ( i )(\/5) (—D)N*H=i 4 1)
i=0
(N+1)/2
J=0 2]
=24+ 202 (mmod N)
=244-2"7  (mod N) )
Also,

PV N Z (N * 3> (V)i ((—1)V+i 4 1)

- 1
=0

(N+3)/2
_ N +3) 50
2)

(]

J=0

N+3 N+3 . :
52+( ;)~22+(N11)~2N2“+2N3 (mod N)

=14+12-2"2 +8-2°2 (mod N) )
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Here, for N = +1 (mod 8), since 2% = 1 (mod N), from (1)(2), we can prove by
induction that
pN+2271 + qNJerfl Epzz 4+ qu (mod N) (3)

For N = 3,5 (mod 8), since 2°z° = —1 (mod N), from (1)(2), we can prove by induction

that

pN+2i—1 + qN+2i—1 = _ (in—Q + qzi—Q) (mod N) (4)

To prove (3)(4), we can use

pN+2(i+1)71 + qN+2(i+1)71 — (pN+2i71 + qN+2z>1) (p2 + q2) .

. (pN+2(i71)71 +qN+2(i—1)—1) (mod N)

and
pN+2(i—1)—1 + qN+2(z'—1)—1 = (pN+2z'—1 T qN+2i—1> (p—z 4 q—z) _
B <pN+2(i+1)—1 + qN+2(i+1)—1) (mod N)
(Note that (3)(4) holds for **every integer** i (not necessarily positive) because of pg = 1.)
Conjecture 13.1 is true because from (3)

_ N+b+1 N+b+1
Snfl =P + q

= pb+2 + qb+2 (mod N)
= P(b+2)/2(6) (mod N)

Conjecture 13.2 is true because from (4)

_ N+4b+1 N+b+1
Sn—l =Pp + q

= — (pb + qb) (mod N)
= —F2(6) (mod N)

Conjecture 13.3 is true because from (3)

S,y = pN g N
=p+¢" (modN)
=q¢"+p" (mod N)
= Py2(6) (mod N)

Conjecture 13.4 is true because from (4)

N—-b—1 N—-b—-1

Spo1=1p +4q
= — (p_b_2 + q_b_Q) (mod N)
— (qb+2 +pb+2) (mod N)
= —Pl42)2(6) (mod N)
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Conjecture 13.5 is true because from (3)

Snfl — pNerfl + qN+b71

=p"+¢" (mod N)
= PF,/2(6) (mod N)

Conjecture 13.6 is true because from (4)

S,y = pNhl | N+
=—(pP"?+¢"%) (mod N)

= —Pp-2,2(6) (mod N)

Conjecture 13.7 is true because from (3)

S,y = pNhHL 4 N

=p "2 4+ ¢ "2  (mod N)
=¢"?+p"? (mod N)
= P(b,g)/g(G) (mod N)

Conjecture 13.8 is true because from (4)

S,y = pNbHl 4 Vb
=—(p"+¢" (modN)
=—(¢"+p") (mod N)
= —F;2(6) (mod N)

Q.ED.

14 Primality test for N =8 -3" — 1

Definition 14.1. Let P, (z) = 27™ - <(m —Va? — 4)m + (z + V% — 4)m> , where m and z

are nonnegative integers .

Conjecture 14.1. Let N =8 - 3" — 1 such thatn > 1.
Let S; = P3(S;_1) with Sy = P12(4)

thus ,

N is prime iff S,,—1 =4 (mod N)

Incomplete proof by David Speyer
Let’s unwind your formula.

Suot = Pagn(4) = (24 V3" 4 (2 - VB
=(2+ \/5)4.3# +(2+ \/g)_4.3n =2+ \/§>(N+1)/2 2+ \/g)—(N—i-l)/Q'
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You are testing whether or not .S,,_; = 4 mod N or, on other words,
(2 +V3)NHD2 L (24 /3y WVHD/2 = 4 mod N. (%)

If N is prime: (This section is rewritten to use some observations about roots of unity. It may
therefore look a bit less motivated.) The prime N is —1 mod 24, so N? = 1 mod 24 and the
finite field Fy> contains a primitive 24-th root of unity, call it . We have (n +n~")? = 2 + /3,
for one of the two choices of /3 in Fy. (Smce N = —1 mod 12, we have (—) = 1.) Now,
n & Fy. However, we compute (n+n~")Y =n" + 77" =5~ + 1, since N = —1 mod 24. So
n+n~' € Fy and we deduce that 2 4+ v/3 is a square in F .

