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Annotation 

 

The modern theory of gravity, which is called General Theory of Relativity (GTR or GR), was 

verified with sufficient accuracy and adopted as the basis for studying gravitational phenomena in 

modern physics. GR is the geometric theory of gravitation, in which the metric of Riemannian 

space-time plays the role of relativistic gravitational potential. Therefore it has certain features that 

make it impossible to connect it with others physics theories in which geometry plays only a 

supporting role. Another formal feature of general relativity is that the study and the use of its 

mathematical apparatus require much more time than the study of any of the branches of modern 

physics. This book is an attempt to build a non-geometrical version of the theory of gravitation, 

which is in the framework of the modern Lorentz-invariant field theory and would not cause 

difficulties when teaching students. A characteristic feature of the proposed theory is that it is built 

on the basis of the quantum field theory. 
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From author 

The Lorentz-invariant theory of gravitation (LIGT) is the conditional name of the proposed 

theory of gravity, since Lorentz-invariance is a very important, although not the only feature of 

this theory.  

Note that our approach was used in the past in relation to the gravitational theories that have 

some similarities with our theory. Therefore the results obtained by well-known scientists are 

widely cited in the book. However, for posing the problem and for some of the basic elements of 

the theory which are obtained by the author of the book, the only person responsible is the author. 
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NOTATIONS.  

(In almost all instances, meanings will be clear from the context. The following is a list of the 

usual meanings of some frequently used symbols and conventions). 

 

 

Mathematical signs 
...,,,  -  Greek indices range over 0,1,2,3  

i, j, k…     -  Latin indices range over 1,2,3  


ˆ,ˆ     -  Dirac matrices 

A


             -  3-dimensional vector 
A           -  4-dimensional vector 
A          - Tensor components 

              -  Covariant derivative operator 

      
2            -  Laplacian 

     �              -  d'Alembertian operator 

                                 
222 t  

 

g   -  metric tensor of curvilinear space-time 

GRg   -  metric tensor of GR space-time  

R  -  Riemann tensor  

R      -  Ricci tensor  
R  

R          -  Ricci scalar  
R   

G      -  Einstein tensor  

       -  Minkowski metric 

h       -  Metric perturbations 

            -  Lorentz transformation matrix 

Physical values 

u      -  velocity  

a     -  4-acceleration  ddu   

p    -  4-momentum  

T  -  Stress-energy tensor  

      
F -  Electromagnetic field tensor  

j        - Current density 

J      - Angular momentum tensor  

N         - Newton's constant of gravitation 

L         - Lorentz factor (L-factor) 

m          - mass of particle 

SM       - mass of the star (Sun) 

M , L  - angular  momentum 

 

     Abbreviations: 

LIGT   - Lorentz-invariant gravitation theory; 

EM       - electromagnetic; 

EMTM - electromagnetic theory of matter;  

EMTG - electromagnetic theory of gravitation; 

SM       - Standard Model; 

       QFT    – quantum field theory 

NQFT - nonlinear quantum field theory; 

QED   - quantum electrodynamics. 

EHE   - Einstein-Hilbert equation 

HJE    – Hamilton-Jacobi equation 

GTR or GR         - General Theory of Relativity 

L-transformation - Lorentz transformation 

L-invariant           - Lorentz-invariant 

 

      Indexes 

       e      -  electrical  

       m    -  magnetic, 

       em  -  electromagnetic, 

        g      - gravitational  

        ge    -   gravito-electric, 

        gm   -  gravito-magnetic 

        N      -  Newtonian  
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Chapter 1. Statement of problem 

1.0. The place of gravitation theory in a number of other physical 
theories 

The first classical mechanics theory was created by Newton. Two types of laws of mechanics 

exist: laws of motion of material bodies under the action of forces, and laws that define these 

forces (which are often called equations of sources). In frames of Newton's theory, his second law 

is the primary law of motion, while Newton’s gravitational law defines the force of gravity.  

It should also be mentioned that during the further development of mechanics, numerous 

mathematical formulations of the original laws of Newtonian mechanics were found, which are 

physically almost equivalent, including the ones that use energy characteristics of the motion of 

bodies, rather than force.  

2.0. Relativistic theories 

As was revealed later, Newtonian mechanics is valid for speeds, well below the speed of light 

300000c  km/sec. Mechanics, which is valid for speeds   from zero to the speed of light was 

conditionally named relativistic mechanics (detailed overview of the theory see (Pauli, 1981)). 

Under the condition c , Newton's laws have very high accuracy. 

The definition "relativistic" is equivalent to the requirement "to be invariant under Lorentz 

transformations". Therefore we will use the definition of "relativistic" equally with the definition 

of "Lorentz-invariant (briefly "L-invariant").  

In relativistic mechanics, there are also several forms of equations of motion and equations of 

sources. As the relativistic law of motion (including the theory of gravity) the relativistic 

Hamilton-Jacobi equation is often used. 

2.1. How non-relativistic mechanics is related to the relativistic mechanics 

Non-relativistic theories give correct predictions at speeds much less than the speed of light. 

The relativistic theories give exact values in the entire range of speed from 0   until the speed 

of  light c    300000 km/sec. The inaccuracy of non-relativistic theories compared to the 

relativistic can be attributed to the Lorentz factor 2211 cL   , a factor of the Lorentz 

transformation (see in reference book the diagram of Lorentz-factor  L  as a function of speed). 

As seen from the graph, factor is not very different from the unit, up until the velocity of the 

particle reaches the 1/10 of the velocity of light (i.e., about 30000 km/c). The maximum speeds of 

the planets and the massive bodies on the Earth and in the solar system are: projectile - 1.5 km/s, 

the rocket - 10-12 km/s, meteorites - 18-25 km/s, the Earth around the Sun - 30 km/s, the Sun in 

the direction to the galactic center - 200 km/s, our galaxy - up to 400 km/s. Higher speed is 

achieved only by elementary particles in cosmic space or  in accelerators, but they do not play any 

role in the theory of gravity.  

Thus, the value 22 c   in real problems of mechanics is very small and the Lorentz factor is 

not very different from unit. This means that Newtonian mechanics is valid in practical 

applications with great accuracy. 

 This was already understood by one of the founders of the Lorentz-invariant physics – A. 

Poincare, who had warned (Poincaré, 1908): 

 ―I tried in a few words to give the fullest possible understanding of new ideas and explain how 

they were born ... In conclusion, if  I may, I express a wish. Suppose that in a few years, this new 

theory will be tested and come out victorious from this test. Then, our school education is in 

serious danger: some teachers will  undoubtedly want to find a place to new theories .... And then 

[the students] will not grasp the usual mechanics. 

Is it right to warn students that it gives only approximate results? Yes! But later! When they 

will be permeated by it, so to speak, to the bone, when they will be accustomed to think only with 
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its help, when  there will not be a risk that they forget how to do this,  then we can show them its 

borders. They will have to live with the ordinary mechanics, the only mechanic that they will 

apply. Whatever the success of automobilism would be, our machines will never reach those 

speeds where ordinary mechanics is not valid. Other mechanics is a luxury, but one can think 

about a luxury only when it is unable to cause harm to the necessary.‖ 

3.0. The general theory of relativity  

  The modern theory of gravitation, called the general theory of relativity (GTR or GR), refers 

to classical mechanics. As the equation of source  is considered to be the  Einstein-Hilbert  

equation (EHE) of general theory of relativity (GTR) or (GR), which was found by these 

researchers almost independently and almost simultaneously (Pauli, 1981; Vizgin, 1981). As the 

basis for theory building, Hilbert used a variational principle. The approach of Einstein was 

heuristic, emanating from the experimental fact of equality of gravitational and inertial masses 

(note that this equivalence is also valid in nonrelativistic theories). 

A very difficult question, is whether the GTR and its equation are relativistic in terms of the 

Lorentz invariance. Strictly speaking, it is not (Katanaev, 2013, p. 742). Einstein assumed that the 

general covariance of the equations of general relativity includes special relativity.  

As is known, EHE is very different from other equations of mechanics, since it is based on the 

Riemann geometry in general system of coordinates.  

Besides, GR has several disadvantages, which have not been overcome to date  (Fock, 1964; 

Rashevskyi, 1967); Logunov, 2002). These disadvantages have been for many years the cause of 

searching the new theory of gravity. The L-invariant theory of gravitation is regarded as one of the 

basic,  because it could completely eliminate the disadvantages of the GR.  

 Let us enumerate basic disadvantages. 

1) In 1918, Schrodinger  (Schroedinger, 1918) first showed that by the appropriate choice of 

coordinate system all components of pseudo-tensor  of the energy-momentum, which in the 

framework of GR is the source of the gravitational field, can be turned into zero. This was 

confirmed by D. Hilbert and other scientists (Bauer, 1918; Fock, 1964; Logunov, (2002; Pauli, 

1958;) (For more information about this issue, see chapter 2). 

2) GTR has no connection with quantum field theory (i.e., with the theory of elementary 

particles - the smallest particles of matter, capable to produce the gravitational field). Some 

prominent scientists even argue that gravity is some independent object of nature, which has no 

connection with the rest of physics. 

4.0. The scientific goals 

―The nature of time, space and reality are to large extent dependent on our interpretation of -

Special (SRT) and General Theory of Relativity (GTR). In STR essentially two distinct 

interpretations exist; the ―geometrical‖ interpretation by Einstein based on the Principle of 

Relativity and the Invariance of the velocity of light and, the ―physical‖ Lorentz-Poincare 

interpretation with underpinning by rod contractions, clock slowing and light synchronization, see 

e.g. (Bohm, 1965; Bell, 1987). It can be questioned whether the Lorentz-Poincare-interpretation 

of  STR can be continued into GTR‖ (Broekaert, 2005).  

It can be said that the purpose of  creation of Lorentz-invariant theory of gravitation (LIGT) is 

to show that the Lorentz-Poincare-interpretation of STR can be continued into  gravitation theory. 

Such a theory could allow to overcome all the shortcomings of general relativity. 

Since the Hilbert-Einstein equations give proven results, obviously, we have to show that such 

a LIGT gives equivalent results. 

Our additional goal will be to explain the features of general relativity within the framework of 

nongeometric physics. 
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For the purity of the theoretical conclusions of LIGT we will not use anywhere of ideas of 

GTR or of similar metric theory as the basis of our theory (this does not apply to those cases, in 

which we will compare the results of these theories). 

In the book we shall use the CGS system of units, in particular, the system of units of Gauss, 

since here all units are a unified system of mechanical units. 

 

 

Chapter 2. Origin of the gravitation field source 

1.0. The source of gravitation in the theories of gravitation and 
conservation laws 

1.1. The source of gravity in general relativity  

Initially Einstein assumed that the source of gravity in the Hilbert-Einstein equations is 

symmetric energy-momentum tensor T  of the Lorentz-invariant mechanics satisfying the law  

of energy-momentum conservation: 

 





3

0

0
k k

ik

x

T
,    (1.1) 

which corresponds to ten integrals of motion of Lorentz-invariant mechanics. As the 

generalization of T  in GR should be the general covariant derivative and instead (1.1) we have: 

   0
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 TTg

xg
T  ,    (1.2) 

But, it appears that (Landau and Lifshitz, 1971) ―in this form, however, this equation does not 

generally express any conservation law whatever‖. 

As a way out of this situation Einstein's formulation of energy-momentum conservation laws 

in the form of a divergence involved the introduction of a pseudo-tensor quantity ikt which is not a 

true tensor (although covariant under linear transformations).  

To determine the conserved total four-momentum for a gravitational field plus the matter 

located in it, Einstein choose a system of coordinates of such form that at some particular point in 

space-time all the first derivatives of the ikg vanish. 

Then we can enter the value ikt  by the following expression: 
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From the definition (96.4) it follows that for the sum ikik tT   the equation 

    0


 ikik

k
tTg

x
,    (1.4) 

is identically satisfied. This means that there is a conservation law for the quantities 

     k

ikiki dStTg
c

P
1

,    (1.5) 

In the absence of a gravitational field, in galilean coordinates, 0ikt , and the integral goes 

over into into the four-momentum of the matter. Therefore the quantity (1.5) must be identified 

with the total four-momentum of matter plus gravitational field. But it is obvious that this result 

depends on the choice of coordinates and is ambiguous. 
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Unfortunately, there is still no generally accepted definition of energy and momentum in GR. 

Attempts aimed at finding a quantity for describing distribution of energy-momentum due to 

matter, non-gravitational and gravitational fields only resulted in various energy-momentum 

complexes, which are non-tensorial under general coordinate transformations.  

1.2. The source of gravity in LIGT and conservation laws 

In the Lorentz-invariant mechanics, in general, the values that make up the energy-momentum 

tensor (see above), are used in the theory, without being recorded in the form of the tensor (Fock, 

1964) (it is noteworthy that W. Fock called this tensor  the mass tensor (Fock, 1964, §31)).  

Note, that after being divided by the square of the speed of light, these values are identical to 

the mass and mass flow (in general case, densities of mass and mass flow).  

Therefore following to V. Fock (Fock, 1964, §54), ―in formulating Einstein's theory we shall 

likewise start from the assumption that the mass distribution is insular. This assumption makes it 

possible to impose definite limiting conditions at infinity as for Newtonian theory, and so makes 

the mathematical problem a determined one. Theoretically, other assumptions are also 

admissible‖. 

(As mass distribution of insular character V. Fock describes ―the case that all the masses of the 

system studied are concentrated within some finite volume which is separated by very great 

distances from all other masses not forming part of the system. When these other masses are 

sufficiently far away One can neglect their influence on the given system of masses, which then 

may be treated as isolated.‖) 

 

The foregoing allows us in framework of our theory to call, for the sake of brevity, the source 

of gravity - "mass/energy" or simply – ―mass‖ (meaning by this term any element of the energy-

momentum tensor of given  task). 

Mass as a source of gravitation is called gravitational mass or gravitational charge. Currently, 

the origin of the gravitational mass is unknown. But we know that it is equal with great precision 

to inertial mass, which appears in the laws of motion in mechanics.  

Thus, if we find out the origin of inertial mass/energy, we can conclude that gravitational 

mass/energy and gravitation field have the same origin. 

The question now is what do we know about the origin of inertial mass, particularly, of the 

elementary particles as initial source of gravitation? 

2.0. The mass theories (classical and modern views) 

To state  the existing views on the considered issues, we will use the works of contemporary 

scientists   (Feynman et al, 1964; Quigg, 2007; Dawson, 1999; etc): 

2.1. Classical views 

―Mass remained an essence - part of the nature of things - for more than two centuries, until 

J.J. Thomson (1881), Abraham (1903) and Lorentz (1904) sought to interpret the electron mass 

as electromagnetic self-energy‖, ( Quigg, 2007). 

Theory, created by J.J. Thomson and H. Lorentz (1881 - 1926), lies entirely in the field of 

classical electromagnetic theory. According to this theory, the inertial mass has electromagnetic 

origin.  

The electromagnetic origin of the mass of all elementary particles, as well as the weakness of 

the gravitational field compared to the electromagnetic field, allowed  to O.F. Mossotti (Mossotti, 

1936) to assume that the gravitational field is a residual electromagnetic field 

―Wilheim Weber (1804-91) of Gottingen and Friedrich Zollner
3 

(1834-82) of Leipzig 

developed this conception into the idea that all ponderable molecules are associations of positively 

and negatively charged electrical corpuscles, with the condition that the force of attraction 

between corpuscles of unlike sign is somewhat greater than the force of repulsion between 

corpuscles of like sign. If the force between two electric units of like charge at a certain distance is 

a dynes, and the force between a positive and a negative unit charge at the same distance is y 
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dynes, then, taking account of the fact that a neutral atom contains as much positive as negative 

electric charge, it was found that      need only be a quantity of the order 10
-35

 in order to 

account for gravitation as due to the difference between   and  ‖ (Whittaker, 1953). 

―At the meeting of the Amsterdam Academy of Sciences on 31 March 1900, Lorentz 

communicated a paper entitled ―Considerations on Gravitations on Gravitation‖, in which he 

reviewed the problem as it appeared at that time‖ (Whittakker, 1953). 

Unfortunately, attempts to apply this theory to quantum theory has not been undertaken. 

However, until now there was no evidence of that the inertial mass is not fully electromagnetic 

(Feynman et al, 1964): 

 ―We only wish to emphasize here the following points:  

1) the electromagnetic theory predicts the existence of an electromagnetic mass, but it also 

falls on its face in doing so, because it does not produce a consistent theory – and the same is true 

with the quantum modifications;  

2) there is experimental evidence for the existence of electromagnetic mass; and  

3) all these masses are roughly the same as the mass of an electron.  

So we come back again to the original idea of Lorentz - may be all the mass of an electron is 

purely electromagnetic, maybe the whole 0.511 MeV is due to electrodynamics. Is it or isn’t it? 

We haven’t got a theory, so we cannot say.‖ 

As we will be convinced later, the results of modern theory of elementary particles do not 

contradict to the original idea of Lorentz that all the mass of an electron may be purely 

electromagnetic. 

2.2. Modern views 

The modern mass theory is the, so-called, Higgs mechanism of the Standard Model theory 

(SM) (Quigg, 2007; Dawson, 1999; etc). 

―Our modern conception of mass has its roots in known Einstein's conclusion: "The mass of a 

body is a measure of its energy content. Among the virtues of identifying mass as 
2

00 cm  , 

where 0  designates the body's rest energy, is that mass, so understood, is a Lorentz-invariant 

quantity, given in any frame as   22221 cpcm   . But not only is Einstein's a precise 

definition of mass, it invites us to consider the origins of mass by coming to terms with a body's 

rest energy. 

