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Abstract

The Stirling thermodynamic heat engine cycle is modified, where instead of an ideal gas,

a real, monatomic working fluid is used, with the engine designed so that the isothermal

compression starts off as a saturated gas, and ends as a mixed-phase fluid. This cycle takes

advantage of the attractive intermolecular Van der Waals forces of the working fluid to assist

in compressing the working fluid partially into a liquid, reducing the input compression work

and increasing the overall heat engine efficiency to exceed that of the Carnot efficiency.
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1. Introduction

From well before recorded human history, man has quested for different sources of energy

for survival and comfort. Today, the need for useful energy plays a role in almost all

aspects of society. Certainly, there is a benefit to having an efficient source of mechanical

energy. When designing an engine, heat pump, or other thermodynamic cycle, one can

not get around the laws of thermodynamics. Prevalent is the first law, which stipulates

the conservation of energy; no energy can be created or destroyed. The second law is

a result of the fact that heat can only flow from hot to cold, and not cold to hot; as

a result, heat transfer processes ultimately result in thermodynamic disorder known as

entropy throughout the universe. These two natural limitations have to be recognized in

the design of a thermodynamic machine to achieve a net mechanical work output.

Under dense, pressurized conditions, a fluid ceases to become an ideal gas, and becomes

a real gas following its equation of state. At a certain point, the intermolecular attractive

forces of the fluid causes the gas to condense to a liquid, where these forces are too much

for the kinetic energy of the fluid molecules to overcome, and the particles converge into a

more ordered liquid state. During condensation, the fluid exists at two distinct phases at

a constant temperature and pressure until it is a single consistent phase. As the pressure

is constant with reduced volume during condensation, the intermolecular forces will reduce

the work input during condensation from a saturated gas to a mixed-phase fluid.

The author proposes a closed-loop, internally reversible, piston-cylinder heat engine,

not dissimilar to the Stirling cycle. Rather than use an ideal gas, this cycle uses a real

fluid that partially condenses during the isothermal compression stage of the cycle. The

isothermal compression phase starts off as a saturated gas, and compresses isothermally

at the cool temperature until a percentage of the gas has condensed. It then is heated to

the hot temperature isochorically, at a temperature greater than the critical temperature.

Afterwards, it expands isothermally back to the original saturated gas volume, recovering

energy in the process. Finally, the gas is cooled isochorically back to the original stage

pressure and temperature, where it is a saturated gas.

The engine takes advantage of the fluid’s intermolecular Van der Waals attractive forces

that enable the fluid to condense into a liquid. The impact of these forces is profound during

condensation when the fluid is stable as two distinct phases of liquid and gas, as described by

Maxwell’s Construction. These forces keep the pressure consistent throughout condensation,
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rather than increasing and decreasing with reduced volume as would be described during the

equation of state; this ultimately results in less work input to compress the gas isothermally,

and thus greater efficiency of the heat engine.

2. Theory of the Heat Engine

This heat engine is a modification of the Stirling cycle, a heat engine cycle of isothermal

compression at the cold temperature sink, followed by isochoric heating up to the high

temperature source, followed by isothermal expansion at the high temperature back to the

original volume, and ending with isochoric cooling back to the original cold temperature and

low pressure. The original Stirling cycle operated under the assumption that the working

fluid was constantly an ideal gas, where the equation of state is

P ·v = R·T, (1)

where P (Pa) is the pressure, v (m3/kg) is the specific volume, T (K) is the absolute

temperature, and R (J/kg·K) is the specific gas constant, where

R =
Ru

Mm
, (2)

where Mm (kg/M) is the molar mass, and Ru is the universal gas constant (8.314 J/M·K)

defined as

Ru = A·κ, (3)

where A is Avogadro’s Number 6.02214·1023, and κ is Boltzman’s Constant 1.38·10−23

(J/K).

The novel aspect of this engine is that it does not use an ideal gas as the working fluid,

but a real fluid that is subjected to condensation and evaporation. The hot temperature

of the engine is above the critical temperature Tc (K), whereas the cold temperature of the

engine is below the critical temperature, but above the triple point temperature Ttp (K).