So (24 V3)N1/2 = 1mod N and (2 + v/3)N+1)/2 = (2 + v/3) mod N. Similarly,
(2 ++/3)"WHD/2 = (24 1/3)"1 =2 — /3 mod N and (x) holds.

If N is not prime. Earlier, I said that I saw no way to control whether or not (x) held when N
was composite. I said that there seemed to be no reason it should hold and that, furthermore, it
was surely very rare, because N is exponentially large, so it is unlikely for a random equality to
hold modulo V.

Since then I had a few more ideas about the problem, which don’t make it seem any easier,
but clarify to me why it is so hard. To make life easier, let’s assume that N = p;p, - - - p; is square
free. Of course, (*) holds modulo N if and only if it holds modulo every p;.

Let 7 be a primitive 24-th root of unity in an appropriate extension of I, .. The following
equations all take place in this extension of I, . It turns out that (x) factors quite a bit:

(2+ \/g)(N+1)/2 (2+ \/_) (N+1)/2 _ y
(2 + \/g)(N—H)/Q — 94+ \/g

4+ HNV = (n 4712 or (1 +17°)?

4+ HV2 ety P+ PP+ 0" + 077 ()

Here is what I would like to do at this point, to follow the lines of the Lucas-Lehmer test, but
cannot.

(1) I’d like to know that (n + n~1)V*1/2 = » + =1 not one of the other options in ().
(This is what actually occurs in the N prime case, as shown previously.) This would imply that
(n+n YNV =1€F,,.

(2) I'd like to know that the order of n + n~! was precisely (N — 1)/2, not some divisor
thereof.

(3) I'd like to thereby conclude that the multiplicative group of IF,,. was of order divisible by
(N —1)/2, and thus p; > (N — 1)/2. This would mean that there was basically only room for
one p;, and we would be able to conclude primality.

Now, (1) isn’t so bad, because you could directly compute in the ring Z /(N Z)[n] /(n® —n*+1),
rather than trying to disguise this ring with elementary polynomial formulas. So, while I don’t
see that your algorithm checks this point, it wouldn’t be hard.

And (2) = (3) is correct.
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But you have a real problem with (2). This way this works in the Lucas-Lehmer test is that
you are trying to prove that 2 + /3 has order precisely 2” in the field For_; [\/5] = For_1)2. You
already know that (2 + v/3)%" = 1. So it is enough to check that (2 + v/3)*" = —1, not 1.

In the current situation, the analogous thing would be to check that (n 4 n~1)(N=1/2a0) £ 1
for every prime ¢ dividing (N — 1)/2. But I have no idea which primes divide ¢! This seems like
an huge obstacle to a proof that (x) implies NV is prime.

To repeat: I think it may well be true that (x) implies N is prime, simply because there is
no reason that (1) should hold once N # p;, and the odds of (}) happening by accident are
exponentially small. But I see no global principle implying this.

Q.E.D.

15 Generalization of Kilford’s primality theorem

Conjecture 15.1. Natural number n greater than two is prime iff :

n—1
Py _a"—1 b — 1
g(b a)_a—l (mod b—l)

whereb > a > 1.

16 Prime generating sequence

Definition 16.1. Let bn = bn_g + lcm(n — 1, bn_2) with b1 =2 , bg =2andn > 2.
Let Ap — bn+2/bn -1

Conjecture 16.1. . Every term of this sequence a; is either prime or 1 .
2. Every odd prime number is member of this sequence .
3. Every new prime in sequence is a next prime from the largest prime already listed .

Incomplete proof by Markus Schepherd

This is the full argument for conjectures 2 and 3. First we need the general relation between
gcd (a,b) and lem [a,b]: a - b = (a,b) - [a,b]. Then we note that the lowest common multiple
[n — 1,b,_] is in particular a multiple of b, s, say kb, _» with 1 < k < n — 1. Hence we have
b, = bn_o(k + 1), so in every step the term b,, gets a new factor between 2 and n which means in
particular that all prime factors of b,, are less or equal to n. Now we rearrange a,, with the above
observation to a,, = —2H—. Let p be a prime. Then (p, b, 1) = 1 since all prime factors of b, ;

(n+17bn)
are strictly smaller than p. But then a,_; =

(p+;—1) = p as claimed in conjecture 2. Further, we
have obviously a,, < n + 1 for all n, so the first index for which the prime p can appear in the
sequence is p — 1 which immediately implies conjecture 3.