We understand the mass of an atom or molecule in terms of the masses of the atomic nuclei, 

the mass of the electron, and small corrections for binding energy that are given by quantum 

electrodynamics.  

Nucleon mass is an entirely different story, the very exemplar of 
2

00 cm  . Quantum 

chromodynamics (QCD), the gauge theory of the strong interactions, teaches that the dominant 

contribution to the nucleon mass is not the masses of the quarks that make up the nucleon, but the 

energy stored up in confining the quarks in a tiny volume. The masses um  and dm   of the up and 

down quarks are only a few MeV each. The quarks contribute no more than 2% to the 939MeV 

mass of an isoscalar nucleon (averaging proton and neutron properties). 

Hadrons such as the proton and neutron thus represent matter of a novel kind. In contrast to 

macroscopic matter and beyond what we observe in atoms, molecules and nuclei, the mass of a 

nucleon is not equal to the sum of its constituent masses - quarks; it is, basically, a confinement 

energy of gluons!‖ (Quigg, 2007). 

The Higgs mechanism, under certain assumptions, allows us to describe the generation of 

masses of fundamental elementary  particles: intermediate bosons, leptons and quarks. But as it is 

mentioned above (Quigg, 2007), more than 98% of the visible mass in the Universe is composed 

by the non-fundamental (composite) particles: protons, neutrons and other hadrons.  

Thus, the Higgs mechanism can not be used in the gravitation theory. 
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3.0. Electromagnetic origin of elementary particles and their 
interactions 

Starting with quantization of Maxwell's theory of electromagnetism, physicists have made 

tremendous progress in understanding the basic forces and particles constituting the physical 

world. 

Modern quantum theories of elementary particle, such as the Standard model, are quantum 

Yang-Mills theories. In a quantum field theory the quanta of the fields are interpreted as particles. 

In a Yang-Mills theory these fields have an internal symmetry: they are appear by a space-time 

dependant non-Abelian group transformations. These transformations are known as local gauge 

transformations and Yang-Mills theories are also known as non-Abelian gauge theories. 

If we will proceed to the gauge theories, we will see that Maxwell's equations are a special 

case of the Yang-Mills equations, which describe not only electromagnetism but also the strong 

and weak nuclear forces. Maxwell’s equations can be regarded as a classical Yang-Mills theory 

with gauge group U(1). 

Quantum electrodynamics is an Abelian gauge theory with the symmetry group U(1) and has 

one gauge field, the electromagnetic four-potential, with the photon being the gauge boson. The 

Standard Model is a non-Abelian gauge theory with the symmetry group U(1)×SU(2)×SU(3) and 

has a total of twelve gauge bosons: the photon, three weak bosons and eight gluons. 

For us it is important to emphasize that the Yang-Mills theory is a generalization of Maxwell's 

theory (Ryder, 1985). 

―We have the working renormalizable theory of strong, electromagnetic and weak 

interactions... This is of course the Yang-Mills theory…  Essentially, all that we managed to do is 

just to generalize quantum electrodynamics (QED). QED was invented around 1929 and since 

then has never changed... Now QED is generalized and includes strong and weak interactions 

along with electromagnetic, quarks and neutrinos, along with electrons‖ (Gell-Mann, 1985). 

 

As we know, these theories cover all types of elementary particles: massless photons and 

massive leptons, bosons and hadrons.  

Therefore, it can be argued that the mass of elementary particles and hence of the whole 

matter has electromagnetic origin. This answers the Feynman question in the above passage. 

From this follows that gravitational mass/energy and gravitational field also have an 

electromagnetic origin. Obviously, then the theory of gravity should be some variant of the 

nonlinear theory of the electromagnetic field. We will present an attempt to build such a theory in 

the following chapters. 

Note first, that we won’t be to derive the equations from a Lagrangian (i.e., from least-action) 

formulation. A full exposition of these ideas would add too much extra length to the book. 

Second, everything we will do is classical. To get to the standard model or the other quantum field 

theories, we need to quantize the theory. 

 

 

Chapter 3. The axiomatics of LIGT and its consequences 

1.0. Lemma of electromagnetism 

In the previous chapter of LITG, we presented evidence of the electromagnetic origin of 

inertial mass. Feynman noted (see above), that this statement does not contradict the experimental 

data. 

On this basis, we  state here the following lemma, which will serve as a foundation for building 

LIGT (let us call it conditionally "Lemma of electromagnetism"). 

 

Lemma of electromagnetism: The electromagnetic field is the basis for the origin of matter.  
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From here follow a number of conclusions that are important for the theory of gravitation. 

1) The equivalence of gravitational and inertial masses leads to the conclusion that gravity has 

an electromagnetic origin.  

This conclusion is of fundamental importance for the construction of the Lorentz-invariant 

theory of gravitation. 

 2) The Lorentz-invariance of the laws of electromagnetism, determines Lorentz-invariance of 

the laws of gravity. 

3) Elementary particles are the primary carriers of matter and its characteristics.  Hence, the 

equation of gravitation should follow from the equations of elementary particles. 

4) Matter is involved in the creation of the gravitational field as its source, without quantization 

of this source. Thus, the gravitational field can be regarded as a classical field, which does not 

require quantization. The assumed origin of this equation from quantum equations of elementary 

particles, is not a limitation here, because a transition exists from quantum to classical equations. 

5) In the elementary particles' theory, inertial mass is associated with energy and momentum of 

particle by the equation: 

 42

0

222 cmpc  ,          

where 0m   is the rest mass (invariant quantity). From this follows, what in general is the 

equivalence of mass and energy-momentum  

 222

20

1
pc

c
m   ,        

According to the above mentioned cause we can consider mass, energy and momentum as the 

gravitation sources. 

6) Since in general case, the original equations of microcosm are nonlinear, we should assume 

that the gravitational equations are non-linear. 

 

Based on formulated above Lemma of electromagnetism, we can choose the following axioms 

for LIGT, which do not contradict to the experimental data. 

2.0. Axiomatics of LIGT 

As the first and second postulates we will take the experimental facts: 

 

1. Postulate of source: the source of the gravitational field is matter in the form of an island 

matter or a field mass/energy. 

 

2. Postulate of the masses' equivalence: the gravitational charge (mass) is proportional to 

the inertial mass/energy. 

 

3. Postulate of Mossotti -Lorentz: Postulate of Mossotti-Lorentz: the gravitational field is 

a residual electromagnetic field, which is remained as a result of incomplete compensation 

of electric and magnetic fields of different polarity. 

(Note: we do not associate this axiom with the Mossotti model which explains how this residue 

is formed, but have in mind the general idea that the gravitational field is a small part of the 

electromagnetic field, which acts attractively). 

 

4. The locality postulate: gravitational field is locally Lorentz-invariant, that is Lorentz- 

invariant on any infinitely small time interval and on any infinitely small distance. 
(Note: since the EM field is itself Lorentz- invariant, this axiom can be seen as a consequence 

of the axiom of Mossotti-Lorentz. But classical mechanics is globally Lorentz- invariant.  With  
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the introduction of postulate 4 we actually emphasize that gravitation, in the general case, is not 

globally Lorentz-invariant). 

 

From these axioms the next consequences follow, proof of which may serve as a confirmation 

of the axioms. 

 

Corollary 1: since the gravitational field is residual, it is much weaker than the 

electromagnetic field, but in the case of a neutral matter (in the electromagnetic sense), the 

gravitational field is decisive. 

 Corollary 2: the gravitational constant is determined as a portion of full electromagnetic 

interaction. 

Corollary 3: as in the theory of electromagnetism the interaction is described by the Lorentz 

force, the same (or its modification) describes the theory of gravitation. 

Corollary 4: the equations of massive elementary particles can be regarded as the source 

equations of the gravitational field. 

Corollary 5: all the features of motion of matter in the gravitational field come from the 

electromagnetic theory, in particular, from the effects associated with the Lorentz transformations. 

Corollary 6: all the characteristics of gravitational field (its energy, momentum, angular 

momentum, etc) have an electromagnetic origin and obey the laws of electromagnetism. 

 

 

Chapter 4. The connection of electromagnetic theory and 
gravitation 

Here, we will show that the adopted by us the Mossotti-Lorentz postulate does not contradict 

the existing results of physics, including general relativity. 

1.0. Transition from EM field theory to gravitational field theory 

In the works of Lorentz (see, e.g., (Lorentz, 1900)) it was shown in sufficient detail that in the 

theory of electromagnetic fields the residual electromagnetic field can actually be described. But 

for the specific purpose of its introduction it is easier and more convenient to use the methods of 

similarity theory and dimensional analysis (Sedov, 1993). 

We will compare the expressions of EM theory with the parallel expressions of gravitational 

theory and select the correspondences between them. For the control of the conclusions we use 

dimensional analysis. 

The main characteristic of the source field in the one and in the other theory is the expression 

of the interaction force or the corresponding interaction energy between the two bodies. 

1.1. Gravity electrostatic (ge-) field. The transition from the Coulomb’s field to 
the Newton’s field 

If we assume that gravity is generated by electric field, but quantitatively, by very small part of 

it (see Appendix A1), then Newton’s gravitation law:   

 0

2
r

r

Mm
F NN

 
  ,    (1.1) 

should take the form of Coulomb's law: 

 0

20 r
r

Qq
kFC

 
 ,    (1.2) 

where m and q are the mass and electric charge of the particle, M  and Q  are the mass and 

electric charge of the source, N  is  Newton's gravitational constant, and the coefficient 0k  in 
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Gauss’s units is 10 k . In this case, the definitions of gravitational field strengths of Newton and 

Coulomb electric field have the form 
0

2
r

r

M

m

F
E N

N
N





  and  0

20 r
r

Q
k

q

F
E C 




 , 

respectively. 

We introduce the gravitational charge gq , corresponding to mass m  (Ivanenko and Sokolov, 

1949) , by means of the relation: 

 mqq Ng  ,    (1.3)  

In this case, Newton's law can be rewritten in the form of Coulomb's law: 

 NN

gg

g Fr
r

Mm
r

r

Qq
F








 0

2

0

2
 ,       (1.4) 

where MQ Ng  is the gravitational charge of source, corresponding to the mass M of the 

source. 

From the comparison of equations (1.2) and (1.4) it follows that the dimensions of the 

electromagnetic and gravitational charges coincide. At the same time, a gravitational charge (1.3) 

has electromagnetic origin, and, hence, the corresponding mass is the inertial mass. On the other 

hand, the law (1.4) comprises the gravitational masses. This implies the equivalence of inertial 

and gravitational masses. 

We introduce the g-field strength within framework of EMGT as: 

  
N

gE
E





 ,     (1.5) 

where the tension of the Coulomb field is equal to: 0

2
r

r

Q
E


 . Substituting the values of 

gravitation theory here, we get: 

 NN

g

Ng Er
r

M
r

r

Q
E


 0

2

0

2
 ,     (1.6) 

where 
NE


 is the strength of the Newton gravitational field. 

Let us introduce the scalar gravitational potential within the framework of EMTG as: 

 

N

g




  ,    (1.7) 

where the potential of the Coulomb field is:  
r

Q
 . Substituting the values of gravitation theory 

here, we get: 

 NN

g

Ng
r

M

r

Q
  ,    (1.8) 

where N  is  the potential of the Newton gravitational field. 

The Poisson equation for the g-field can serve as test for (1.7). Indeed, for the EM field  the 

Poisson equation can be written as: 

 e  4 ,    (1.9)  

where 



d

dq
e   is  the electric charge density, d  is the volume element. We introduce the 

density of gravitational charge g  similarly to the electric density: 
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 mN

g

ge
d

dq



  ,    (1.10)  

where  m
d

dm



  is mass density. Then, replacing the potential and the charge density in (1.9) 

according to (1.7) and (1.10), we obtain the Poisson equation for the gravitational potential: 

 mNgNg   4 4  ,    (1.11)  

which corresponds to the Poisson equation for the Newton gravitational field. 

1.2. Gravi-magnetic field (gm-field) 

In this case, by analogy with electrodynamics, the existence of the variable ge-field and 

associated with them alternating or direct  gm-fields is assumed. The existence of a similar field is 

confirmed by general relativity and experiments. Unfortunately, since the Newton theory does not 

contain an analog of magnetic field, the verification of existence of the g-magnetic field within 

framework of EMGT, can presently be done only by dimensional analysis. Serious confirmation 

should be obtained by the solution of the corresponding equations of gravitation, which will give 

equivalent results to the general theory of relativity.  

As is known, the magnetic field is generated by the motion of electric charges or movement of 

an electric field. In this case, we need to obtain an expression for the magnetic field, similar to 

Coulomb's law for the electric field. This is the Biot-Savart–Laplace law. 

 

For simplicity, we will consider the special case of uniform motion of a source charge Q , 

which create a current I  (current from motion of charge q  will be denoted by i ). In real tasks, of 

course, charges and masses are divided into point (differential) values, and field calculated by 

integrating over a set of point charges. 

Magnetic vector H


 that occurs when the charge Q  moves at a speed 


 in circuit element dl , 

will be: 

 
   

33
r

rldI

r

rQ
H

 






 ,    (1.12) 

Using the gravitational charge density g  according to (1.10), similarly to the electric current 

dtdqi   and the current density j


, we will define respective g-current (or current of mass) as: 

 dSdS
dt

dq
ii nmNng

g

g   ,    (1.13) 

and the density of g-current of mass, as: 

   nmNgg ndSijj 


,    (1.14) 

where 


 is the velocity of the charge in a conductor with a cross section dS , and n  the 

projection of the velocity on the normal to  dS . 

If  the e-charge q  moves close to the e-current (or permanent magnet field H


), this current (or  

field H


) acts on the charge via the magnetic part of the Lorentz force LmF : 

        rldld
r

Ii
r

r

Qq
HqFLm








 ''

33
 ,    (1.15) 

Let us introduce the strength of gm-field within framework of EMGT as: 

 
N

gH
H





 ,     (1.16) 
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where the magnetic field H


 is given by (1.12). 

Substituting the corresponding physical quantities according to (1.13) and (1.16) in (1.12), we 

will obtain the gravi-magnetic (gm-) vector that arises when the charge MQg   moves at a 

speed  


 in an element of a circuit dl : 

 
   

33
r

rldM

r

rQ
H N

g

Ng


 




 


  ,    (1.17) 

or 

 
   

dS
r

rld

r

rldI
H nmN

g

Ng 
33


 




  ,    (1.18) 

where r


 is the distance between the test particle and the moving charged source or element of 

current gI , which generate the gm-vector. 

Using (1.15), for the gravito-magnetic Lorentz force we obtain: 

 

      r
r

mM
r

r

Qq
F N

gg

Lgm


 ''

33
 ,    (1.19) 

Since the magnetic field H


 in the electrodynamics can be expressed via a vector potential A


 

by the expression: 

  ArotH


 ,     (1.20) 

 

it is useful to define the transition from the EM vector potential A


  to the gravitational gA


. We 

assume that: 

 
N

gA
A





 ,     (1.21) 

Then, using (1.16), we can rewrite (1.20) in the form: 

 gg ArotH


 ,     (1.22) 

 

Expression (1.21) also satisfies the full EM expression for the electric strength vector: 

  
t

A

c
gradE







 1

 ,     (1.23) 

 

Using (1.5) ,  (1.7) and (1.21) , we obtain for g-field:   

 
t

A

c
gradE

g

gg






 1

 ,     (1.23’) 

Thus, we have shown that the basic EM quantities and equations can be associated with similar 

quantities and equations for the g-field. 

As an illustration of the correctness of the relationship of electromagnetic and 

gravitoelectromagnetic quantities, we put in Appendix A2 to this chapter the table of dimensions 

of physical quantities, considered above. 
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2.0. GTR, EMG and EMGT 

A lot of the solutions of general relativity are obtained in linear approximation, using the 

method of perturbation. It was found that the results of this linear theory may be presented in the 

form of Maxwell's equations. Such a representation has been called gravitoeleсtromagnetism,  or, 

briefly, GEM. 

2.1. Gravito-electromagnetism (EMG) 

In general relativity (GR) (Overduin, 2008), ―space and time are inextricably bound together. 

In special cases, however, it becomes feasible to perform a "3+1 split" and decompose the metric 

of four-dimensional spacetime into a scalar time-time component, a vector time-space component 

and a tensor space-space component. 

When gravitational fields are weak and velocities are low compared to c, then this 

decomposition takes on a particularly compelling physical interpretation: if we call the scalar 

component a "gravito-electric (ge-) potential" and the vector one a "gravito-magnetic (gm-)  

potential", then these quantities are found to obey almost exactly the same laws as their 

counterparts in ordinary electromagnetism. 

In other words, one can construct a "gravito-electric field" geE


 and a "gravito-magnetic field 

gmH


, and these fields are obeyed equations that are identical to Maxwell's equations and the 

Lorentz force law of ordinary electrodynamics.  

From symmetry considerations we can infer that the earth's gravito-electric field must be 

radial, and its gravito-magnetic one dipolar, as shown in the diagrams 2.1 and 2.2. below: 

                                     
Fig.2.1. Radial gravitation field lines of Earth       Fig. 2.2. Dipole gravitation field lines of Earth 

 

These facts allow one to derive the main predictions of general relativity, simply by replacing 

the electric and magnetic fields of ordinary electrodynamics E


 and H


 by geE


 and gmH


 

respectively‖. 