The working fluid is a saturated gas at the initial, low temperature, high volume stage of

the engine cycle. The working fluid partially condenses during the isothermal compression,

which ends when the working fluid is a liquid-gas mixture. The working fluid is then heated

isochorically to the hot temperature, upon which there is isothermal expansion back to the

original stage volume, and where mechanical work is recovered. Finally, the working fluid
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undergoes isochoric cooling back to a saturated gas at the cool temperature, and the cycle

repeats itself.

The famous Van der Waals (VDW) equation of state for a real gas is defined as

(P +
a

v2
)·(v − b) = R·T, (4)

where a and b are the gas specifics VDW constants, where

a =
27·R2·Tc2

64·Pc
= 3·v2c ·Pc, (5)

b =
R·Tc
8·Pc

=
vc
3
,

where Pc (Pa), Tc (K), and vc (m3/kg) are the critical pressure, temperature, and specific

volume, where the first and second derivative of the pressure over volume are zero,

(
∂P

∂v
)
T

= (
∂2P

∂v2
)
T

= 0,

and at temperatures greater than Tc, gas is the only possible phase of the fluid. If the

specific volume is significantly greater than the critical specific volume (v >> vc), then

a

v2
≈ 0,

v − b ≈ v,

and thus the VDW equation 4 becomes the ideal gas equation 1.

The critical pressure, temperature, and volume are material-specific, and are determined

experimentally. The dimensionless reduced pressure PR, temperature TR, and volume vR

are dimensionless ratios of the pressure, temperature, and volume over the critical values

PR =
P

Pc
, (6)

TR =
T

Tc
,

vR =
v

vc
.

The VDW equation of state can be reduced to its dimensionless state, defined as

(PR +
3

vR2
)·(vR −

1

3
) =

8

3
·TR, (7)

and equation 7 can be used for an arbitrary fluid.
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One limitation of the VDW equation of state is that it cannot be used to represent

the change in the fluid from liquid to gas. Following the VDW equation of state, for a

constant temperature (Figure 1), the pressure will increase with decreasing volume, but

decreasing in the rate of increase until eventually (Figure 1-C) the pressure will decrease

with decreasing volume, until it reaches an inflection point (Figure 1-D), and eventually

the decreasing pressure stops (Figure 1-E), and the pressure increases dramatically with

decreasing volume; this fluid is a liquid at this point. It is physically impossible for a stable

pressure decrease with decreasing volume, and this is not observed experimentally. Once the

gas is compressed isothermally to the point it is saturated, further isothermal compression

will maintain a constant pressure, and the fluid will exist as two stable states of liquid and

gas. The internal energy u (J/kg), enthalpy h (J/kg), entropy s (J/kg·K), and specific

volume v (m3/kg) are proportional to the quality of the liquid

u = (1− χ)·uliquid + χ·ugas, (8)

h = (1− χ)·hliquid + χ·hgas,

s = (1− χ)·sliquid + χ·sgas,

v = (1− χ)·vliquid + χ·vgas,

where χ is the quality, the mass ratio of the gas in the mixture

χ =
massgas

massliquid +massgas
.

This sudden change in the equation of state at the point of phase change from liquid to

gas is explained with Maxwell’s Construction (Figure 1). For two phases of a fluid to remain

stable together, the Gibbs Free energy G (J/kg) remains constant for both the liquid and

gas state of the fluid. The Gibbs Free energy is defined as

G = u+ P ·v − T ·s, (9)

= A+ P ·v,

= h− T ·s,

where A (J/kg) is the Helmholtz free energy. Another feature of Maxwell’s Construction is

that the total work applied

W =

∫
P ·dv, (10)
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from the liquid to gas phase equals the value of the VDW equation of state,∫ vgas

vliquid

PV DW ·dv = PR·(vgas − vliquid),

where PV DW (Pa) is the pressure found with the VDW equation of state

PV DW =
R·T

(v − b)
− a

v2
, (11)

and the reduced pressure following the VDW equation of state is simply

PR,V DW =
8·TR

(3·vR − 1)
− 3

vR2
. (12)

The values of PR, vgas, and vliquid are determined numerically, and some reduced examples

are given in Table 1.