Q.E.D.
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17 Primality test using Euler’s totient function

Theorem 17.1. (Wilson)
A positive integer n is prime iff (n — 1) = —1 (mod n)

Theorem 17.2. A positive integer n is prime iff p(n)! = —1 (mod n) .

Proof
Necessity : If n is prime then ¢(n)! = —1 (mod n)
If n is prime then we have p(n) = n — 1 and
by Theorem 17.1: (n — 1)! = —1 (mod n),
hence ¢(n)! = —1 (mod n) .
Sufficiency : If p(n)! = —1 (mod n) then n is prime
Forn =2andn =6:
©(2)! = —1 (mod 2) and 2 is prime .
©(6)! # —1 (mod 6) and 6 is composite .
Forn # 2,6:
Suppose n is composite and p is the least prime such thatp | n,
then we have ¢(n)! = —1 (mod p) .
Since ¢(n) > y/n for all n exceptn = 2 and n = 6
and p < y/n it follows p | ¢(n)!, hence p(n)! =0 (mod p)
a contradiction .
Therefore , n must be prime .
Q.E.D.

18 Primality tests for specific classes of Proth numbers

Theorem 18.1. Let N =k - 2" + 1 withn > 1,k <2",3 | k, and

(k=3 (mod 30), withn=1,2 (mod 4)
k=9 (mod 30), withn=2,3 (mod 4)
k=21 (mod 30), withn=0,1 (mod 4)
( )

|k =27 (mod 30), withn=0,3 (mod 4
thus,
N is prime iff5°z = —1 (mod N).

Proof
Necessity : If N is prime then 5"z = —1 (mod N)
Let N be a prime , then by Euler criterion :

5% = (2) (mod N)

If N is a prime then N = 2,3 (mod 5) and therefore : (§) = —1.
Since N =1 (mod 4) according to the law of quadratic reciprocity it follows that : (]%) =—1.

Hence, 5z = —1 (mod N).
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Sufficiency : If5° 7 = —1 (mod N) then N is prime
If5°2 =—1 (mod N) then by Proth’s theorem NV is prime .
Q.E.D.

Theorem 18.2. Let N =k - 2" + 1 withn > 1,k <2",3 | k, and

(k=3 (mod 42), withn =2 (mod 3)
k=9 (mod 42), withn=0,1 (mod 3)
k=15 (mod 42), withn = 1,2 (mod 3)
k =27 (mod 42), withn =1 (mod 3)

k =33 (mod 42), withn =0 (mod 3)

Lk =39 (mod 42), withn =0,2 (mod 3)

thus, N is prime iff 7"z = —1 (mod N)

Proof
Necessity : If N is prime then 7"z = —1 (mod N)
Let NV be a prime , then by Euler criterion :

7 = (£) (mod N)

If N is prime then N = 3,5,6 (mod 7) and therefore : (¥) = —1.
Since N =1 (mod 4) according to the law of quadratic reciprocity it follows that : (%) =-1.

Hence, 7"z = —1 (mod N).

Sufficiency : If 7" = —1 (mod N) then N is prime
If 72" = —1 (mod N) then by Proth’s theorem N is prime .
Q.E.D.

Theorem 18.3. Let N =k -2" +1withn > 1,k <2",3 | k, and

thus,

(k =3 (mod 66), withn=1,2,6,8,9 (mod 10)
k=9 (mod 66), withn=0,1,3,4,8 (mod 10)
k=15 (mod 66), withn=2,4,5,7,8 (mod 10)
k =21 (mod 66), withn=1,2,4,5,9 (mod 10)
k =27 (mod 66), withn=0,2,3,5,6 (mod 10)
k=39 (mod 66), withn=0,1,5,7,8 (mod 10)
k=45 (mod 66), withn =0,4,6,7,9 (mod 10)
k =51 (mod 66), withn=0,2,3,7,9 (mod 10)
k=57 (mod 66), withn =3,5,6,8,9 (mod 10)

\k = 63 (mod 66), withn =1,3,4,6,7 (mod 10)

N is prime iff 1172 = —1 (mod N)

Proof
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Necessity : If N is prime then 1177 = —1 (mod N)
Let N be a prime , then by Euler criterion :
1177 = (%) (mod N)

N
If N is prime then N = 2,6,7,8,10 (mod 11) and therefore : (%) =—1.
Since N =1 (mod 4) according to the law of quadratic reciprocity it follows that : (1—]\}) =—1.