The mathematical aspect of  GEM theory is described in many papers (see, for example, 

(Forward, 1961; Wald, 1984;  Ruggiero and Tartaglia, 2002; Grøn and Hervik, 2007; Mashhoon, 

2008; Forrester, 2010; ))  

To avoid misunderstanding, it should be noted that the electromagnetic theory of gravitation 

(EMGT) and gravitoelectromagnetism (GEM) - are not the same (Mashhoon, 2008). GEM is an 

auxiliary representation of GR, which allows to physically imagine of results of the metric theory.  

In contrast, EMGT is an independent theory of gravitation, which arose on the basis of the 

hypothesis Mossotti and then was developed by number of scientists, including O. Heaviside, 

H.Lorentz and others (Heaviside, 1912;  Lorentz, 1900; Webster, 1912; Wilson, 1921;  etc). 
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Appendixes:  

A1. Relationship between electric and gravitational charges 

It is easy to show that the gravitational field is a small fraction of the electromagnetic field. 

To this corresponds the fact that the gravitational charge of the electron is less than its electric 

charge gqe  , where eg mq   (here 10108,4 e  unit. SGSEq is electron charge (1 unit 

CGSEq = g
1/2

sm
3/2

s
-1

), 
271091,0 em g is electron mass, 81067,6  cm

3
/g sec

2
 is the 

gravitational constant. It is easy to see that the dimension of the gravitational charge of the 

electron coincides with the dimension of electric charge and its magnitude in 10
21

 times less. 

Indeed, 21102 eme . 

For a proton (the only stable heavy particle), this value is of the order  18102 pme . The 

heaviest known elementary particles are the highly unstable bosons W 
±
 (mass ≈80 GeV). This is 

about 100 times more than the mass of the proton, giving a ratio of no less than 1610 . 

 

A2. Dimensions of electromagnetic and gravi-electromagnetic quantities 

For the verification of the correctness of correlations in the transition from the EM physical 

quantities to the gravitation quantities, the accordance of their dimensions plays an important role. 

The worded below list confirms that electrodynamics can be considered as the basis of mechanics. 

 

Electromagnetic theory 

e-charge [ q ]  = g
1/2

 cm
3/2

 s
−1

 

e-charge density [ e ] = g
1/2 

cm
−3/2

 s
−1

 

e-current [ i  ]  = g
1/2

 cm
3/2

 s
−2

 

e-current density [ j  ]  = g
1/2

 cm
-1/2

 s
−2

 

Coulomb force [ CF ] = g cm s
−2

 

Strength of e-fields [ E ] =  g
1/2 

cm
−1/2 

s
−1

 

Strength of m-field [ H ] =  g
1/2 

cm
−1/2 

s
−1

 

Scalar potential    [ ] =   g
1/2 

cm
1/2 

s
−1

 

Vector potential   [ A ] =   g
1/2 

cm
1/2 

s
−1

 

Field energy [ e ] =   g
  
cm

2 
s

−2  
= [ q ] 

Field energy density [  ] =  g cm
−1 

s
−2  

= [ 2E ] = [ 2H ] 

 

Gravitation theory of Newton 

Newton’s force [ NF ] = g cm s
−2

 

Newton’s gravitational constant [ N ] = g
−1

 cm
3
 s

−2
  ( [ N ] = g

−1/2
 cm

3/2
 s

−1
 )   

Field strength [ NE ] = cm/s
2
  (acceleration) 

Scalar potential    [ N ] = cm
2
/s

2
   (cm/s)

2
  (velocity square) 

Scalar potential    [ N ] = [ Nm ] = g cm
2
/s

2
 

 

Electromagnetic gravitation theory (EMGT) 

g-charge [ gq ] = g
1/2

cm
3/2

s
−1

 = [ eq ] = [ Nm  ] 

g-charge density [ g ] = g
1/2 

cm
−3/2

 s
−1

 

g-current [ gi ]  =  g
1/2

 cm
3/2

 s
−2

 

g-current density [ gj ]  =  g
1/2

 cm
-1/2

 s
−2
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g-force [ gF ] =  g cm s
−2 

= [ NF ] 

Strength of ge-fields [ gE ] = cm/s
2
  =  [ NE ] = [ E N ] 

Strength of gm-field [ gH ] = cm/s
2
  = [ H N ] 

Scalar potential of g-fields [ g ] = cm
2
/s

2
  =  [ N ] 

Vector potential of g-fields [ gA ] = cm
2
/s

2 
=  [ A N ] 

g-field energy [ g ] =  g cm
2
/s

2  
=  [m g ] 

 

 

Chapter 5. Electromagnetic base of relativistic mechanics 

1.0. General principles of electromagnetic theory of matter 

Under the moving masses (gravitational charges) we will understand the two interacting 

bodies, one of which we call the source of the gravitational field, and the other - the test particle. 

Our approach to the theory of gravitation is based on a modern version of the electromagnetic 

theory of matter (EMTM) (Lorentz, 1916; Richardson, 1914; Becker, 1933). In framework of 

EMTM the mass is of electromagnetic (EM) origin. Therefore in framework of our axiomatics, 

the main results of EM theory are equivalent to results of the theory of gravitation. 

The Maxwell EM theory was the first theory, whose properties were found to depend on the 

speed of the charge (in this case, electric). This theory is called the Lorentz-invariant (L-invariant) 

or relativistic theory. At speeds of up to one-tenth of the speed of light, these parameters are 

hardly different from the parameters of static objects.  

This suggests that the basis of mechanics is still the classical Newtonian mechanics, and 

relativistic mechanics is Newton's mechanics plus minor amendments thereto. 

Moreover, in the framework of EMTM it is easy to show that the calculation of corrections to 

the non-L-invariant theory is determined by the non-L-invariant theory. The amendments are 

calculated on the basis of non-L-invariant laws that take into account the changes in the 

parameters at high speeds. The calculation procedure is equivalent to the method of calculation 

which is based on perturbation theory, when the zero approximation is the non-relativistic theory. 

Below we show this, based on the known results presented in textbooks. 

 

2.0. The Maxwell-Lorentz equations 

2.1.  The Maxwell-Lorentz equations written in terms of field strengths 

 The general equations of the electromagnetic theory of matter (EMTM) are formulated on the 

basis of Maxwell's equations, taking into account the Lorentz hypothesis. Under this hypothesis, 

all elementary particles (and, consequently, atoms, molecules and bodies) are composed of an 

electromagnetic field, which is in a concentrated ("condensed" according to Einstein) state. Since 

among these particles are the free EM fields (photons), they are also included in this list. At the 

same time, charges and currents are also determined by the electromagnetic fields. Consequently, 

there is only one kind of vectors, describing the field, namely the electromagnetic (EM) field 

strengths in vacuo E


 and H


 or equivalent quantities.  

The self-consistent Maxwell-Lorentz microscopic equations are the independent fundamental 

field equations. The Maxwell-Lorentz equations are following four differential (or, equivalent, 

integral) equations for any electromagnetic medium (Jackson, 1965; Tonnelat, 1966): 

 j
ct

E

c
Brot




 



 4

 

 1
 ,      (2.1) 
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 0
 

 1


t

B

c
Erot







,                (2.2) 

  4Edi


,         (2.3) 

 0Bdi


 ,        (2.4) 

where BDHE


,,,  are electric field vector, magnetic field vector, electric induction vector, 

magnetic induction vector, correspondingly;  in vacuum ED


  and  HB


 ;  

ArotB
t

A

c
gradE










    ,

1
 ,  where A


,  are scalar and vector potentials, correspondingly; 

  is the charge density; j


 is the current density: c   is the speed of light. 

The difference between these equations and Maxwell's equations is that E


 and H


, as well as 

all other quantities needed to describe a matter, refer to an arbitrarily small volume of space. In 

this case the equations  (2.1-2.4) are called the Maxwell-Lorentz (ML) equations. 

The Maxwell’s macroscopic quantities  E


 and H


can be deduced from the microscopic 

quantities  E


 and H


 only by averaging over space and time. This averaging and deduction of the 

actual Maxwell equations from (2.1-2.4) is considered in many courses on electromagnetism 

(Becker, 1933). 

In the equations (2.1-2.4) nothing is said about how the velocity 


 of the charges changes over 

time. For this purpose  the Lorentz law is used. According to Lorentz  the density of force has the 

form:  

 







 B

c
Ef




1
,   (2.5) 

hence  fd  is a force, acting on the volume d . 

 

2.2. The Maxwell-Lorentz equations written in terms of field potentials 

For the analysis of the field equations (2.1-2.4), it is advisable to go from fields themselves to 

the electromagnetic field potentials (Becker, 1933). This is done as follows: first of all, we satisfy 

the equation  0Hdi


  (2.4) by substituting: 

 ArotH


 ,      (2.6)  

where vector  A


 is named the vector potential. 

Then from the equation of (2.2) it follows that  tcAE 


 should be zero. Therefore, we 

demand that the value  tcAErot 


 is equal to the gradient of a scalar  : 

 grad
t

A

c
E 







 1

,        (2.7) 

where vector    is named the scalar potential. 

The vector field is uniquely determined by divergence and vorticity of this field. Until now, we  

determined only Arot


. Now we can in addition freely dispose by the divergence of the vector A


. 

We will use  this in order to put 

   0
1







tc
Adi





,     (2.8)  

If we now substitute (2.6) and (2.7) in the two remaining equations (2.1-2.4), then with the 

help of (2.8), we obtain two equations for the potentials: 
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2
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tczyx

ctc

A

z

A

y

A

x

A 


 ,     (2.9) 

2.3. The Lorentz transformation as transition from rest to motion 

For their integration we use the well-known fact that the field at time t  at in any point is equal 

to the field at time  dtt   at the point, shifted back to the segment  dt


. This means that for all 

the quantities, characterizing the field, we will again have the relation:  

 


grad
t




 
 

where   zyx ,,    is a function of the field. 

For example, for change in time of the electric vector E


  we will obtain: 

  egrad
t

E 






  

Thus, if the velocity is parallel to the positive x -axis, in our equations for the potentials (2.9), 

second time derivatives are replaced by derivatives with respect to the coordinate x according to 

the formula 

 
2

2
2

2

2

xt 







  

Therefore, for the potentials A


 and   we get the equation: 

          

,41

,
4

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2























































zyxc

cz

A

y

A

x

A

c




 ,      (2.10) 

Note that the equations for the components of the vector potential differ from the equation for 

the scalar potential only by constant factor c


. Therefore, if we resolve the equation for  , then 

a solution for the vector potential follows directly from it: 

     


c
A


 ,         (2.11)  

From this we obtain two equations:  

    grad
c

rot
c

Arot 
 11

 

  


grad
ctct

A 


1










 

If we introduce them to the definitions (2.6) and (2.7), we get: 

   grad
c

gradE
 1

   and    E
c

H


 
1

,       (2.12) 

It turns out that the relation (2.11) between the vector and scalar potentials leads to known 

dependence  EH


 
2

1
 between H


and E


. 

Therefore, to solve our problem, we can confine ourselves to integrating the equation (2.10) for 

 . Note that this equation differs from the equation for the ordinary electrostatic potential only by 
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constant coefficients  221 c  at 22 x  . So technically we can reduce our problem to a 

simple electrostatic problem, if instead of coordinates tzyx ,,,  we introduce the new coordinates 

',',',' tzyx  using the transformation: 

 21'  xx , 'yy  , 'zz  , 'tt  ,      (2.13) 

where for brevity we put  c . Due to this change, the functions  (х, y, z, t) and  (х, y, z, t)  

pass to functions '   and  '  from ',',',' tzyx , so that we have the identities: 

 
   
   ,',',',1'',',',''

,',',',1'',',',''

2

2

tzyxtzyx

tzyxtzyx








     (2.14) 

Therefore, our equation for the potential in the primed coordinates is 

 


4
'

'

'

'

'

'
2

2

2

2

2

2
















zyx
,        (2.15) 

As such, this equation is completely identical to the equation that determines the potential of 

the fixed charge system. Therefore, its integration can produced according to the well-known 

theory of the electrostatic potential. We get: 

  
 

     





222
''''''

'''',',',''
',',',''






zyx

dddt
tzyx  

If we again turn to the unprimed coordinates with the help of (2.13) and (2.9), we will obtain 

the solution of equation (2.10) for the scalar potential in the form 

  
 

      





2222
1

,,,
,,,






zyx

dddt
tzyx ,       (2.16) 

 Now let us  find a particular solution for the time 0tt   when the electron is in the beginning 

of the coordinate system, and restrict ourselves to the case of the point electron, i.e., assume that 

the charge density is different from zero only in the immediate vicinity of the origin of 

coordinates    0  .  Then the integration can be done, and we get the solution: 

  
  2222

0

1
,,,

zyx

E
tzyx









,       (2.17) 

For the purposes of brevity, we introduce for the expression that appears in the denominator 

instead of the distance r , the designation: 

   2222 1 zyxs   ,        (2.18) 

Then we will be able to present the solution to our problem in the form 

 0,,  zyx AA
sc

e
A

s

e 
 ,     (2.19) 

Using these potentials we can calculate the field E


and H


 by the formulas  (2.6), (2.7) or 

(2.12), and taking into account that differentiation by time is always replaced by 
x


 , for the 

electrical strength in vector form we will  get: 

        r
s

e
E


3

21  ,        (2.20) 

 Further, the magnetic strength  E
c

H


 
1

; hence: 



  

                                                    21 

 21 

 y
sc

e
Hz

sc

e
HH zyx 3

2

3

2 1
,

1
,0

 



 ,   (2.21) 

2.3.1 Lorentz transformations and their consequences 

Our aim (Lorentz, 1904;  Lorentz, 1916; Poincaré, 1905) must again be to reduce the equations 

for a moving system to the form of the ordinary formulae that hold for a system at rest. It is found 

that the transformations needed for this purpose may be left indeterminate to a certain extent; our 

formulae will contain a numerical coefficient l , of which we shall provisionally assume only that 

it is a function of the velocity of translation  , whose value is equal to unity for 0 , and 

differs from 1 by an amount of the order of magnitude 22 c  for small values of the ratio c .  

If х, y, z are the coordinates of a point with respect to axes fixed in the vacuum, or, as we shall 

say, the ―absolute‖ coordinates, and if the translation takes place in the direction of OX, the 

coordinates with respect to axes moving with the system, and coinciding with the fixed axes at the 

instant 0t , will be 

 txxr  ,  yyr  ,   zzr  ,    (2.22) 

Now, instead of rrr zyx ,,  we shall introduce new independent variables differing from these 

―relative‖ coordinates by certain factors that are constant throughout the system. Putting 

 2

222

2

1

1
L

c

c









,     (2.23) 

we define the new variables by the equations 

     rLlxx ' ,  rlyy ' ,  rlzz '       (2.24) 

or  

      rL txlx  ' ,  rlyy ' ,  rlzz ' ,       (2.25) 

and to these we introduce as our fourth independent variable 

   







 x

c
t

c
ltx

c
lt

l
t LL

L

222
'








,      (2.26) 

It was Poincaré (Poincaré, 1905) who first introduced that the real meaning of the substitution 

(2.25), (2.26) lies in the relation 

  22222222222 '''' tczyxltczyx  ,      (2.27) 

that can easily be verified, and from which we may infer that we shall have 

 
22222 '''' tczyx   ,      (2.28) 

when 

 
22222 tczyx  ,      (2.29) 

This may be interpreted as follows. Let a disturbance, which is produced at the time t = 0 at the 

point х = 0,  y = 0,  z = 0 be propagated in all directions with the speed of light c, so that at the 

time t  it reaches the spherical surface determined by(2.29). Then, in the system х', y', z', t',  this 

same disturbance may be said to start from the point х' = 0, y' = 0, z' = 0, at the time t' = 0 and to 

reach the spherical surface (2.28) at the time 't . Since the radius of this sphere is ct', the 

disturbance is propagated in the system х', y', z', t'  as it was in the system х, y, z, t, with the speed 

c . Hence, the velocity of light is not altered by the transformation.  

3.0. The static fields of Coulomb and Newton as fundamental fields 
with respect to fields of moving sources. 

The moving source of the gravitational field is a gravitational current, i.e., the movement of 

gravitational charge (mass). As we have seen (see above), the transition from the fixed charge and 
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their fields to the mobile charge and fields, and vice versa, is described by Lorentz 

transformations. 

In the theory of gravity  the transition from the non-L-invariant theory to the L-invariant theory 

requires, first and foremost, to find the L-invariant expression for the static Newton's law of 

gravity  20 rrmMF NN


 , or 

mNGdi  4


, where mFG


  (or by introducing  potential 

N  through gradFN 


, in the form  
mNN  42 


). 

According to LIGT the Newton law of gravity is a consequence of the law of the static 

interaction between charges of Coulomb (or of more general assertion - of Gauss theorem). This 

gives us an opportunity to consider the gravity problem on the basis of the electromagnetic 

problem that has been solved. 

At first glance, here lies the contradiction. Static (non-L-invariant) Coulomb's law 
20 rrqQF eC


  (where in the CGS 1e ) in the form 

eEdi  4


 or 
ee  42 


, is 

included as part in the M-L equation, which, in its totality, is of course, L-invariant. 

The exit from this contradiction is somewhat unexpected. We will show below that in the 

transition from source шт a stationary reference frame to the same source in moving frame, new 

additional fields are generated, which together with the same static field, meet the requirements of 

the L-invariance. 

Farther we assume that all the statements that we can make with respect to EM theory,  are 

valid for the theory of gravity, taking into account the established terminology (for example, the 

charge in EM theory is called mass in the theory of gravity, etc). 

(Farther to confirm our ideas, we will use the quotes from the book of E. Purcell (Purcell, 

1985)). 