TR PR vR,gas vR,x vR,liquid

0.70 0.2461 6.0000 1.4528 0.4662
0.75 0.2825 5.6430 1.2814 0.4897
0.80 0.3834 4.1724 1.2083 0.5175
0.85 0.5045 3.1277 1.1454 0.5535
0.90 0.6470 2.3488 1.0904 0.6034
0.95 0.8119 1.7271 1.0426 0.6841
0.99 0.9605 1.2429 1.0083 0.8309

1 1 1 1 1

Table 1: Table of reduced pressures PR and specific volumes vR as a function of reduced
temperature TR. The reduced specific volume vR,x is the reduced volume where the reduced
VDW pressure is equal to PR.

The reduced pressure-volume diagram for this heat engine has been generated in Figure

2 for a cold reduced temperature sink of TR = 0.8 and a hot reduced temperature source of

TR = 1.1. If the VDW equation of state were constantly applicable, the thin line would be

the lower-temperature isotherm, and the total net work of the heat engine would be equal

to the area of area A. Due to Maxwell’s Construction, however, the pressure is constant

when the fluid is two phases, and thus the total work output is equal to the summation of

area A and B.

Many of the derivations of traditionally used thermodynamic equations are operating

under the assumption that the fluid is an ideal gas. An ideal gas was used to derive the

efficiency of the Carnot engine, and the entropy increase during heat transfer

δs =
Q

T
, (13)
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as well as the derivation of the specific internal energy

uideal = (
1

2
+ f)R·T , (14)

where f is the number of degrees of freedom of the gas particles (f = 1 for monatomic gases,

f = 2 for diatomic gases). Additionally, the assumption of equation 13 is used to predict

the internal energy change

δu = CV ·dT + {T ·(∂P
∂T

)
V
− P}·dv, (15)

which can be used when the equation of state is known. It can be easily derived from

equation 15 that for isothermal ideal gas compression or expansion, there is no change in

internal energy or enthalpy δu = δh = 0.

For this real gas bounded by the VDW equation of state and Maxwell’s Construction,

these assumptions are not valid; attempts to apply them result in an imbalance in the

internal energy after completion of the internally reversible cycle. In any internally reversible

cycle the summation of all of the changes in internal energy must be zero,

δu∗12 + δu∗23 + δu∗34 + δu∗41 = 0.

In the Stirling Heat Engine Cycle, according to equation 15, assuming the constant volume

specific heat CV remains constant (the assumption that CV is a constant is only realistic

for ideal gases), the isochoric heating and cooling balance

δu∗23 = CV ·(TH − TL),

δu∗41 = CV ·(TL − TH).

If the VDW equation of state defined in equation 11 is plugged into equation 15 for isother-

mal expansion, the change in internal energy is thus

δu∗34 =
a

v3
− a

v4
.

If the fluid remained a constant phase, the isothermal compression would balance out per-

fectly with the isothermal expansion

δu∗12 =
a

v1
− a

v2
,

=
a

v4
− a

v3
,

= −δu∗34,
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and thus for a constant phase, equation 15 will balance out for the Stirling Cycle with a

real gas following the VDW equation of state.

If there is condensation during the isothermal compression, however, equation 15 will

not balance out. The change in internal energy is defined in equation 8, where

δuMC
12 = ul +

v2 − vl
vg − vl

·(ug − ul),

where vl is the saturated liquid specific volume, and vg is the saturated gas specific volume,

both for the temperature T1 = T2. As the cycle starts at a saturated gas, v1 = vg and

u1 = ug. The specific internal energy of a saturated liquid that follows the VDW equation

of state is defined as

ul = ug +
a

vg
− a

vl
.

If the isothermal compression were to conclude at a mixed phase fluid, where vl < v2 < v1,

then due to Maxwell’s Construction, the specific internal energy will always be less than

the internal energy change for a constant-phase fluid δu∗12 > δuMC
12 ; this is represented in

Figure 3.

To get around this limit, the kinetic theory of gas will be used to determine the internal

energy of the fluid. For a monatomic gas (f = 1), the pressure P (Pa) of a gas is proportional

to the average velocity of each gas particle

P =
2

3
·N ·Ekinetic

V
, (16)

=
2

3·v
·u,

where N is the total number of particles, Ekinetic (J) is the average kinetic energy of each

gas particle, V (m3) and v (m3/kg) is the volume and specific volume, and u (J/kg) is the

specific internal energy. The internal energy U (J), by definition, is related to the average

kinetic energy of the gas

U = N ·Ekinetic,

and the specific internal energy u (J/kg) is simply the total internal energy U divided by the

mass. To derive equation 14 to find the specific internal energy of an ideal gas, equation 16

is plugged into the ideal gas equation 1. As this heat engine does not deal with ideal gases,
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but with real gases that follow the VDW equation of state, the specific internal energy is

derived by plugging in the definition of P from equation 11 into equation 16,

u =
3

2
·{ R·T ·v

(v − b)
− a

v
}, (17)

=
3

2
·P ·v.