Hence, 1172 = —1 (mod N).
Sufficiency : If 1177 = —1 (mod N) then N is prime

If11°s = -1 (mod N) then by Proth’s theorem N is prime .
Q.E.D.

19 Generalization of Wilson’s primality theorem

Theorem 19.1. For m > 1 number n greater than one is prime iff :

(_1)m+1
3 " —mn4+m—1 2™ —mn+m4+n—2
no n-l (mod n n—1 )

(n™ =1 = (n—l)[

20 Primality test for Fermat numbers using quartic recurrence

equation

Let us define sequence S; as :
8 if 1 = 0;
Si =
(S2,—2)2—2 otherwise .

Theorem 20.1. F,, = 22" + 1, (n > 2) is a prime if and only if F,, divides Son-1_; .

Proof

Let us define w = 4 + /15 and @ = 4 — /15 and then define L, to be w?" + &> , we
get Lo =w+w=28,and L,y = W2 + o2 (w22'n+1)2 X (@22n+1>2 _ (w22n+1 n
Q22n+1>2 - 2 . w22n+1 . aj22n+l — ((w22n + @22n>2 - 2 . w22n . @22n>2 o 2 . w22n+1 . u_j22n+1 —

= (W +0¥")2—2-(w-©)")? =2 (w-@)*"" and since w-@ = 1 we get: L,y = (L2—2)%—2
Because the L,, satisfy the same inductive definition as the sequence .S; , the two sequences must
be the same .

Proof of necessity

If 22" + 1 is prime then Syn—1_; is divisible by 22" + 1

We rely on simplification of the proof of Lucas-Lehmer test by Oystein J. R. Odseth .First
notice that 3 is quadratic non-residue (mod F},) and that 5 is quadratic non-residue (mod F},) .
Euler’s criterion then gives us : 3%~ = —1 (mod F,)and 5%~ = —1 (mod F,) On the other
hand 2 is a quadratic-residue (mod F,) , Euler’s criterion gives: 2%~ =1 (mod F,)

Next define ¢ = 2v/15 , and define X as the multiplicative group of {a + bV15 la,b € Zg,}
.We will use following lemmas :
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Lemma 1. (z + y)f = 2 + ¢ (mod F},)
Lemma 2. a’» = a (mod F,) (Fermat little theorem)

Then in group X we have :

(64+0) = (6)P 4 (o)™ (mod F,) == 6+(2v/15)"™ (mod F,) ==6 /15
(mod F,) ==6+2-3"%" -5 -/15 (mod F,) ==6+2-(=1)-(—1)- \/_(modF)
=6+ 2V15 (mod F,) = (6 + o) (mod F,)

We chose o such that w = (6+") . We can use this to compute w” % in the group X :
Pl _ (o)™t oro)fn  _  (o40) _
© 5T (ereyaatE L Gto) (D) (mod F},) = —1 (mod F},)

where we use fact that :
2475 = (275 )3 (37 )= (1%) - (1) (mod F,) = —1 (mod F,)
So we have shown that :

Fn 1

w = —1 (mod F,)

2n
+1—1 22"71 22”72 22"72

If we write this as w™ 2 = w = w Cw = —1 (mod F,,) ,multiply both
sides by w2 , and put both terms on the left hand side to write this as : w2 T a? Tt =0
(mod F},) WP g2 = (mod F},) = Son-1_1 =0 (mod F,)

Since the left hand side is an integer this means therefore that Sy»—1_; must be divisible by
27 +1.

Proof of sufficiency

If Syn-1_4 is divisible by 22" + 1, then 22" + 1 is prime .

We rely on simplification of the proof of Lucas-Lehmer test by J. W. Bruce .If 22" + 1 is not

prime then it must be divisible by some prime factor F' less than or equal to the square root of
22" 4+ 1. From the hypothesis Syn-1_; is divisible by 22" + 1 s0 Son-1_ is also multiple of F'

. 92(2""1-1) _92(2" 11
, SO wWe can write : w +w

. 92" -2 _ 92" -2
equality as : w + w

w?" ™ and rewrite this relation as : w?* ' = K - F-w? ° — 1. If we square both sides we get
cw? = (K- F-w¥  —1)? Now consider the set of numbers a + b\/15 for integers a and b
where a + bv/15 and ¢+ d+/15 are considered equivalent if a and c differ by a multiple of F', and

the same is true for b and d . There are F'? of these numbers , and addition and multiplication can

