

ON HYPERSPIRAL

 $r = a e^{\frac{b}{\theta}}$

Dragan Turanyanin¹ e-mail: <u>turanyanin@yahoo.com</u>

Hyperspiral by Maxima & gnuplot

This spiral (given in polar coordinates r, θ) can be seen as a missing member of the set of known spirals. Namely, if logarithmic spiral would be generalized in a way

 $r = a e^{b \theta^q}$, $q \in Q$

(e.g., *hyperlog-spirals*), then in case q=-1 follows the above proposed *hyperspiral* $r=a e^{\frac{b}{\theta}}$. The next simplification a, b=1 gives

1 Alt. e-mail: turanydra@gmail.com , web: wavespace.webs.com

$$r = e^{\frac{1}{\theta}}$$
 or $\ln r = \frac{1}{\theta}$.

The spiral has two very distinct parts: the inner part for $\theta < 0$ and the outer part for $\theta > 0$. The circle r=a is the asymptotic one. Polar point is the asymptotic point of the spirals' inner part.

Rate of change of $r(\theta)$ reads

$$\dot{r} = -\frac{b}{\theta^2}r$$

Because $\psi = \arctan(\frac{r}{\dot{r}})$ defines the angle between radius and tangent in a given point (r, θ) of a polar curve, follows

$$\Psi = \operatorname{arccot}\left(-\frac{b}{\theta^2}\right)$$

Second derivative of $r(\theta)$ reads $\ddot{r} = \frac{b(b+2\theta)}{\theta^4}r$. Curvature *k* of polar curves is defined as $k = \frac{r^2 + 2\dot{r}^2 + r\ddot{r}}{(r^2 + \dot{r}^2)^{\frac{3}{2}}} , \text{ hence}$ $k = r^{-1} \frac{1 + b^2 \theta^{-4} - 2b \theta^{-3}}{(1 + b^2 \theta^{-4})^{\frac{3}{2}}} .$

The arc length s of polar curves is defined as $s = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + \dot{r}^2} d\theta$, thus follows

$$s = a \int_{\theta_1}^{\theta_2} e^{\frac{b}{\theta}} \sqrt{1 + b^2 \theta^{-4}} d\theta$$

Unlike logarithmic spiral this spiral does not possess simple natural, intrinsic equation because there is no exact solution of the above integral. In fact, *hyperexp* function of the general form exp(1/x), does not have its exact prime function at all. This very fact must produce deep geometrical consequences onto *hyperspiral* as well.

However, this curve does possess a full polar inversion, i.e. regarding the asymptotic circle

$$r = \frac{a^2}{r(\theta)} = a e^{-\frac{b}{\theta}}$$
.

Besides pure geometry, *hyperspiral* may eventually bring new inspiration into areas of science, cosmology, engineering and art.

Acknowledgment

Specially thanks to Mr. Svetozar Jovicin for occasional but fruitful discussions.

This longstanding work is dedicated to the idea of spiritual friendship.

Reference

Savelov A.A., "Planar curves", Moscow (1960), transl. in Serbian

Bronstein I.N., Semendyaev K.A., Spravochnik po Matematike, (Handbook of Mathematics), Nauka, Moskva, in Russian

Yates R., "Curves And Their Properties" <u>http://xahlee.info/SpecialPlaneCurves_dir/_curves_robert_yates/yates_book.html</u>

Differential Geometry of Curves, From <u>MathWorld</u> -- A Wolfram Web Resource. <u>http://mathworld.wolfram.com/topics/DifferentialGeometryofCurves.html</u>

Famous Curves Index, http://www-history.mcs.st-and.ac.uk/history/Curves/Curves.html

Visual Dictionary of Special Plane Curves, http://xahlee.info/SpecialPlaneCurves_dir/specialPlaneCurves.html

An index of the included curves and surfaces , <u>http://www.math.hmc.edu/~gu/math142/mellon/curves_and_surfaces/all.html</u>

Spirale, <u>http://www.mathcurve.com/courbes2d/spirale/spirale.shtml</u>

Spiral, From <u>MathWorld</u> -- A Wolfram Web Resource. <u>http://mathworld.wolfram.com/Spiral.html</u>

List of curves, Spirals, <u>http://en.wikipedia.org/wiki/List_of_curves</u>

Spirals. D.D. Sokolov (originator), *Encyclopedia of Mathematics*.: http://www.encyclopediaofmath.org/index.php?title=Spirals&oldid=18060

Definitions for associated curves, http://www-history.mcs.st-and.ac.uk/history/Curves/Definitions2.html#Anallagmatic_curve

Copyright©2012 by Dragan Turanyanin