3.1. Gauss's law 

The flux of the electric field E


 through any closed surface, that is, the integral   sdE


 over the 

surface, equals 4  times the total charge enclosed by the surface:  

     dqsdE
i

i 44


,     (3.1) 

�We call the statenlent in the box a law because it is equivalent to Coulomb's law and it could 

serve equally well as the basic law of electrostatic interactions, after charge and field have been 

defined. Gauss's law and Coulomb's law are not two independent physical laws, but the same law 

expressed in different ways.  

This suggests that Gauss's law, rather than Coulomb's law, offers the natural way to define 

quantity of charge  for a moving charged particle, or for a collection of moving charges.  

It would be embarrassing if the value of 
 
 
tS

sdEQ


4

1
so determined depended on the size 

and shape of the surface S . For a stationary charge it doesn't-that is Gauss's law.  

But how do we know that Gauss's law holds when charges are moving? We can take that as an 

experimental fact. 

3.2. Invariance of charge  

There is conclusive experimental evidence that the total charge in a system is not changed by 

the motion of the charge carriers.  

This invariance of charge lends a special significance to the fact of charge quantization. It is 

known the fact that every elementary charged particle has a charge equal in magnitude to that of 

every other such particle. And this precise equality holds not only for two particles at rest with 

respect to one another, but for any state of relative motion. 
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3.3  Electric field measured in different  frames of reference 

If charge is to be invariant under a Lorentz transformation, the electric field E


 has to 

transform in a particular way. ―Transforming E


‖ means answering a question like this: if an 

observer in a certain inertial frame F  measures an electric field E


 as X volts/cm, at a given point 

in space and time, what field will be measured at the same space-time point by an observer in a 

different inertial frame 'F ? For a certain class of fields, we can answer this question by applying 

Gauss's law to some simple systems. 

 Gauss's law tells us that the magnitude of  'E  must be 

 E
E

E L






21

'  

But this conclusion holds only for fields that arise from charges stationary in F . As we shall 

see below, if charges in F  are moving, the prediction of the electric field in 'F  involves 

knowledge of two fields in F , the electric and the magnetic. 

3.4  Force on a moving charge  

At some place and time in the lab frame we observe a particle carrying charge q  which is 

moving, at that instant, with velocity 


 through the electrostatic field. What force appears to act 

on q ?  

Force means rate of change of momentum, so we are really asking, What is the rate of change 

of momentum of the particle, dtpd


, at this place and time, as measured in our lab frame of 

reference? That is all we mean by the force on a moving particle. 

3.5 Interaction between a moving charge and other moving charges  

We know that there can be a velocity-dependent force on a moving charge. That force is 

associated with a magnetic field, the sources of which are electric currents, that is, other charges 

in motion. 

3.5.1 Magnetism as a consequence of Lorentz’s length contraction 

Model a current-carrying wire (Schroeder, 1999) as a line of negative charges ( q ) at rest and 

a line of positive charges ( q ) moving to the right at speed 0x


  , where 0x


 is unit vector of 

x -axis,. The average linear separation between charges is l . Consider a ―test charge‖ Q moving 

parallel to the wire, at the same speed   (for simplicity). In the frame of the test charge it is at rest 

and so are the (+)-charges in the wire, but the − charges are moving to the left. According to 

relativity, the distance between the (−)-charges is length-contracted to  2
1 cll  , while 

the distance between the (+)-charges is un-length-contracted to  2
1 cll  . Therefore the 

wire carries a net negative charge and exerts an attractive electrostatic force on the test charge. 

Back in the lab frame, we call this a magnetic force.    

 

Lab Frame:       Test Charge Frame: 

 
test charge (at rest) 

            

  To calculate the strength of the force, first we find the linear charge density of the wire in the 

test charge frame (assuming  c  for simplicity): 
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 ,   (3.2) 

In a typical household wire 1310~ c , so the Lorentz factor differs from 1 by only about one 

part in 2610 . This tiny amount of length contraction is still observable, because the total charge of 

all the moving electrons is enough to exert enormous electrostatic forces.  

The same derivation can be adapted to more complicated cases where the test charge has an 

arbitrary velocity, in either direction. To understand the case where the test charge is moving 

toward or away from the wire, you need to digress to show how the electric field of a point charge 

in motion is weaker in front of and behind the charge but stronger in the transverse directions. 

(This can be derived using length contraction and some simple gedanken experiments.) 

From our present vantage point (Purcell, 1985), the magnetic interaction of electric currents 

can be recognized as an inevitable corollary to Coulomb's law. If the postulates of relativity are 

valid, if electric charge is invariant, and if Coulomb's law holds, then, as we shall now show, the 

effects we commonly call "magnetic" are bound to occur. They will emerge as soon as we 

examine the electric interaction between a moving charge and other moving charges.  

Two charge distributions experience Lorentz contraction of various values - this is the solution 

of the problem. 

A more general and detailed analysis of the problem is described, for example, in the book  Let 

us use the results of book (Purcell, 1985) to get the mathematical expression of the arising force  

and magnetic field (for brevity we use the notation introduced earlier c  , 211  L )  

In general case the total linear density of charge in the wire in the test charge frame,  , can be 

calculated:  

� 
2

02

c

L
   ,    (3.2’)  

(the meaning of the unknown variables in (3.2’) is explained below  

 

The wire is positively charged. The use of Gauss's law (applied to the cylinder which 

surrounds the line) guarantees the existence of a radial electric field rE'  given by the formula for 

the field of any infinite line charge:  

 
2

042
'

rcr
E L

r


 ,   (3.3)�  

Hence,  the test charge q will experience a force, which is directed inwardly radially 

 
2

042
''

rc

q

r

q
qEF L

rr


 ,    (3.4)   

Now let's return to the lab frame. What is the magnitude of the force on the charge q  as 

measured there? If its value is 'rqE   in the rest frame of the test charge, observers in the lab frame 

will report a force smaller by the factor  L1 . Since 'rr  , the force on our moving test charge, 

measured in the lab frame, is: 

 
2

04'

rc

qF
F

N

r
r




  ,     (3.5)  

Now 02  is just the total current I  in the wire, in the lab frame, for it is the amount of 

charge flowing past a given point per second. We'll call current positive if it is equivalent to 

positive charge flowing in the positive x  direction. Our current in this example is negative. Our 

result can be written this way:  
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2

2

rc

Iq
F


  ,     (3.6)  

We have found that in the lab frame the moving test charge experiences a force in the y 

direction which is proportional to the current in the wire, and to the velocity of the test charge in 

the x direction. 

If we had to analyze every system of moving charges by transforming back and forth among 

various coordinate systems, our task would grow both tedious and confusing. There is a better 

way. The overall effect of one current on another, or of a current on a moving charge, can be 

described completely and concisely by introducing a new field, the magnetic field.  

3.6 Introduction of the magnetic field  

Thus, a charge which is moving parallel to a current of other charges experiences a force 

perpendicular to its own velocity. We can see it happening in the deflection of the electron beam. 

Let us state it again more carefully. At some instant t  a particle of charge q  passes the point 

),,( zyx  in our frame, moving with velocity  . At that moment the force on the particle (its rate 

of change of momentum) is F


. The electric field at that time and place is known to be E


. Then 

the magnetic field at that time and place is defined as the vector B


 which satisfies the vector 

equation  

 B
c

q
EqF


  ,    (3.7) 

What kind of vector should be B


, in order to make the equation (3.6) compatible with the 

equation (3.7). 

For fields that vary in time and space equation (3.7)  is to be understood as a local relation 

among the instantaneous values of 


  ,  , EF and B


. Of course, all four of these quantities must be 

measured in the same inertial frame.  

In the case of our "test charge" in the lab frame, the electric field E


 was zero. With the charge 

q  moving in the positive x  direction, 0x


  , we found that the force on it was in the negative 

y  direction, with magnitude 
22 rcIq   

 
2

0 2

rc

Iq
yF


 ,    (3.8)  

In this case the magnetic field must be  

  
rc

I
zB

20
  ,     (3.9)  

for then equation  (3.7)  becomes 

      
2

00 22

rc

Iq
y

rc

I

c

q
zxB

c

q
F





  ,      (3.10)  

in agreement with equation (3.8). 

 

3.7 Vector potential  

We found that the scalar potential function  zyx ,,  gave us a simple way to calculate the 

electrostatic field of a charge distribution. If there is some charge distribution  zyx ,, , the 

potential at any point  111 ,, zyx  is given by the volume integral  

  
 

 2

12

222
111

,,
,, 


 d

r

zyx
zyx ,�    (3.11)  
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�The integration is extended over the whole charge distribution, and 12r  is the magnitude of 

the distance from  222 ,, zyx  to  111 ,, zyx . The electric field E


 is obtained as the negative of 

the gradient of cp:  

 gradE 


,�   (3.12)  

� The same trick won't work here, because of the essentially different character of B


. The 

curl of B


 is not necessarily zero, so B


 can't, in general, be the gradient of a scalar potential. 

However, we know another kind of vector derivative, the curl. It turns out that we can usefully 

represent B


, not as the gradient of a scalar function but as the curl of a vector function, like this:  

 ArotB


 , �   (3.13)  

�By obvious analogy, we call A


 the vector potential. It is not obvious, at this point, why this 

tactic is helpful. That will have to emerge as we proceed. It is encouraging that equation (2.4) 

( 0Hdi


 ) is automatically satisfied, since 0 Arotdi


 , for any A


. 

In view of  equation  (2.1), the relation between J


 and A


 is  

  
c

J
Arotrot


 4
 .   (3.14)  

Equation (3.14) , being a vector equation, is really three equations. We shall work out one of 

them, say the x-component equation. Among the various functions which might satisfy our 

requirement (3.13), let us consider as candidates only those which also have zero divergence 

0Adi


 . Then, after a series of transformations we get from (3.14): 

 
c

J

z

A

y

A

x

A xxxx 4
2

2

2

2

2

2















,   (3.15)  

Thus, we shown that the calculation of L-invariant amendments to the non-L-invariant theory 

is determined by the non-L-invariant theory. 

 

 

Chapter 6. The equation of motion in LIGT 

1.0.  Equation of massive boson 

Let us use the electromagnetic representation of tht Dirac equation (see in details (Kyriakos, 

2003; 2004; 2009)). 

More often the Dirac equation is described in the bispinor form. Entering the function: 

 























4

3

2

1









  ,    (1.1) 

called bispinor, the Dirac equations can be written in one equation. There are two bispinor Dirac 

equation forms: 

    0ˆˆˆˆˆ 2   cmpc eo


,    (1.2) 

    0ˆˆˆˆˆ 2  cmpc eo 


 ,    (1.3) 

which correspond to the two signs of the relativistic expression of the energy of the electron: 
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 4222 cmpc 


 ,   (1.4) 

Here 
t

i



 ̂ ,  





ip̂  are the operators of the energy and momentum,  , p


 are the electron 

energy and momentum, c  is the light velocity, m  is the electron mass,   is the wave function 

(   is the Hermitian-conjugate wave function) named bispinor and   ˆ,ˆ
0


 are the Dirac 

matrices. It is also known that for each sign of the equation (2.6) there are two Hermitian-

conjugate Dirac equations. 

In the case when, e.g., the bispinor   y  has the following form: 
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 ,   zxzx iHiHEE ,     (1.5) 

using (1.5), from (1.2) and (1.3) we obtain the Maxwell equations with complex currents 




c
ij  , where 



2mc
 . 

By squaring the Dirac equation we can obtain the equation of a massive vector particle, such as 

a massive intermediate boson: 

       












2

42
22

2

2



 cm
c

t
,      (1.6) 

where   is a matrix, which contains the components of the wave function of an electromagnetic 

field HE


  , . In general this wave is a superposition of two waves with plane polarization:                                    











z

x

iH

E
1   and  










x

z

iH

E
2 . 

The equation (1.6) can be rewritten in the view: 

     




  42

2
22 ˆˆˆˆ cmpco


 ,     (1.6') 

or 

   ,0ˆˆ 42222  cmpc


      (1.7) 

From equation (1.6) follows (see below) the conservation equation: 

 ,042222  cmpc


      (1.8)  

Note that this equation is valid both in quantum mechanics and in classical mechanics for all 

particles. 

Using the Compton wave length cmr eC  , mass term in (1.1) is 
2242 41
Cph rcm   . In 

other words, the equation (1.6) can be expressed as: 

 












2

22

2

2

4

1

Cr
c

t


,        (1.9) 

This equation is similar to the equation obtained by Schrödinger as the generalization of the 

Dirac equation on Riemannian space . 
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2.0. The generally covariant equation of "massive boson" 

Schroedinger (Schroedinger, 1932) was the first to obtain by squaring of  Dirac equation, the 

generally covariant equation of ―massive boson‖, written for the curved space: 

 2

2

1

4

1
 kl

kll

kl

k Sf
R

gg
g

,     (2.1) 

Here 
C

e

r

cm 1



 ,  R  is the invariant curvature. 

In the first term is easy to find a regular operator of the Klein second order equation in the 

Riemann geometry. In the third term on the left is recognized well-known term associated with 

the spin magnetic and electric moments of the electron (tensor klS ). 

 ―To me, the second term seems to be of considerable theoretical interest. To be sure, it is 

much too small by many powers of ten in order to replace, say, the term on the r.h.s. For   is the 

reciprocal Compton length, about 11110 cm . Yet it appears important that in the generalised 

theory a term is encountered at all which is equivalent to the enigmatic mass term.‖   

3.0. Quantum equations of particles’ motion in the external field 

The Dirac equations of electron and positron with external field are: 

      0ˆˆˆˆˆ 2

0   cmppc eexex





 ,    (3.1) 

where  ̂  and p̂  are the energy and momentum operators, ex  and exp


 are the energy and 

momentum of external field, accordingly. 

For a  complete accordance with the electromagnetic theory of matter (EMTM),  the energy 

ex  and momentum exp


 in the equation (3.1) must be expressed as the EM values.   

As is known, the total momentum and the total energy of a charged particle in an 

electromagnetic field is determined by the following expressions: 

 A
c

q
pp ful


 ,    qful  ,      (3.2) 

where q  is charge, 
22

2

1 c

m
p










  and  

22

2

1 c

mc


 


  are  the momentum and energy of a 

free particle, 


 is particle velocity, exex A
c

q
p


  and  exex q   are the potential momentum and 

energy of some external source (charged particles), obtained in the EM field. 

Hence, (3.1) can be rewritten as the Dirac equation with an external EM field 

   0ˆˆˆˆˆ 2

0 
















  cmA

c

q
pce eexex





 ,      (3.3) 

The corresponding differential equations for the "massive boson" will be: 

   042

2

22






















 cmA

c

q
pcq exex


 ,     (3.4) 

From this we can obtain the equations of energy-momentum conservation of a particle in an 

EM field: 

   042

2

22









 cmA

c

q
pcq exex


 ,     (3.5) 
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From the above it follows that the values exA
c

q 
 and exq  completely characterize the external 

field source of EM field. Below we will find the expression for the force, with the source acts on 

the particle. 

4.0. The transition from quantum mechanical equations of motion to 
the motion equations of classical mechanics 

There are three main methods of transition from the quantum mechanical equations of motion 

to the classical equations (Schiff, 1955; Levich, Myamlin and Vdovin, 1973, Landsman, 2005; 

Anthony, 2014): a) theorem of Ehrenfest, b) on the basis of Hamilton's canonical equations, using 

Poisson brackets, c) the transition from the wave equation to the Hamilton-Jacobi equation. We 

shall illustrate this transition based on the methods a) and b). 

4.1. Ehrenfest’s theorem in the case of the Lorentz-invariant quantum theory 

Let us use the Lorentz-invariant quantum wave equation of ―massive photon‖  in external  EM 

field (6.3), obtained in the above section: 

In this case (Anthony, 2014)  the wave function has the form 

   
















 tqrA

c

q
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i
 exp0 




,      (4.1) 

Now we want to see whether that equation gives us a description of Reality that conforms to 

the classical theory. To that aim we will calculate the expectation value of the rate at which a 

particle’s linear momentum changes with the elapse of time. 

Using the relativistic formula for the probability density, we have 
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22

,      (4.2) 

In that equation the operators extract the argument of the wave function and differentiate it, so 

we have 

  


























 tqt

dt

d
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c

q
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ttdt

d
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 ,      (4.3) 

The vector variables r


 and p


 do not represent fields, but rather represent points in phase 

space that the particle occupies as time elapses, so we take the spatial derivatives of those 

variables as equal to zero. Further, if we do not want to have the complications with radiation 

fields, then with respect to the source of the potential fields we must take 0dtd  and 

0dtAd


.  

Carrying out the differentiations thus gives us: 
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 ,      (4.4) 

Substituting that result and its complex conjugate into Equation 18 then gives us: 

   U
t

A
Aqp

dt

d











 ,      (4.5) 

which describes the Lorentz electromagnetic force  plus the force due to any other static potentials 

of the particle interaction. Thus we gain strong evidence that the relativistic quantum theory, like 

its non-relativistic version, has the classical limit. 
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4.2. Derivation of  generally covariant classical equation of motion on the base 
of Ehrenfest  theorem 

An interesting application of the theory (see chapter 4) is to establish an analogue of 

Ehrenfest's theorem for the Dirac equation, generalized to the Riemann geometry (Sokolov and 

Ivanenko, 1952; pp. 650-651). In addition to the results obtained above, by squaring of the Dirac 

equation, for the center of gravity of the wave packet (provided 0 ), we obtain the equation 

of relativistic mechanics of point: 

   




  F

c

e
pp

dx

d
4

4
,     (4.6) 

where 4  is the fourth Dirac matrix,   corresponds to the particle velocity in fraction of the 

speed of light c , 
  is the Christoffel brackets  
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1
, , 

F is the electromagnetic field tensor. The first term on the right of equation is the force of 

gravity, and the second term is the Lorentz force. 