= K - F', for some integer K . We can write this
= K - I’ Note that w - @ = 1 so we can multiply both sides by

be verified to be well-defined on sets of equivalent numbers. Given the element w (considered as
representative of an equivalence class) , the associative law allows us to use exponential notation
for repeated products : w" = w-w - --w , where the product contains n factors and the usual rules
for exponents can be justified . Consider the sequence of elements w, w?, w?... . Because w has the
inverse W every element in this sequence has an inverse . So there can be at most /"2 — 1 different
elements of this sequence. Thus there must be at least two different exponents where w’ = w*
with j < k < F? . Multiply j times by inverse of w to get that w* 7 = 1with1 < k—j < F? -1
. So we have proven that w satisfies w™ = 1 for some positive exponent n less than or equal to
F? — 1. Define the order of w to be smallest positive integer d such that w? = 1. So if n is any
other positive integer satisfying w™ = 1 then n must be multiple of d . Write n = ¢ - d + r with
r < d. Thenif r # 0 we have 1 = w" = w9 = (W?)7.w" = 19.w" = W" contradicting
the minimality of d so r = 0 and n is multiple of d . The relation w?* = (K - F -w? = 1)?
shows that w?* =1 (mod F) . So that 2*" must be multiple of the order of w . But the relation
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w? T = K- F-w? 7" — 1 shows that w?® ' = —1 (mod F) so the order cannot be any proper
factor of 22" , therefore the order must be 22" . Since this order is less than or equal to "2 — 1 and
F is less or equal to the square root of 22" + 1 we have relation : 22" < F? — 1 < 22" | This is
true only if 22" = F? — 1 = 22" + 1 = F? . We will show that Fermat number cannot be square
of prime factor .

Theorem : Any prime divisor p of F,, = 22" + 1 is of the form k - 2"*2 4 1 whenever n is
greater than one .

So prime factor /' must be of the form £ - 27+t2 4 1 | therefore we can write : 22" + 1 =
(k-272 4 1)2 22" 41 = k2. 224 4 9 . 9nH2 1 192" — . 2m¥3 . (. ontl 1 1)

The last equality cannot be true since k - 2"*! + 1 is an odd number and 22" has no odd prime
factors so 22" 41 # F? and therefore we have relation 22" < F? —1 < 22" which is contradiction
so therefore 22" + 1 must be prime .

Q.E.D.

21 Prime number formula

- L)
2:([nIn(n)]+1) k 3_2 m
=2

S|

Pn=1+ Z 1— Z =1

k=1 7 J

22 Primality criterion for specific class of N =3 -2" — 1

Definition 22.1. Let P, (z) = 27™ - <(m —Va? — 4)m + (z + V% — 4)m> , where m and z
are nonnegative integers .

Conjecture 22.1. Let N = 3 - 2" — 1 such thatn > 2 and n = 2 (mod 4)
Let S; = P5(S;_1) with

P3(32), if n=2 (mod 8)

P3(36), if n=6 (mod 8)

thus , N is prime iff S,,—2 = 0 (mod N)

S(]:

23 Probable prime tests for generalized Fermat numbers

Definition 23.1. Let P,,,(z) =27 ((m — Va2 — 4)m + (z + Va2 — 4)m>, where m and x are
nonnegative integers.

Theorem 23.1. Let F,(b) = b*" + 1 such that n > 2 and b is even number .
Let S; = Py(S;_1) with So = Py(6), thus if F,(b) is prime, then Son_; = 2 (mod F,(b)).
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The following proof appeared for the first time on MSE forum in August 2016 .
Proof by mathlove . First of all, we prove by induction that

Si _ abi+l + 6bi+1 (1)

where o = 3 — 2v/2, 8 = 3 4+ 2/2 with a3 = 1.
Proof for (1) :

So = By(6)

b b
—9b. ((6—4\/5) + (6+4v3) )
=27 (23 - 2v2)" + 23+ 2v2)")
— Oéb +Bb
Suppose that (1) holds for i. Using the fact that
(am+6m>2 — 4 = (ﬁm _am)Q

we get
z+1 SZ)
1 1 ) . b i+1 i+1 ; i b
( pit b“" . \/(Oébz-H +Bbz+1)24) + (abH— +ﬁbz+ + \/(abz+1 +Bbz+1)2 4> )
1 1 . . b i+1 i+1 i i ’
( pi+ IBbz+ . \/(ﬁbH—l - ab1,+1)2> + (ab1+ +l8bz+ + \/(ﬁbH‘l _ abz+1)2) )
< 2 bz+1> (2l8b1+1> )
bz+2