4.3. Derivation of classical Hamilton-Jacobi equation of motion on the base of  
quantum wave equation 

The Hamilton-Jacobi equation (HJE) in the classic mechanics is usually obtained by 

postulating the action in the form of:  

  extfree SSSS  int ,      (4.7) 

where freeS  is the action of a free particle in the absence of other particles; intS is the action of the 

interaction between the free particle and other particles; extS  is the action of other particles in the 

absence of the  first particle. 

In quantum physics HJE can be obtained, if we postulate that the action is equal to phase of the 

de Broglie wave (as Schrödinger did for the derivation of the Schrödinger equation (Schroedinger, 

1932). 

The particle wave function, in general, has the form: 

  iexp0 ,    (4.8) 

where   is the phase of the wave function. In the case of a free particle the wave function has the 

form:  

  00 exp   rpt
i 


,      (4.9) 

Substituting this function in the equation (4.1), we obtain the law of conservation of energy and 

momentum for a free particle (5.3): 

 
42222 cmpc 


 ,     (1.3) 

In the case of a particle in an external field with the energy and momentum exex p


,  the wave 

function has the form: 

     00 exp   trpp
i

exex




,      (4.10) 

Substituting these functions in the equation (6.3), we obtain the conservation law for a particle 

in an external field (6.4): 

     42222
cmppc exex 


 ,     (3.4) 

According to Schrödinger in case of a free particle we take: 

 0   rptS


  ,     (4.11) 
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and in case of a particle in external field: 

     0  trppS exex


 ,     (4.12) 

Hence we have in the first case for the energy and momentum 




t

S
, p
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, and  in the 

second case  ex
t

S
 




, expp

r

S 
 



.  

Substituting partial derivatives of first type in the conservation law of energy-momentum 

without an external field, we obtain the relativistic HJE without an external field: 
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,     (4.13) 

Substituting second partial derivatives of second type in the conservation law of energy-

momentum with an external field, we obtain the relativistic HJE with the external field:  
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,  (4.14) 

In the case of the electromagnetic field we have:  
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,  (4.15) 

According to GR, the introduction of an external field in the same manner as is the case in EM 

theory, does not give the desired results. The theory of gravitation requires a different method, 

which we will analyze below. 

 

Chapter 7. Geometry and Physic of LIGT and GTR  

1.0. Introduction 

Basic result of this chapter is that the math expression of interval is mutually uniquely 

associated with physical equations of elementary particles and LIGT.  

In addition we will show that in LIGT the metric tensor has the physical meaning of the scale 

factor,  defined by means of the Lorentz-invariant transformations. 

Also the evidences will be given of that the metric tensor in general relativity should have the 

same meaning as in LIGT. 

1.1. Geometry and Physic in the GR 

According to general relativity the gravitational field is described by the metric tensor. 

The practical side of the Einstein-Hilbert theory (Tonnelat, 1965/1966) is following: 

 "All the predictions of general relativity follow from: 1) The solution of the  field equations: 

      TRgR 
2

1
,     (1.1)  

or 

       gumTgggG 


,,, 2  ,   (1.1’) 
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where  RgRG
2

1
 ,  

4

8

c

G
  ,  



















 










xx
R  is the Ricci 

curvature tensor, 
  are the Christoffel symbols, R  is the scalar curvature, N  is Newton's 

gravitational constant, c  is the speed of light in vacuum and T  is the stress–energy tensor. 

 and g  is the metric tensor of Riemannian space, and 

2) The law of motion in form of geodesic equation or the Hamilton-Jacobi equation for a massive 

body (Landau and Lifshitz, 1951): 
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cm
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x

S
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ki

ik ,                (1.2) 

The equation (1.1) allows to determine g  and  to put this value in (1.2). 

Since the metric tensor is contained in the square of interval of Riemannian space: 

   
 dxdxgds 

2
,     (1.3) 

it is often said that the purpose of  solution of  equation (1.1) is to find the interval (1.3). 

The basis for the introduction and use of metric tensor (MT) is the interval (often they are 

identical). Then the question can be reformulated in a different way: how interval and  MT in this 

composition  relates to physics? 

It is often said that interval in STR is a generalization of interval of Euclidean geometry on 

pseudo-Euclidean geometry. In turn, the interval in general relativity is a generalization of interval 

of pseudo-Euclidean geometry on pseudo-Riemannian geometry. But it is easy to make sure, that 

the introduction of interval in STR and GTR is a postulates rather than a logical conclusion. 

Indeed, the intervals in STR and GTR are a generalization of interval of Euclidean geometry, but 

the reason for the introduction of these new intervals is not geometry, but physics: in general 

relativity, it is postulated that, due to the transition to the Riemann geometry, the metric tensor 
g  is a function of the gravitational field - GRg . 

Whether this is  proved by experiment, we do not know because all the experimental 

confirmation of general relativity are obtained for problems in the pseudo-Euclidean metric. 

Another fact also raises the doubt about the necessity of introduction of Riemann's geometry 

into physics. As we know, all theories of physics, except the GTR, are built in a Euclidean space, 

although mathematically, relativistic theories can be constructed in the pseudo-Euclidean space. 

But there is no such theory, which needs the introduction of the Riemann geometry. 

The question is, why is there such a difference and why is the external field in GTR inserted 

through the metric tensor? 

To answer this question, we will try to find out the physical sense of the metric tensor.  

2. Geometry and Physics of LIGT 

Let us consider the connection of interval with physics in the case of the pseudo-Euclidean 

geometry. 

A study of the literature shows that the pseudo-Euclidean coordinates and interval of the four-

dimensional space-time are introduced into physics by analogy with the interval of Euclidean 

geometry (Landau and Lifshitz, 1973) 

―It is frequently useful for reasons of presentation to use a fictitious four-dimensional space, 

on the axes of which are marked three space coordinates and the time‖. 

2.1. Interval and square of 4-distance differential  

In the Euclidean geometry in the simplest case an interval is the distance s  between two points 

on a straight line in space, which is calculated according to the Pythagorean theorem. Since in 

physics trajectories are often curved lines, the Pythagorean theorem in this case is valid only for 
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the infinitelisemal distances. Therefore, an interval is defined here as the square root of the square 

of the distance differential of  three-dimensional space.  

In the pseudo-Euclidean geometry an interval is defined as the square root of the square of the  

distance differential of four-dimensional space-time in form (taking into account the summation 

of Einstein) 

 dxdxds  ,  

where 3 ,2 ,1 ,0  icdtdx 0 . The square of the interval looks like: 

       22222222
)()()()( dzdydxdtcrddticds 


 

Note that currently the imaginary time coordinate is rarely used (although it is by no means a 

mistake and has certain advantages), and the square of the interval is written as: 

       22222222
)()()()( dzdydxdtcrddtcds 


,     (2.1) 

   dxdxds 
2

,     (2.1') 

where 4 ,3 ,2 ,1  , and cdtdx 4 . In addition, the squares of differentials are often written 

without parentheses: 22  , dxds , instead of 22 )(  ,)( dxds , etc .. 

Thus, the use of characteristics of the 3-dimensional space in the case of 4-dimensional space –

time is a postulate, i.e., some chosen mathematical expression, which is necessary for the 

construction of special relativity by Minkowski . It also follows from the fact that in nature the 

length of the arc in the 4- space-time is not measurable. 

Therefore  the question of the physical meaning of the 4-interval arises. Let's try to answer it. 

2.2. Derivation of pseudo-Euclidean interval from the physical equations 

The vectors of the Lorentz-invariant (i.e., relativistic) theories necessarily depend on four 

coordinate: one time coordinate and three space coordinates. Does these theories contain the 

equations, which have a sum of terms, each of which is associated with one of the four 

coordinates, like as in the square of the interval? 

As we know, in the first time such equations in classical electrodynamics appear, and then in 

quantum field theory. The wave equations of these theories include a sum of terms, each of which 

is associated with one of the variables t, x, y, z. It would be logical, to seek the cause and the 

meaning of the appearance of 4-interval in them, instead of introducing them artificially, as did 

Minkowski. 

Recall that our study of motion in the gravitational field is based on an inhomogeneous wave 

equation of the so-called "massive boson", which in mathematical notation is similar to the Klein-

Gordon equation. It is an equation for the two vectors of the electric and magnetic fields.   

From (2.1) we can easily obtain: 
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,   (2.2) 

At the same time interval is associated with proper time  d  by  relation: 

   cddtccds  221 ,    (2.3) 

 

For a free material point the concept of the 4-momentum is introduced:   

  mcup     or   ippp ,0 ,    (2.4) 

where 
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 ;   u  is the 4-velocity.    

From this:       
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2

2

cmp
c

i 


  or   42222 cmpc i  ,    (2.5) 

where the energy and momentum is rewritten for convenience as follows: Lmcp  2

0  , 

  LiLii dtdxmmp     (where 2211 cL    and 221 1 cL    are the Lorentz 

factor and antifactor, respectively). Hence, in the Cartesian coordinate system: 

 22222

2

2

cmppp
c

zyx 


,      (2.5’) 

Since   LiLii dtdxmmp   , a Lmc  2 , this relation can be rewritten as: 

          22222222222 dtcdzdydxdtc LLLL   ,    (2.6) 

Multiplying it by 2

L  , we get: 

          22222222 dzdydxdtcdtc L  ,    (2.7)   

Since (see above (2.2)) we got        22222222 1 dscdtcdtc L    ,  the expression (2.7) 

can be written as square of a 4-interval: 

          222222
dzdydxdtcds  ,    (2.1') 

 

In general case of use in Euclidean space of any other, than the Cartesian, coordinate system 

for recording of the relation (2.5’),  particularly, the orthogonal curvilinear coordinates, this 

interval takes the form: 

   
 dxdxgds 

2
,    (2.8) 

where g  is a so-called metric tensor, whose elements take into account the changes in the 

projections of the segments of the trajectory of the body on the coordinate axes, at the transition 

from the Cartesian coordinate system to any other. In a Cartesian system, all elements g are 

equal to unities. 

Obviously, if we go in the opposite direction, we can obtain the equation (2.5’) from the square 

of the interval. This implies, firstly, that these equations - (2.1) and (2.5’) - closely bind the 

massive elementary particles physics and geometry. Secondly, the equation of "massive photon" 

is derived from Maxwell's equations of a massless photon as a result of his self-interaction of 

fields (chapter 2). 

This non-linearity of a self-acting fields of the ―massive photon‖ does not mean transition from 

Euclidean to some new geometry. From this it follows that (2.1) is not a metric of pseudo-

Euclidean geometry, but it is a metric of Euclidean geometry that describes the Lorentz-invariant 

field equations. The only change in the geometry, which we can observe in this case is the 

transition from rectilinear  to curvilinear geometry. 

In addition, another link between the interval (2.1) and the physical equation  is detected. As 

we have shown in chapters 6, using the Schrödinger definition of action (  xSp  ), from the 

equation (2.5’) it is easy obtain Lorentz-invariant Hamilton-Jacobi equation in general view. For 

this it is enough to write the equation (2.5’) in a form, suitable for any of the Euclidean coordinate 

system: 

 22cmppg 
 ,    (2.9) 

where, we recall, g   is the metric tensor  of geometrical space, but not of the gravitational 

space-time of general relativity (in other words, in this case the tensor g   does not include the 

physical characteristics of the field). In this case the Hamilton-Jacobi equation of free particles 

obtains the form: 
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 ,     (2.10)  

Thus, we conclude that the three equations (2.1) (2.5) and (2.10) are closely bonded to each 

other and, in fact, follow from one differential equation. From this follows that the interval (2.1) 

within a relativistic physics is the physical law, and not a geometric relation. 

 

 3. The physical sense of the metric tensor of curvilinear 
coordinates’ system of the Euclidean geometry 

Recall the transition from Cartesian’s system of coordinates to the generalized coordinate 

system (Korn and Korn, 1968). Let us introduce a new set of coordinates 321 ,, qqq , so that 

among zyx ,,   and 321 ,, qqq   there are some relations: 

              321321321 ,, ,,., ,,., qqqzzqqqyyqqqxx  ,         (3.1) 

The differentials are then  
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 ,                          (3.2) 

and the same for  dy and dz. 

 

In Cartesian coordinates the measure of distance, or metric, in a given coordinate system is the 

arc length ds , which is defined by 

                   
2222 dzdydxds  ,                                             (3.3) 

In general, taking into account (3.2), from (3.3) we obtain 

                 
ij

jiij dqdqgdqdqgdqgds ...2112

2

111

2 ,                 (3.4) 

where ijg   is the metric tensor.  Thus in orthogonal system we can write 

                233
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2 dqHdqHdqHds  ,                    (3.5) 

where the iH ’s  are 
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H ,       (3.6) 

are called Lame coefficients or scale factors, and are 1 for Cartesian coordinates. 

Thus, the metric tensor, recorded in coordinates iq , is a diagonal matrix whose diagonal 

contains the squares of Lame coefficients: 

 

For example, in the case of spherical coordinates, the bond of spherical coordinates with 

Cartesian is given by: 

 ,cos  ,sinsin  ,cossin  rzryrx       (3.7) 

The Lame coefficients in this case are equal to:  sin  ,  ,1 rHrHH r  , and the square of 

the differential of arc (interval) is: 

 
2222222 sin  drdrdrds  ,     (3.8) 

Since the metric tensor is determined by means of Lame coefficients, let us recall the 

geometric meaning of the latter: the Lame coefficients show how many units of length are 
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contained in the unit of length of coordinates of the given point, and used to transform vectors 

when  transition from one system to another takes place. 

This means that the metric tensor in Euclidean geometry defines rescaling of three coordinates 

 ,,r , and in the pseudo-Euclidean or pseudo-Riemannian geometry it determines rescaling of 

four coordinates  ,,,rt . 

As we will show in the following chapter, from the solution of the Kepler problem within 

LIGT, the relativistic corrections within LIGT correspond to changes of scales t  and r , caused 

by the Lorentz-invariant effects (time dilation and Lorentz-Fitzgerald length contraction). In the 

next article, we will show that the same thing occurs in problems of a moving source. Note that 

this is the case for problems of stationary and moving source. 

Thus, we conclude that relationships (1.2) and (1.3) have metric tensor g   as a factor that 

takes into account the change of scales of time and distance due to relativistic effects associated 

with motion of bodies. 

From the foregoing analysis follows that by regular way the interval of a 4-space-time can be 

obtained only for the pseudo-Euclidean space, as a variant of the physical law of motion of 

elementary particles. 

Since there is no other law of motion for massive particles, we can assume that the hypothesis 

of Einstein that the gravitational field is created by the curvature of space-time, which requires a 

transition to a pseudo-Riemannian geometry, needs considerable adjustment. 

 

 

Chapter 8 . The equivalence principle and metric tensor of LIGT  

1.0. Equivalence of inertial and gravitational masses and its 
consequences 

Interpretation of the equivalence of inertial and gravitational masses by Einstein led him to 

assertion that the theory of gravity can not be a Lorentz-invariant theory, but it should be a 

general relativistic theory in a Riemannian – non-flat - space-time. At the same time a 

characteristic feature of the Lorentz-invariant theory is a flat space-time. Can we solve this 

contradiction between our approach and  the approach of general relativity? 

1.1. Is GTR an L-invariant theory? 

It is known that general relativity is considered a relativistic theory, but it is not a L-invariant 

theory (Katanaev, 2013, pp. 742) 

«Lorentz metric satisfies the Einstein’s vacuum equations . [But] "in GTR is postulated that 

space-time metric is not a Lorentz metric, and is found as a solution of Einstein's equations. Thus, 

the space-time is a pseudo-Riemanian manifold with metric of a special type that satisfies the 

Einstein equations." 

The general relativity principle, according to Einstein's hypothesis, should be a generalization 

of the Lorentz-invariance of the special relativity theory. As such principle, Einstein proclaimed 

the requirement of general covariance. As is known, most physicists - see, e.g., Hilbert, Synge, 

1960; Fock, Logunov (Polak, 1959; Fock, 1964; Logunov, 2002) - do not consider the general 

covariance to be equivalent with some type of  relativity, which generalizes the  Lorentz-

invariance. This follows from the fact that any Lorentz-invariant theory can always be written in 

covariant form.  

Thus, the absence of such a generalization makes the Lorentz- invariance a basic requirement 

for any relativistic theory. The real space of such theories is Euclidian (or, conditionally, taking 

into account time, it is pseudo-Euclidian). Obviously, this is also valid for the gravitation theory. 

Hence, the Riemannian space is not a real space, but a mathematical model. Indeed, the assertion 

that the real space is Riemannian is not supported by theory or experiment. 
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Let us analyze the possibility of describing the gravitational interaction without the 

involvement of a Riemannian space. 

 

1.2. Einstein interpretation of the equivalence of inertial and gravitational 
masses in building a theory of gravitation 

Let us see first of all how in modern physics is described the transition of Einstein from 

Euclidean space to Riemann, the starting point of which was the principle of equivalence. 

«Universal gravitation does not fit into the framework of uniform Galilean space. The deepest 

reason for this fact was given by Einstein. It is that not only the inertial mass, but also the 

gravitational mass of a body depends on its energy. It proved possible to base a theory of 

universal gravitation on the idea of abandoning the uniformity of space as a wholef and 

attributing to space only a certain kind of uniformity in the infinitesimal. Mathematically, this 

meant abandoning Euclidean, or rather pseudo-Euclidean, geometry in favour of the geometry of 

Biemann » (Fock, 1964) . 

Is it possible to give a different interpretation of the equivalence of gravitational and inertial 

mass? 

Let us begin with the formulation of the principle of equivalence which Einstein gave himself:   

 ―A little reflection will show that the law of the equality of the inertial and gravitational mass 

is equivalent to the assertion that the acceleration imparted to a body by a gravitational field is 

independent of the nature of the body. For Newton's equation of motion in a gravitational field, 

written out in full, it is: 

(Inertial mass) (Acceleration) (Intensity of the gravitational field) (Gravitational mass). 

It is only when there is numerical equality between the inertial and gravitational mass that the 

acceleration is independent of the nature of the body‖ (Einstein, 2005). 

 

Let us consider the mathematical basis of the principle of Einstein's equivalence and try to give 

this mathematics another form. 

As we can see, Einstein relied on the Newtonian law of motion of a particle with inertial mass 

inm  in a gravitational field of  source with a mass M : 
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  ,    (1.1) 

where grm  is gravitational mass. Since mmm grin  , then dividing (1.1) by m  we obtain in the 

case of gravitation the movement equation of the form: 
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  ,    (1.1') 

where acceleration is on the left and the Newton force per unit mass is on the right. 

It is easy to see that this equation is the mathematical expression of Einstein's abovementioned 

principle of equivalence: the power (ie, action) of  Newton's gravity exerted on the unit mass (i.e., 

local point mass), coincides with the acceleration of the moving body in this field ( i.e., with the 

force of inertia acting per unit mass). 

Our second question was whether it is possible to give another explanation to this principle. 

1.3. Interpretation of the equivalence of inertial and gravitational masses in 
framework of LIGT 

In the GTR we assume  that in the (pseudo-) Euclidean reference frame, ―the noninertial frames 

possessed spatial and temporal inhomogeneities that show up as inertial forces, that depend on the specific 

characteristics of the reference frame. Obviously, the inertial  forces have to have a noticeable effect on the 

physical processes in these reference frames‖ (Vladimirov et al, 1987).  
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In this case, this heterogeneity does not generate the real Riemannian space-time (although, 

following the example of Jacobi, this heterogeneity can be displayed mathematically as a 

Riemannian space).  

Indeed, this heterogeneity can be considered as inhomogeneity of the field in space and time of 

the real Euclidean space and time, but not as heterogeneity of spacetime itself. In accordance with 

this our interpretation of the principle of equivalence is as follows. 

The gravitational field, and not the space and/or time, sets the variable speed of body motion. 

Therefore, if the field depends on space and time, it is not necessary to bind the body velocity 

with time and space; it is enough to relate this speed with field itself.  

Thus, all we need is to describe the action of force on the movement of the body, to find this 

relation between field and speed. 

It appears, that based on the same mathematics, we can actually find this connection. As is 

known, the equation (1.1 ') can be represented in the energy form. For this  let us rewrite the 

Newton's motion law in the form: 

 dtr
r

M
d N

0

2


  ,    (1.2) 

Multiplying the left and right hand side of equation (1.2) on the speed 


, and taking into 

account that dtrd


   and  rdrrd 12 


, we have from (1.2) after integration: 
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2

2

,    (1.3) 

where m 22  is the kinetic energy of the moving particle per unit mass, and 

mrM potN    is the potential energy of a particle per unit mass at a given point of the 

gravitational field. 

Thus, taking into account the postulate of equivalence and the expression for the potential of 

the gravitational field rMNN   , we obtain from (1.1), the relationship between the velocity 

of the particle and  potential of the gravitational field at the position of the particle: 

 constN   22
,    (1.4) 

If at the initial moment a particle was at rest, and the motion is only carried out via the  

potential energy outlay, then during the whole period of motion const = 0. For example, this 

occurs when the reference frame, that is related to the observer, falls freely to the center of gravity 

source along the radius (radial infall) from infinity, where it had a zero velocity. In this case, we 

have: 

 
r

MN
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2
22  ,    (1.5) 

Thus, as a mathematical consequence of Newton's theory of gravity, we have received another 

interpretation of the fact of the equality of inertial and gravitational mass. Following the example 

of Einstein's equivalence principle, it can be expressed as follows: the potential of the 

gravitational field is equivalent to the square of the velocity of the motion of particles in this field. 

In addition, (see chapter 4) the  electromagnetic basis of gravitational equations allows one to 

write the vector potential of the gravitational field through the scalar potential. 

2.0. Peculiarities of metric tensor of LIGT  

As is known, Einstein came to the metric tensor of the pseudo-Riemannian space on the basis 

of  Einstein’s equivalence principle. 

Above we have given a different interpretation of the equivalence of masses. Now we can try 

to obtain an expression for the metric tensor of L-invariant theory of gravitation. 
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As we mentioned (Chapter 7), in differential geometry, the metric tensor elements are equal to 

the squares of the Lame scale coefficients. The Lame coefficients indicate how many units of 

length are contained in the unit coordinates in a given point and are used to transform vectors in 

the transition from one coordinate system to another. 

At the same time, in the framework of GR, these two coordinate systems represent basically 

two dissimilar geometric coordinate systems from a number of well-known rectangular, oblique, 

or any other coordinates. 

In contrast, in the L-invariant transformation is examined the transition between two identical 

from geometric point of view, coordinate systems, which are attached to two reference frames 

moving relative to each other. Moreover, it was found that a simultaneously this transition 

requires to take into account the transformation of time. 

It is clear that geometric transformation may not affect the final results of the solution of 

physical problems. In our case it is about physical transformation of trajectory and time of the 

particle motion. We proved this by showing that the square of the arc element (interval) in this 

case is a consequence of the well-known relation between the energy, momentum and mass of the 

moving particle. Thus, these changes are purely physical.  They contribute to the correction of 

physical problems non-relativistic physics. 

However, conditionally this interval can be seen as a geometric object that generates a pseudo-

Euclidean geometry, which has in addition to three spatial coordinates, one time coordinate (as it 

is done in 4-Minkowski’s geometry). From this geometrical point of view, coordinates and time 

undergo the change of the scales.  These changes can be considered, along with changes of 

coordinates that take place during the transition between two different coordinate systems. But we 

should not forget that from the physical point of view it is a completely different transformations 

and changes of scales. 

3.0. Calculation of metric tensor of LIGT 

The linear arc element in the 3-dimensional mechanics is expressed through Lame's scale 

factors in the form of linear elements: 

 332211
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,    (3.1) 

where  321 ,, xxxrxi 


, 3 ,2 ,1i . . In a Cartesian coordinate system   zyxrxi ,,


, and 

all the Lame coefficients equal to one. 

In the L-invariant mechanics it is impossible to enter the line element of the arc since the 

physical equation, from which follows the magnitude of the arc, connects the squares of the 

energy, momentum and mass, and not the first degrees of these values. The exact expression is 

obtained in the form of the square of length of arc element, which is often referred to simply as an 

interval. In the 4-geometry it is of the form: 
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 ,     (3.2) 

or, taking into account that   hh , we receive from (3.2)  the form: 
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,    (3.2') 

where      ii xxxictrictx ,,, 0


 3 ,2 ,1 ,0 ,   is metric tensor in LIGT. 

3.1. The Lorentz-Fitzgerald length contraction and time dilation as a change of 
the scales of coordinates of space and time in LIGT 

Using the definition of the metric tensor in LITG given above, let us calculate it in the simplest 

case. Consider (Pauli, 1958) Lorentz transformation in the transition from the coordinate system K 
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to K', which is currently moving at a speed   along the axis x . In this case only the coordinate x  

and time t  undergo transformations.  

The Lorentz effects of length contraction and time dilation are the simplest consequences of 

the Lorentz transformation formulae, and thus also of the two basic assumptions of SRT. 
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  ,    (3.3) 

The transformation which is the inverse of (1) can be obtained by replacing   by   : 

 
221

''

c

tx
x








 , 'yy  , 'zz  , 

22

2

1

''

c

x
c

t

t








  ,    (3.3a)  

Take a rod lying along the x-axis, at rest in reference system K  . The position coordinates of 

its ends, 1x  and 2x  are thus independent of  t  and 012 lxx   is the rest lengtl of the rod. On 

the other hand, we might determine the  length of the rod in system K' in the following way. We 

find 1x  and 2x  as functions of  t . Then the distance between the two points which coincide 

simultaneously with the end points of the rod in system K  will be called the length l  of the rod in 

the moving system:     ltxtx  12  

Since these positions are not taken up simultaneously in system K  , it cannot be expected that 

l  equals 0l . In fact, it follows from (3.3) : 
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for infinitesimal time intervals of length dx  has form 
221 c
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From here the scaling factor of the Lorentz transformation of coordinates (denote it as 
L

xk ) 

will be equal to:  
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,    (3.4) 

where 2211 cL   is  the Lorentz factor. 

The corresponding element xx  of the metric tensor of the Lorentz transformation will be: 

  2''
Lxx

dx

dx

dx

dx
  ,    (3.5) 

The rod is therefore contracted in the ratio 1:1 22 c , as was already assumed by Lorentz.  

It therefore follows that the Lorentz contraction is not a property of a single measuring rod taken 

by itself, but is a reciprocal relation between two such rods moving relatively to each other, and 

this relation is in principle observable. 

Analogously, the time scale is changed by the motion. Let us again consider a clock which is 

at rest in K  . The time t  which it indicates in x  is its proper time,   and we can put its 

coordinate x' equal to zero. It then follows from (3.3a) that  
221 c

t





 , which for 

infinitesimal time intervals dt  give:  
221 c

td
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From here the scaling factor of the Lorentz transformation of time (denote it as L

tk ) will be 

equal to:  

 1221 


 L

L

t c
dt

td
k  ,    (3.6) 

The corresponding element xx  of the metric tensor of the Lorentz transformation will be: 

   2'' 
 Ltt

dt

dt

dt

dt
 ,      (3.7) 

Measured in the time scale of K, therefore, a clock moving with velocity   will lag behind one 

at rest in K  in the ratio 1:1 22 c . While this consequence' of the Lorentz transformation 

was already implicitly contained in Lorentz's and Poincare's results, it received its first clear 

statement only by Einstein. 

Then, in framework of  LITG the square interval will be as follows: 
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,  (3.8) 

where   is  the geometric metric tensor in LIGT (tensor of pseudo-Euclidian space);   is the 

physical metric tensor in LIGT. Using the values  tt 00  and xx 11 , according to (3.5) and 

(3.7), we obtain in the Cartesian system of coordinates: 

              2222222
 dzdydxdtds LL 


 ,     (3.9) 

4.0. Relation between Lorentz factor and characteristics of the 
Newton gravitational field  

The main characteristic of the Lorentz transformation is the Lorentz factor L : 

211  L (where c


 ), which is determined by the speed of motion of the body 

 tr ,


  . The vector of speed of the particle motion can be considered as its main component, 

by which its trajectory, acceleration and some other quantities are determined. 

On the base of our interpretation of the principle of equivalence of mass, we found relation 

between field and speed. 

In the case of Newton's theory, probably the first, that found this relationship was E.A.Milne 

(Milne, 1934). Later, independently, and from an other primary bases, this was also done by 

Arnold Sommerfeld assistant - Wilhelm Lenz. He took advantage of this connection to find a 

solution to the Kepler problem, which coincides with the results of the Schwarzschild-Droste 

solution of  Einstein-Hilbert equation (Sommerfeld, 1952). Below we will expand this 

relationship to the case of the Lorentz-invariant mechanics, to obtain the next approximations in 

the form of a power series. 

Using (1.5) it is easy to find an expression for the Lorentz-factor due to the gravitational field 

of Newton:  
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where 
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S


  is the,  so-called, Schwarzschild radius. 

Taking into account (4.1) it is easy to see that (3.9) corresponds to the Schwarzschild-Droste 

solution: 
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,    (4.2) 

5.0. Relation among the Lorentz factor and characteristics of the 
gravitational field, taking into account the Lorentz-invariant 
generalization of mechanics 

Within the framework of the Lorentz-invariant theory, the particle mass is a function of velocity 

and position in the field:  


,rmm  , and the kinetic energy   is entered by the following 

expression: 
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0  LLf cmcmcmcm  ,      (5.1) 

where c  is the speed of light, 0m  means the particle rest mass, and f  is full energy of particle.  

Since c , the expressions, containing  , can be expanded to Maclaurin series (we take here 

into account only 4 terms): 
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Thus we can obtain for energy and momentum the following expressions:  
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At 1  we obtain from (5.7)-(5.9) as first approximation the non-relativistic expressions: 
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According to Newton's theory of gravity, the potential energy of a particle is equal to 

rMmm NNN 00   . A change of the speed of the particle is accompanied by a change in its 

kinetic energy (5.1): 
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In the case of sufficiently small velocities, we obtain a first approximation, 

2' 2  NN rM  or; 
2'22   NN rM , from where: 
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where 22 cMr NS   is called the gravitational radius of the body of mass M (Schwarzschild 

radius).. Using the following term of the expansion in (5.7) it is possible to clarify the relation 

between N  and Sr   to obtain a second approximation: 
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,    (5.9) 

6.0. Calculation of gravitation field potentials 

Thus, according to our results, it is sufficient to calculate the gravitational field of the potentials  

to be able to enter the L-invariant amendments to the gravitational theory of Newton. 

In particular, for the calculation of the metric tensor elements of LIGT we use the potential  of 

the Newtonian gravitation theory N . It is remarkable that this non-relativistic potential gives the 

relativistic corrections to the solution of the Kepler problem. 

Since LITG is based on electromagnetic theory, this calculation is not difficult. We only briefly 

recall the results of this approach, adequately set out in the chapter 5. 

As we have seen, the Maxwell-Lorentz equations can be written in potentials in the form of 

equations of the electromagnetic field propagation. Using ArotB
t

A

c
gradE










    ,

1
 , in the 

case of  the Lorentz condition 0
1





 A

tс


, we have: 
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From a mathematical point of view,  these equations are the  d'Alembert non-homogeneous 

equation. Its solution is known (see chapter 5, equation (2.16)). Additionally, it turns out that the 

vector potential associates with the scalar potential by expression: 

 
c

A





 ,      (6.3)  

In this case, the main characteristics of the electromagnetic vector field are the scalar and 

vector potentials   and A


, respectively, or  the 4-potential 







 A

c
A


,


 . ( 


u

c
A

2
 , where 

 ddxu   is  4-speed   , dx  is 4-movement ,   is the proper time of the particle). 

If the system contains a set of particles, each of which generates its own potential, then the 

potentials   and A


 of the system of particles depend mainly on the 

general system parameters – the dimensions of the system, the total charge, etc. It is very 

important that the calculation of the system potential is defined by the superposition principle, 

i.e., by summation of the potentials of all the particles. Thus we can determine all the main 

characteristics of the system’s electromagneticfield with the help of the 4-potential. 

But before we will find the 4- potential of the system, we need to determine the potentials 

of a single particle. As it is known, it is the centrally symmetric potential of Newton that 

defines the field of a point particle. As we have seen (see chapter 5), the calculation of the 

potential of a system of point sources - i.e., of a body with known charge density   requires the 

integration of the potential of al l particles over the volume of the body. 
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Turning to gravitation, it can be expected that in the relativistic theory of gravity, along with 

the scalar potential g  there should be also a vector potential 
gA


. There is also no doubt that the 

relationship (6.3) is valid in the case of the gravitational field. General relativity confirms this, and  

a great achievement for GR was to demonstrate this characteristic.  

Thus, the solutions of equations (6.1) and (6.2) allow us to calculate both Lorentz factor and 

relativistic amendments to Newton's theory of gravitation. 

Summary 

As we have shown (Chapter 7), the square of the interval, which in SRT and GTR is 

considered as a geometry object, in the physics of elementary particles and within LIGT is a 

mathematical notation of the Lorentz-invariant energy-momentum conservation law. 

That is why the Lorentz transformation can be found formally as a group of transformations 

preserving invariant the squared interval. 

In the generalized system of coordinates this quadratic form contains the metric tensor, in 

which elements take into account the change of the coordinate scale in the transition from one 

coordinate system to another, differing in the geometrical sense. 

In the presence of a gravitational field this quadratic form contains a metric tensor, in which 

the amendment of changing the scale of coordinates derived due to the effects of the Lorentz 

transformation at the transition from the moving to stationary system or vice versa, is taken into 

account. But for all that, these coordinate systems are the same in terms of geometry.  

As we have shown, this tensor is identical to the one obtained from the solution of equations of 

general relativity. Thus there is no need to interpret this interval as belonging to a Riemann space. 

It may be written in any (including rectangular) coordinate system.  

 

 

Chapter 9. Solution of the Kepler problem in the framework 
of LIGT 

In present chapter, based on results of previous Chapter 8 , we consider the solution of the 

Kepler problem, i.e., the solution of the problem of motion of a body  of little mass in a centrally 

symmetric gravitational field of a stationary source of great mass. It is shown that this solution 

coincides with that obtained in GR. 

As the motion equation of LITG we use the Hamilton-Jacobi equation (Chapter 6 ). According 

to Chapter 6  , the equation of motion of Hamilton-Jacobi has a one-to-one connection with the 

square of the interval (square of arc element of trajectory) in framework of LITG. Therefore, as 

we will show below, it is not necessarily to find an appropriate interval to write the corresponding 

Hamilton-Jacobi equation for particle motion in gravitation field. 

1.0. Effects of Lorentz transformation  

A consequence of the previously adopted axiomatics (chapter 3) of  Lorentz-invariant 

gravitation theory (LIGT) is the assertion that all features of the motion of matter in the 

gravitational field owed their origin to effects associated with the Lorentz transformations. This 

means that the amendments to Newton's gravitation theory must follow from considering of these 

effects.  