+4"7 =
Let N := F,(b) = b*" + 1. Then, from (1),
Son_y = o +Bb2" — N1 4 N1

Since af =1,
Son_y = aN=1 4 gN-1

= af(a™ " 4 N

=B8-a¥4+a 8N

=3 +8Y) —2v2 (BN — ) 2)

So, in the following, we find /¥ + 8V (mod N) and v2 (8~ — V) (mod N).
Using the binomial theorem,

o 48N =3 -2v2)N + (3+2v2)N
N
=3 (V) (avar e v

=0
N+1)/

= Y <2;-1>32J Log2v2)N (=D

Jj=1

~ .
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Since (2;\11) =0 (mod N)forl <j<(N—1)/2, we get

N 4 pN = (g) 3V.2(2v2)°=2-3"  (mod N)
Now, by Fermat’s little theorem,
N+ =2.3V=2.3=6 (mod N) 3)
Similarly,
V2 (BN =) = V2 (B+2v2)Y - (3 -2v2)Y)
N
=2 Z (]j > 3 (V2N - (—2v2)N )

=2 Zl)/2< )327 2(2v2)N"%

( > V2)N (mod N)
= N+l g(N+1)/2 (mod N)
=4.2N+1)/2 (mod N) “)

By the way, since b is even with n > 2,
N=b"+1=1 (mod 8)
from which

o(N=1)/2 — <;> = (—1)(N2_1)/8 =1 (mod N)

follows where (;) denotes the Legendre symbol .
So, from (4),
V2 (BN —aV)y=4.20WD/2 = 4.9 =8 (mod N) (5)
Therefore, finally, from (2)(3) and (5),
Son_1=3N +8M) —2v2 (BN —aMN)=3-6—-2-8=2 (mod F,(b))

as desired.
Q.E.D.

Theorem 23.2. Let E,,(b) = bzn;rl such that n > 1, b is odd number greater than one .
Let S; = Py(S;—1) with Sy = P,(6), thus if E,,(b) is prime, then Son_1 = 6 (mod E,,(b)).

The following proof appeared for the first time on MSE forum in August 2016 .
Proof by mathlove . First of all, we prove by induction that

267 q2bi+1

Si=p (6)
where p = /2 — 1,q = V2 + 1 with pg = 1.
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Proof for (6) :
So = P(6) = 27t <<6 - 4ﬂ)b + (6 + 4\/§>b> =(3-— 2\/§)b +(3+ Qﬁ)b — g

Supposing that (6) holds for ¢ gives

Sit1 = Py(Si

b b
(Si— S?—4> + (Si+\/51.2—4) )
b
(priJrl n ngz‘ﬂ _ \/(ngiH B p2bi+1)2>

b
i1 i1 5 ir1y 2
+ <p2b + q2b + \/(q2b +1 _p2b +1) ) )

Let N :=2" — 1, M := E,(b) = (b™*! + 1)/2. From (6), we have

Sgn_l = SN

2bN+1 2bN+1
=D +4q

p2CM=1) | 202M-1)

+4q
42

AM—2

4M2

= (pg)*(p*™M 2 + ¢*M2)

= 3" +¢*) —2v2 (¢*M - p*M)
Now using the binomial theorem and Fermat’s little theorem,
pM ™M = (17 - 12v2)M + (17 + 12v2)M

M
:Z( )172 (—12v2)M~7 4 (12v2) M)

(M+1)/2 M
= Y 17%71 . 2(12¢/2)M -2 -1)
= \2j-1

= (%)171‘4 -2(12v2)°  (mod M)
=17-2 (mod M)
=34 (mod M)
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Similarly,

2v2 (¢ — p"™) =22 ((17+ 12v2)M — (17 — 12v/2)M)
=2V2 Z ( >17@ (12v2)M~7 — (—12v2)M )

M1/2

=22 Z <M> 17% . 2(12v/2)M =%

= Z <M> 1727 . 4. 19M 25 9(M=2j+1)/2
, 27
7=0
_ (M. o M o(M+1)/2
= 17412V 2 (mod M)
—4.12.2 (mod M)
= 96 (mod M)

since 20M-1/2 = (_1)(M*~1)/8 = 1 (mod M) (this is because M = 1 (mod 8) from b? = 1,9
(mod 16))
It follows from these that

Son_y = 3(p*™M + ¢*M) — 2v2 (¢*M — p*M)
—3.34 96 (mod M)
=6 (mod E, (b))

as desired.
Q.ED.
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