Effects, that owe their existence to the Lorentz transformations are discussed in many 

textbooks devoted to the EM theory or SRT (Pauli, 1981; Becker, 2013; et al.). 
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1.1. The transition from Newtonian mechanics to the Lorentz-invariant 
mechanics  

Let us try (Becker, 2013)   to alter the Newtonian equations so that they satisfy the Lorentz 

transformations. We begin by considering the motion of a particle in a given force field (e.g., 

electromagnetic or gravitational). Newtonian equations of motion read as follows: 

 LF
dt

d
m






,    (1.1)   

where LF


 is, e.g., the Lorentz force :  

 H
c

q
EqFL


  ,   (1.2) 

Now we will try to give this equation the Lorentz-invariant form. Obviously, the Lorentz-

invariant version of the equation (1.1) instead of the classical time t  must contain the proper time 

t
~

: 

 LF
td

d
m



~


,    (1.1')   

In order to find this version of the equation, we replace in (1.1') its proper time in line with the 

ratio for the Lorentz time dilation 21
~

 dttd  on 21 dt : 

 H
c

q
Eq

dt

d
m










2

0

1
,    (1.3) 

As is known, the equation (1.3) is the Lorentz-invariant equation of motion of a charged 

particle in an EM field. 

Below we will consistently apply this method to obtain the relativistic equations of gravitation 

in the form of Hamilton-Jacobi equations.  

2.0. Solution of the Kepler problem in the framework of LIGT 

Two of the most important effects from the point of view of mechanics that arise due to the 

Lorentz transformations, are the Lorentzian time dilation and contraction of lengths:  

 21
~

 dttd ,   
21

~




dr
rd ,    (2.1) 

where, as shown previously, rrS2 , and  Sr  is the Schwarzschild radius. 

The free particle motion is described by the Hamilton-Jacobi equation (Landau and Lifshitz, 

1971): 
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,    (2.2) 

In a spherical coordinate system (taking into account both relativistic effects) it takes the form: 
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,    (2.3) 

where t
~

  and r~   are measured in a fixed coordinate system associated with a stationary spherical 

mass M .  

We will start with the account of the first effect 



  

                                                    46 

 46 

2.1. The equation of motion of a particle in a gravitational field, taking into 
account the relativistic effect of time dilation 

Taking into account that the motion of a particle around the source occurs in the plane, we 

define this plane by condition 2  . In this case, the equation (2.3) takes the form: 
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 ,    (2.4) 

Taking into account only the transformation of time 21
~

 dttd , equation (2.4) can be 

rewritten as follows: 
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Substituting  rrs 11 2 , we obtain: 
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Let us simplify this equation, taking into account the expansion   nxxxx  ...111 2
  

for  1x . Since for the actual sizes of the planets and Sun and the distances between them, 

value 1rrs , we can be limited by first two terms of the expansion. At the same time 

rr
rr

s

s




1
1

1
, and the equation (2.4) takes the form: 
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We will show that L-invariant time dilation leads to the appearance of Newton's gravitational 

field. 

2.1.1 Newton’s  approximation 

Let us present  this equation to the non-relativistic mind, using the transformation 

tmcSS 2'  (Landau and Lifshits, 1971): 
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Substituting this in (7), we find 

42

2

2

2

2422

2
1''

2
'

1 cm
S

rr

S
ccm

t

S
mc

t

S

r

rs 


































































.  

Expanding the brackets, we obtain: 
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Dividing this equation by 22mc , we find: 
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Taking into account that 
2

2

c

M
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 , we obtain Um
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1
, where U  is 

the energy of the gravitational field in the Newtonian theory. In the non-relativistic case we put 

c . Furthermore, for real distances r  of the body movement around source with 

Schwarzschild radius sr , we have  1
r

rs  and  
t

S

t

S
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rs








 ''
, and then   we can ignore the term 

t
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 . 

In the limit as c , equation (2.8) goes over into the classical Hamilton-Jacobi equation for 

Newton gravitation field: 
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,     (2.9) 

As is known, the solution of this problem leads to a closed elliptical (not precession) satellite 

orbit around the spherical central body. 

From this it follows that the inclusion only of Lorentz time dilation into the free Hamilton-

Jacobi equation leads  to the Kepler problem in non-relativistic theory of gravitation.  

Note also that equation (2.9) is a consequence of  the L-invariant HJE with the Newton 

potential field:  
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Thus, the equations (2.6), (2.9) and (2.10) are equivalent from point of view of their results. 

2.2. The equation of motion of a particle in a gravitational field with the Lorentz 
time dilation and length contraction 

Now in order to take into account the length contraction effect along with the effect of time 

dilation, we will use the Hamilton-Jacobi equation (2.3) in form: 
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Substituting in (2.11)  not only  21
~

 dttd , but also 21~  drrd , we  obtain: 
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,   (2.12) 

Taking into account that in our theory rrs 11 2 , we obtain from (2.12) the well-known 

Hamilton-Jacobi equation for general relativity in the case of the Schwarzschild-Droste metric 

(Schwarzschild, 1916; Droste, 1917): 
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We found above that the term 

2
'

1
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 t
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rrs

(which contains the Lorentz time dilation effect) 

in the classical approximation leads to the equation of  motion with Newton's gravitational energy. 



  

                                                    48 

 48 

From this it follows that the precession of the orbit ensure the introduction of an additional term 
2

2 1 





















r

S

r

r
c s .  

As is known, the Kepler problem solution, based on this equation, gives an additional term in 

the energy, which is missing in Newton's theory: 
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 ,    (2.14) 

which is responsible for the precession of the orbit of a body, rotating around a spherically 

symmetric stationary center. From the above analysis it follows that the appearance of this term is 

provided by Lorentz effect of the length contraction. 

As is well known (Landau and Lifshitz, 1971), the solutions of this equation disclose three 

well-known effects of general relativity, well confirmed by experiment: the precession of 

Mercury's orbit, the curvature of the trajectory of a ray of light in the gravitational field of a 

centrally symmetric source and the gravitational frequency shift of EM waves. 

 

 

Chapter 10 . The solution of non-cosmological problems in 
framework of LIGT 

 

In this chapter in the framework of LIGT we consider the problems arising in the description 

of the test particle motion in a gravitational field not only of a stationary source, but also of a 

moving source. We will show that the solution for the moving body is connected with the solution 

for the fixed body on the basis of the Lorentz transformations. 

We have seen that in the framework of LITG, as well as in GR, the metric tensor defines the 

calculation of relativistic amendments. The distinction between GR and LITG lies in the 

difference of metric tensors in the first and the second cases. 

Here, we will use the Lenz approach for obtaining the corresponding square of the interval, 

which is  also convenient for solution of other tasks of the gravitation theory within the 

framework LITG. 

Assume that only one compact spherically symmetric mass exists in the Universe and that 

space-time is asymptotically characterized (at the spatial infinity) by the pseudo-Euclidean metric 

(the square of infinitesimal interval):  

    



 xxHHdsdsds 

2
 ,   (1.1)  

where 3,2,1,0,  , H  are the Lamé coefficients or scale factors (conditionally accepting  here 

cH 0 , where c  is velocity of light),  and  gHH   ( the summation is done over , ). 

In spherical coordinates it can be given as 

        22222222
sin'  drdrrdcdtds 


,     (1.2) 

 It is easier to operate on linear differential forms (linear element of interval) rather than on 

separate components of square of interval. These are defined as 

         
 xHds    ,   (1.3)  

In our case 

  drdsrddsdrdscdtds sin'  ,'  ,'  ,' 3210  ,    (1.4) 
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so that for a distant observer, the coordinates   , , , rt  have the sense of standard spherical 

coordinates (and can for instance be measured by standard methods). 

1.1. The Lenz solution of the Kepler problem  

It turns out that it is sufficient to take into account the two Lorentz effects: time dilation and 

lengthening distances. We present the W. Lenz slution, following literally to A. Somerfield, who 

published it in his book (Sommerfeld, 1952)  

 ―We will show, that this equivalence principle suffices for the elementary calculation of the 

g  in a specific case (on the basis of an unpublished paper of W. Lenz, 1944). 

Consider a centrally symmetric gravitational field, e.g. that of the sun, of mass M, which may 

be regarded as at rest. Let a reference frame (box) 'K  fall in a radial  direction toward M. Since it 

falls freely, 'K  is not aware of gravitation (as the consequence of the equivalence principle, i.e., 

inertgrav mm  ) and therefore carries continuously with itself the Euclidean metric valid at infinity 

 . Let the coordinates measured within it be x  (longitudinal, i.e. in the direction of motion), y  

, z  (transversal), and t . 'K  arrives at the distance r  from the sun with the velocity  .   and 

r are to be measured in the reference frame K of the sun, which is subject to gravitation. In it we 

use as coordinates ,,r , and t . Between 'K  and K  there exist the relations of the special 

Lorentz transformation, where 'K  plays the role of the system ―moving" with the velocity 

c  , K  that of the system "at rest".  

Since the time and space scales are essentially the basis for the frame relative to which the 

measurements are done the freely falling basis carried by the observer from infinity is related to 

the basis of reference frame (the one the observer passes at a given instant) 8S follows: 

     2

0 1'  dtds  (Lorentz dilatation),    (1.5) 
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ds  (Lorentz contraction),   (1.5’) 
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Hence the Euclidean world line element  
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passes over into  
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2

2
2222 sin

1
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 ddr

dr
dtcds 


 ,    (1.7) 

The factor  21  , which occurs here twice, is meaningful so far only in connection with our 

specific box experiment. In order to determine its meaning in the system of the sun we write down 

the energy equation for K , as interpreted by an observer on K . Let m  be the mass of 'K , 0m  its 

rest mass . The equation then is:  

    02

0 
r

mM
cmm N  ,    (1.8) 

At the left we have the sum of the kinetic energy and of the (negative) potential energy of 

gravitation, i.e.. Т + V = 0. The energy constant on the right was to be put equal to zero since at 

infinity     0mm     and r . We have computed the potential energy from the Newtonian 

law, which we shall consider as a first approximation. We divide (1.8) by 2mc  and obtain then, 

since 2

0 1 mm :  
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where   is the Einstein constant.  It follows from (1.9)  that  
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11,11 22   ,    (1.10)  

From (1.7) we have:  
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  ,    (1.11) 

This is the line element derived by K. Schwarzschild  from the GTR equation. In Eddington's 

presentation the 40 components 
  of the gravitational field are computed and (1.11) is shown to 

be the exact solution of the ten equations contained in the GTR equation. For the single point 

mass it is completely described by the four coefficients  of the line element (1.11) and the 

vanishing of the remaining g ‖.  

The difference between the Lenz approach and GTR is that in the first is not used the 

hypothesis about geometrical origin of gravitation.  

Perhaps the only book, in which the authors, to obtain the results of GTR, have used  the Lenz 

approach, is the review of the problems of gravitation in book (Vladimirov et al, 1987) 

In this book, along with the Schwarzschild solution, by means of  Lenz method are obtained 

the solutions of Lense-Thirring and Kerr for the metric around a rotating body, and  solutions of 

Reissner-Nordstrom and Kerr-Newman, when this source has an electric charge.  

These solutions we will present below. To begin with it is worth discussing some general 

properties of rotation (Vladimirov et al, 1987). 

1.2. Gravitational fields around rotating source 

In order to describe the rotation of a rigid body an angular velocity   is introduced in addition 

to the conventional (linear) velocity V of a point of the body, because the angular velocity is 

constant for a rigid rotation, whereas the linear velocity of any point of the body is proportional to 

the distance between the point and the axis of rotation.  

The relationship between angular and linear velocities in cylindrical coordinates is 

 V ,    (1.12)  

and in spherical coordinates (here  sinr ). 

 sinrV  ,    (1.13)  

However, a body can rotate not as a rigid one (for example, Jupiter's atmosphere rotates with 

different angular velocities at different latitudes as a result having different periods of rotation). 

The rotation period is related to angular velocity thus:  2T . Hence the angular velocity 

may depend on position (coordinates) of point. 

A reference frame may be rotating, too; though a rigid body rotation is even less natural for 

such a system than a rotation with different angular velocities at different points. Also, if a 

reference frame extended to infinity could rotate as a rigid body, that is, with a constant angular 

velocity  , then a linear velocity at a finite distance from its axis (on a cylinder  c ) would 

reach the velocity of light c , and outside of this "light cylinder" would surpass it. Obviously, this 

kind of reference frame is impossible to simulate for any material bodies, therefore, the angular 

velocity of any realistic reference frame must change with distance from the axis. The slowdown 

must not be less than inversely proportional to that distance. But there should be a domain, well 

within the light cylinder, where the reference frame would rotate as a rigid body. 
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A rotating physical body possesses an angular momentum L  as a conserved characteristic, 

which in certain respects is related to energy and momentum, which are also subject to the 

conservation laws.  

In Newton's theory, mass (or energy, divided by the velocity of light squared)  is the source of 

a gravitational field, while linear and angular momenta have no such a role. In the GR, however, a 

gravitational field is generated by a combination of distributions of energy, and linear and angular 

momenta, and the stress, too. Let us examine, e.g., the angular momentum of an infinitely thin 

ring (which, however, has a finite mass), rotating around its axis. This angular momentum is a 

vector which is directed along the axis of rotation and has an absolute value of  

  IRMVRML rr

2  ,     (1.14) 

where rM  is the mass of the ring, V  is its linear velocity,   is its angular velocity, R  is the 

radius of the ring and 2RMI r  is moment of inertia. 

 

1.2.1. The satellite motion around rotational Earth 

In the real case, we have to evaluate the effect of rotation of the Earth to the satellite and to 

show that it is associated with the angular moment of the Earth. 

Here we will use the work of R. Forward (Forward, 1961), who, following to the work of 

Moeller (Moeller, 1952), presented an analogy between electromagnetism and gravitation,  which 

allows calculation of various gravitational forces by considering the equivalent electromagnetic 

problem. 

When the analogy is carried out and all the constants are evaluated, we obtain an isomorphism 

between the gravitational and the electromagnetic quantities. 

First we need to know the gravi-rotational field of the earth. From Smythe (Smythe, 1950) we 

find an expression for the external magnetic field produced by a ring current i  at a latitude     

on a spherical shell of radius R . By transforming the magnetic quantities in gravitational 

quantities, we obtain an expression for the gravi-rotational field of a rotating massive ring with 

mass current mi : 
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Since it is assumed that superposition is valid, we can construct the gravi-rotational field of a 

solid spinning body by integrating over the volume: 
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Since sinr  is the distance from the axis of rotation to the mass element, we see that the 

integral is merely the moment of inertia I  of the body (Earth). Thus, in general the rotational 

field of any rotation body is approximately: 
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Similarly, it can be show that: 
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But the Forward approach does not allow to compare the results of his calculation with metrics 

Lense-Thirring and Kerr. That is why we will try to obtain a metric which describes the 

gravitational field around the rotating ring using a technique like the above W. Lenz technique 

(Vladimirov et all, 1987).  
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1.3. The Lense-Thirring metrics in framework of  LIGT 

To account for rotation effects (Vladimirov et al, 1987) using the equivalence principle, we 

start from a rotating reference frame (it rotates not as a rigid body, but so that at large distances the 

effect of the rotation weakens; the nature of the frame rotation will be examined at the final stage 

of this analysis). In this rotating frame, we let a box with an observer (test particle) fall towards 

the gravitating centre and in the box we take into account the slowing-down of the clock and the 

contraction of the scales in the direction of the fall. Assume that the box falls radially in the 

rotating frame. Then, we shall get back to the initial, non-rotating reference frame and consider 

the result.  

We begin with the Euclidean space-time in which we introduce spherical coordinates in a non-

rotating frame; we assume the basis is, thus relative to it the flat space-time metric will be 

        22222222
sin)('  drdrrdcdtds 


,       (1.15) 

A transition to a non-uniformly rotating reference frame is done by locally applying Lorentz 

transformations so that every point has its own speed of motion directed towards an increasing 

angle  . The absolute value of this velocity is a function V  which depends, generally speaking, 

on the coordinates r  and :   ,rVV  .  

Such a local Lorentz transformation is not equivalent to the transformation of the coordinates 

in the domain studied (in practice this domain is the whole of space) but is limited only to the 

transformation of the basis at each point.  

Thus, we have: 
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,       (1.16) 

Since the motion is assumed to be slow, we will henceforth ignore the value 22 cV in 

comparison with unity. 

Now let the box with the observer be released from infinity. In this case we can write a new 

basis in which time has slowed down, and the lengths in radial direction have shortened. This is 

equivalent to the substitution of the 0'ds  in (1.5) by the basis linear elements from (1.16) 
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    (1.17) 

Thus, we have assumed that the observer makes his measurements in the rotating frame and 

notices the relativistic changes in his observations. (We can not neglect by the value of 
22 c  in 

comparison with unity; see the derivation of the Schwarzschild metric). 

Now let us do the reverse transformation to the non-rotating reference frame by applying 

Lorentz transformations (inverse to (1.16))  to the basis (1.17): 
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,      (1.18) 

We now insert into (1.18) the  ''ds  basis, which is expressed in terms of the sd~  from 

(1.17), and then write this expression in terms of the 'ds  from (1.16), after a few manipulations, 

we obtain:  
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The principle of correspondence with Newton’s theory gives rM sN 22  .  

It remains to clear out the dependence V  from r and . On the one hand, according to 

equation (1.13), sinrV  . However, it is clear that the reference frame can not rotate as a 

solid body. Therefore, the angular velocity   must be a function of the point. Since the reason for 

the existence of this velocity is eventually the rotation of central mass, we can assume that it 

decreases in all directions away from the center. For a rough estimate, it can be assumed that   

depends only on r . Then from (1.14) : 

   2 RRML r ,   (1.20) 

 (because the ring lies in a plane 2  ). If we now require that the field does not depend on 

the choice of the radius of the ring, but only on its angular momentum, it is natural to take for a 

function   the expression 

   2 rML r ,   (1.21)  

Let us introduce the notation for "parameter Kerr" rMLa  ,  so that 
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The substitution of the values V  and expression for 
22 c  into the formula (1.19) finally 

gives the metric of Lense-Thirring: 
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 ,  (1.23)   
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 is gravitational radius,   sM  is a mass of central body (a field source), sMLa   

represents the angular momentum of the source per unit mass; more precisely stated, it is the 

projection of the angular momentum three-vector on the direction of the rotation axis, divided by 

the mass). 

The obtained metric is the approximate metric in the sense that the dimensionless quantities   

rckm 2  and rca    are considered as small values of first order, and we have neglected their 

higher degrees. But at the beginning, for simplicity we have made the assumption about a 

coordinate system  as the normal spherical coordinate system, which is, of course, not suitable for 

a rotating body because its gravitational field should have the symmetry of an oblate spheroid. 

1.4. The Kerr metric in framework of LIGT 

Now (Vladimirov et al, 1987), let us try to obtain a metric which describes the gravitational 

field around the rotating ring using a technique like the one we used above for the Lense-Thirring 

metric.  

To do this, at first we must pass to the ellipsoidal coordinates, and secondly, use Newtonian 

potential source (ring). If in accordance with what has been said we minimally modify the 

formula (1.22) without discarding any terms (of the type 
22 cV  in (1.18), we can directly come 

to the exact Kerr metric. 

 

We will begin with  (1.16):  
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and then pass to (1.17) 

 

3322

22

11

22

00

~''  ,~''

  ,1~''  ,1~''

sddssdds

csddscsdds



 
,     (1.17)  

Thus, we have assumed that the observer makes his measurements in the rotating frame and 

notices the relativistic changes in his observations. Now let us do the reverse transformation to the 

nonrotating reference frame by applying Lorentz transformations (inverse to (1.16)) to the basis 

(1.17): 
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,     (1.24)    

We now insert into (1.24) the basis ''ds , which is expressed in terms of the sd~  from (1.17), 

and then write this expression in terms of the 'ds  from (1.16). We postulate, as we did 

previously, that the resulting basis  (1.24) remains orthonormalized. A few manipulations yield:  
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,   (1.25)  

Here the Newton's potential N  represents a solution of the Laplace equation, though under 

the new symmetry, that is rotational and not spherical. Therefore it is now worth considering 

oblate spheroidal coordinates in flat space. These coordinates,  ,  , and   are defined as 
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We know that   01  r  when 0r , and this equality holds under any translation of 

coordinates. Let this translation be purely imaginary and directed along the z axis, i.e., 

,, yyxx   and ciazz  . Then we easily find that  

   cos2
21222 iaciaczarccr  . From here the expression for Newton's potential 

follows, 
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since the Laplace equation is satisfied simultaneously by both the real and imaginary parts of the 

potential. Hence we can get with the help of  NsN rM  222  :  
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We determine the velocity V  using a model of rotating ring of some radius 0  for the source 

of the Kerr field, this ring being stationary relative to the rotating reference frame (1.17).  

 

On the one hand,      sin 
212222122  cayxV  corresponds to the relation 

(1.13) . On the other hand, it is clear that the reference frame cannot rotate as a rigid body, 

otherwise the frame wouldn''t be extensible beyond the light cylinder as we dropped our box from 

infinity. Therefore the angular velocity   has also to be a function of position.  

The ring lies naturally in the equatorial plane, so that its angular momentum is 
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We now introduce an important hypothesis which establishes a connection between the 

angular momentum and the Kerr parameter a, which is also a characteristic for spheroidal 

coordinates (1.26), namely we put sMLa  . These last three statements yield 

    22

0

22

0 2   , acac    

If we now add a second hypothesis, that the field is independent of the choice of the ring radius 

(depending only on its angular momentum), then naturally we can get for  : 

       2222 acac    

and finally    

        sin
21222 

 accaV ,    (1.29) 

It only remains for us to choose the expression for a basis 'ds   which would correspond to the 

assumed rotational symmetry (i.e., to the oblique spheroidal coordinates). We may substitute the 

coordinates yx, and z  from (1.26) into the pseudo-Euclidean squared interval, 
22222 dzdydxcdtds  , hence getting a quadratic form with a non-diagonal term. This 

term, which contains dd , can be excluded by a simple change of the azimuth angle: 

   daccadd
1222 

  thus leading to a diagonal quadratic form. If now the square 

roots of the separate summands are taken, we get the final form of the initial basis  'ds : 
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,    (1.30) 

A mere substitution of these expressions into (1.25) yields the standard form of the Kerr metric 

in terms of the Boyer-Lindquist coordinates, 
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,    (1.31) 

where we have introduced the notation  

 
22 arrr s  ,   2222 cosar  ,  SMLa  ,    (1.32)  

The resulting metric is a solution of Einstein's gravitational field equations, and the method 

does give some hint as to how to understand the Kerr metric and its sources, and it lets us look at 

the structure of the latter. 
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If we assume in the calculations that   1
2
cV , thus dropping the corresponding terms in 

(1.16) and (1.24). This is the assumption of slow rotation (more exactly, of the smallness of L , 

the angular momentum of the source) and it leads to  raV sin  instead of (1.29). Thus instead 

of the Kerr metric (1.31) we will get the approximate the Lense-Thirring metric: 
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(we have written in it r instead of   and taken into account the approximate sense of the 

expressions). 

1.5. The Reissner-Nordstroem metric in framework of LIGT 

Besides the Schwarzschild (non-rotating) and Kerr (rotating) black holes, which have no 

electric charge, we also have exact solutions of Einstein's equations when the source has an 

electric charge. These solutions are referred to as the Reissner-Nordstroem and Kerr-Newman 

metrics.. 

The Reissner-Nordstrem and Kerr-Newman black holes are mostly of academic interest, but 

they are important for the theory. 

The Reissner-Nordstroem metric can be "derived" (Vladimirov et al, 1987) using the same 

technique we used for the Schwarzschild metric. The only difference between the two is that the 

Newtonian potential for a point mass should be replaced by a solution of the Poisson equation for 

a distributed source, 

 mNN  4 ,     (1.33)   

The point mass remains at the origin and yields the same potential ( rmN ), but the 

electrostatic source has a trick of its own. In Newton's theory, the m on the right-hand side of 

equation  (1.33) is usually interpreted as the density of mass (or energy, since from special 

relativity mass and energy are equivalent). That was the case, however, only for non-relativistic 

matter, whereas an electromagnetic, or even an electrostatic field is always relativistic though it 

might appear at rest. It can be rigorously shown that for such a field we have to take instead of 
2cm  double the energy density 

 
28 cwNN   ,    (1.34) 

The density of the energy of a Coulomb electrostatic field (i.e. of  2rqE  ) is 

 
42 8 rqw  ,    (1.35) 

and the Laplace operator   in a spherically symmetric case (when   ,NN  ) takes the 

form 
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Bearing this in mind, we have, as a complete solution of equation  (1.34), the Newtonian 

potential 

 
222 2 rcqrm NNN   ,   (1.37)  

which enters the 00-component of the metric tensor in the form: 

 
2222

00 2121 rcqrmcg NNN   ,   (1.38) 

 Hence, by doing exactly what we did in above sections, we finally obtain the Reissner-

Nordstroem field in the form: 
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Thus, within the framework of the non-geometric gravitational theory - LITG – we have 

obtained in framework of LIGT all the exact non-cosmological solutions of the equations of GR, 

which were verified experimentally. The objective of our next chapter will be to receive in 

framework of LIGT the cosmological solutions of the equations of  GR. 

 

 

Chapter 11 . The cosmological solutions in the framework 
of LIGT 

1.0 Cosmological solutions of GR 

All solutions of the equations of General Relativity concerning the movement of single 

massive bodies relative to each other (planets, stars, etc.) and which are tested experimentally, 

were obtained by us within the framework of LIGT in the previous chapters. 

In addition to non-cosmological solutions exist solutions that are interpreted as cosmological, 

that is, related to the entire Universe.  

At the moment, as a tested solution is considered the solution, obtained by means of the 

postulates of the homogeneity and anisotropy of Universe, jointly with the results of general 

relativity and thermodynamics. 

The question of the legality of such description of the Universe that contains, along with an 

almost infinite number of stars, planets and smaller bodies also an almost infinite number of other 

objects (microwave cosmic background, gases, dust, supernovae, neutron and many other types of 

stars, different types of galaxies and so forth.), will be left outside the limits of this chapter. Also, 

we will not consider the contribution of electromagnetic field (in particular, its lower state - 

physical vacuum) and elementary particles, although their presence in the universe is primary. 

Thus, according to the  Hans Alfven theory (Alfven, 1942; Alfven and Arrhenius, 1976) (for 

which he received the Nobel Prize), electric and magnetic fields play a crucial role in the 

formation of the solar and other star systems. 

Let us only note that direct experimental proofs of correctness of cosmological postulates and 

solutions do not exist (Baryshev, 1995). However, under the current cosmological paradigm are 

accepted interpretations of observational data, which was recognized as confirmation of 

abovementioned solutions.  

2.0. Formulation of the problem in LIGT 

It is obvious that if we want to fully confirm the equivalence of general relativity and LIGT, it 

seems necessary to obtain the corresponding cosmological solution in framework of LIGT. The 

present article will be dedicated to this subject. At the same time, our paper bears a feature which 

the Chapter 10  also bore.  We have practically no need to present this solution since it has long 

been known, and is even taken into consideration at the pedagogical level. 

The basis upon which the solution of Friedman is built (Dullemond et al . 2011, Ch. 4) are the 

two postulates mentioned above about the state of the universe. Besides that, it was proven by 

Robertson and Walker that the only one choice of metric exists, that satisfies these postulates. 

Basic cosmological solutions of general relativity (for three types of curvature of space-time 

Universe) were obtained by Friedman (1922). Their derivation is reported in numerous textbooks, 

lectures and monographs; See, for example.  (Bogorodsky, 1971; Dullemond et al. 2011, Ch. 4.). 
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2.2. The Robertson-Walker Universe metric in framework of LIGT 

Since Newton's equation is a first approximation of the equations of gravitation LIGT, you can 

expect that the results of Friedman's (at least to a first approximation) can be derived from 

Newton's theory of gravitation. 

Such solutions were indeed found in 1934 (Milne, 1934;  McCrea and Milne, 1934). 

Moreover, it appears that these solutions are the same as the solutions of Fridman. Later they were 

refined (Milne, 1948; Krogdahl, 2004). 

―A Lorentz-invariant cosmology based on E. A. Milne’s Kinematic Relativity is shown to be 

capable of describing and accounting for all relativistic features of a world model without space-

time curvature. It further implies the non-existence of black holes and the cosmological constant. 

The controversy over the value of the Hubble constant is resolved as is the recent conclusion that 

the universe’s expansion is accelerating. ―Dark matter‖ and ―dark energy‖ are possibly 

identified and accounted for as well‖ (Krogdahl, 2004). 

A modern formulation of this solution in Russian can be found, for example, in the 

presentation of the expert in the field of general relativity, academician Ya.B.Zeldovich; see 

Appendix I to the book (Weinberg, 2000), p. 190, titled ―The classical non-relativistic 

cosmology‖ , who note here: 

―All the calculations could have been made not only in the nineteenth century, but also in the 

eighteenth century‖. 

The lecture 2 from the modern cosmology course ((Dullemond et al. 2011, Ch. 2) is dedicated 

to this subject. 

 

 

Chapter 12. Quantization of gravitation theory 

Numerous attempts to quantize general relativity, which are continued for almost a century, 

have not led to a positive result.In GR the quantization is only possible in the linearized theory, 

for example, in the form of GEM. But there are also some difficulties. 

Is there a quantum LITG and, if so, how to build it? 

2.0. Statement of the problem within LITG 

―Instead of imagining space-time as being warped by mass and energy, one can speak of a 

classical spin-2 graviton field in flat space-time that generates gravitation. Although we don't 

know yet how to quantize this field, we can think of it in a way similar to how we think of 

electromagnetism being mediated by photons. And just as a 1/r
2
 Coulomb force generates 

magnetism when the finite speed of the mediating photon is taken into account, a 1/r
2
 Newtonian 

gravitational force generates "gravito-magnetism" when the finite speed of the mediating graviton 

is taken into account. Magnetism is  fundamentally an electric-force effect, and gravity must have 

some analogous "magnetic" force, meaning a gravitational force proportional and perpendicular 

to the velocity of a test mass. Einstein showed that gravity should be non-linear, so we know that 

the graviton should self-interact. General relativity also implies that the graviton should be spin 

2. The self-interaction and spin-2 bring us all the way to the EM equivalent of general relativity. 

But it may be that in most of the Universe (barring black holes, supernovae, et cetera), all you 

really need to know about gravitation is the electromagnetic-analogue (Forrester, 2010). 

3.0. Quantization of LIGT 

In LIGT the problem of quantization of gravity is set differently than in the GR. We will show 

below that the quantization of LIGT is possible in principle, but does not have a sense, because in 

this case the classical equations of gravity coincide with the quantum ones, similar to what occurs 

in the quantum theory of electromagnetic field. This is facilitated by the fact that within LIGT 

gravity is the residual EM field. 
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Recall that, according to GR, the source (charge) of the gravitational field is the mass/energy. 

Its peculiarity lies in the fact that it has almost a sufficiently strong field only if its value is much 

larger than the mass/energy of the elementary particles (let's call this gravitational charge 

"effective"). Therefore, because of its value, it can be difficult to characterize by means of  the 

quantum parameters of an elementary particle. 

In addition, gravitational charge may have angular momentum (let us say, spin), but its 

quantization also does not make sense because of the magnitude of the effective charge. 

Therefore, from this point of view, we can not attribute the gravitational charge either to bosons or 

to fermions. At the same time it has the property of bosons: the superposition of individual 

masses-energies is possible and creates a new gravitational charge as the sum of mass-energy. In 

addition, as part of the GEM the gravitational radiation field is considered  as composed of bosons 

- gravitons: particles with spin 2. 

If we leave aside the value of the spin of the graviton, all this corresponds to the consequences 

of LIGT. Since we can conditionally say that the basis of LIGT is EM theory of the "massive 

photon" (see chapter 2), then we can assume that it can be the basis of the quantum theory of 

gravity. To some extent this is true. But such a theory is almost meaningless because of the size of 

the effective gravitational charge.  

However, these quantum equations can be used because they coincide with the classical ones 

(as is the case for all bosons). This means that, having  classical equations of gravity, we are, in 

fact, already using quantum equations of gravity: 

―…in the situation in which we can have very many particles in exactly the same state, there is 

possible a new physical interpretation of the wave functions. The charge density and the electric 

current can be calculated directly from the wave functions and the wave functions take on a 

physical meaning which extends into classical, macroscopic situations. 

Something similar can happen with neutral particles. When we have the wave function of a 

single photon, it is the amplitude to find a photon somewhere… There is an equation for the 

photon wave function analogous to the Schrödinger equation for the electron. The photon 

equation is just the same as Maxwell's equations for the electromagnetic field, and the wave 

function is the same as the vector potential A. The wave function turns out to be just the vector 

potential. The quantum physics is the same thing as the classical physics because photons are 

noninteracting Bose particles and many of them can be in the same state — as you know, they like 

to be in the same state. The moment that you have billions in the same state (that is, in the same 

electromagnetic wave), you can measure the wave function, which is the vector potential, directly.  

Now the trouble with the electron is that you cannot put more than one in the same state‖ 

(Feynman, Leighton and Sands, 1964). 

 

According to our approach, the words of Feynman in bold, can be attributed to gravitation after 

some adjustments: 

"The graviton equation is just the same as Maxwell's equations for the gravitation field " 

Therefore, it is obvious that the quantization of gravity has no practical value. 

 In general relativity the existence of the graviton and the value of its spin is uncertainty, since 

the quantum GR does not exist. If we will consider the linear approximation of GR (e.g., GEM) as 

reliable enough, then, because the graviton is a boson, it makes no sense to speak about its spin; in 

this case it is enough to speak about the classical gravitational waves. 

From a formal point of view we can accept the existence of the graviton in LITG. Moreover, it 

can be assumed that the graviton should have spin 2, not 1 as a photon, since neutral waves can 

only be radiated by a system of quadrupole gravitational charges (see. Ivanenko and Sokolov, 

1949). But, as we know, it does not make sense to quantize all the waves. In particular, the 

quantization of low-energy (long) EM waves does not make sense. The energy of gravitational 

waves in many orders of magnitude is lower, than of EM waves. As it is impossible to prove the 

existence of the graviton experimentally, it hardly makes any sense to discuss further.  
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(Note that, as we know, (Akhiezer and Berestetskii. 1965; Fermi, 1950; 1951), equally with the 

wave function of the electromagnetic field in the form of the vector potential, the wave function in 

form of the vectors of the EM field can be used, as this is accepted in NQFT). 

Closing notes 

This concludes our presentation of LIGT itself. It would be interesting to analyze the question 

of whether the Hilbert-Einstein's general relativity has some advantages over non-geometrical 

approach, besides the fascinating mathematical interpretation that goes beyond the usual physics. 

Some thoughts on this matter will be set out in independent articles. 
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