The specific heat at a constant volume can thus be easily found as

CV =
3

2
·{ R·v

(v − b)
}. (18)

If one wants to work in terms of dimensionless reduced values, the reduced internal

energy, defined as

uR =
u

Pc·vc
, (19)

can be found with a reduced version of equation 17

uR =
3

2
·{ 8·TR·vR

3·vR − 1
− 3

vR
} (20)

=
3

2
·PR·vR.

The reduced specific heat at a constant volume is simply the reduced temperature derivative

of equation 20

CV,R =
3

2
·{ 8·vR

3·vR − 1
}. (21)

3. Normalized Heat Engine Cycle

A demonstration was conducted of the condensing Stirling cycle heat engine demon-

strated in Figure 2, with a low reduced temperature of TR = 0.8 and a high reduced

temperature of TR = 1.1. The working fluid is assumed to be monatomic (f = 1), such

as Helium, Neon, Argon, Krypton, Xenon, or Radon. According to Table 1, for a reduced

temperature of TR = 0.8, the saturated liquid and gas have a reduced volume of 0.5175

and 4.1724, respectively; the reduced pressure is 0.38336. If Maxwell’s Construction did

not apply, and the VDW equation of state was consistent, a reduced volume of 1.2083 at a

quality of 0.1890 would yield the same reduced pressure of 0.38336.

The condensing Stirling cycle heat engine is a moving boundary cycle, as seen in a piston-

cylinder system. At Stage 1 and Stage 4, the piston is at Bottom Dead Center (BDC), and
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the reduced volumes are the saturated gas reduced volume (vR = 4.1724); whereas Stage

2 and Stage 3, the piston is at Top Dead Center (TDC), and the reduced volume is the

equivalent volume when the VDW pressure equals the reduced pressure (vR = 1.2083).

The reduced temperatures at Stage 1 and 2 are low (TR = 0.8), whereas at Stage 3 and 4

the reduced temperatures are high (TR = 1.1). The reduced pressures PR are found with

equation 12, whereas the reduced internal energy uR was found with equation 20. The

results of the cycle are in Table 2.

Stage PR TR vR uR hR
1 0.38336 0.8 4.1724 2.3993 3.9989
2 0.38336 0.8 1.2083 0.6936 1.1568
3 1.2977 1.1 1.2083 2.352 3.92
4 0.59175 1.1 4.1724 3.7035 6.1725

Table 2: The reduced pressure PR, reduced temperature TR, reduced volume vR, reduced
internal energy uR, and reduced enthalpy hR data values of the condensing Stirling cycle
heat engine demonstrated in Figure 2, with a low reduced temperature of TR = 0.8 and a
high reduced temperature of TR = 1.1.

With the change of each stage in this cycle, there is some heat exchanged with the

ambient universe, as well as a work applied when there is a moving boundary. The first law

of thermodynamics states that energy can not be created or destroyed, and that the change

in internal energy equals the heat and work input into the working fluid,

δuij = Qij −Wij , (22)

where δuij (J/kg) is the change in internal energy, Qij (J/kg) is the heat transfered, and

Wij (J/kg) is the work applied across the boundary, from stage i to j. As the pressure is

constant during the isothermal compression with partial condensation, the reduced work

input from Stage 1 to 2 is simply

WR,12 = PR·(vR,gas − vR,x),

= 0.38336·(4.1724− 1.2083) = 1.1363,

where reduced work is defined as the work W (J/kg) divided by the product of the critical

pressure and critical temperature, similar to equation 19

WR =
W

Pc·vc
. (23)
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The reduced work applied across the boundary during isothermal expansion can be found

by integrating the VDW pressure, defined in equation 12, plugged into equation 10,

WR,34 =

∫ vR4

vR3

{ 8·TR
(3·vR − 1)

− 3

vR2
}dvR,

= {8

3
·TR·log(vR −

1

3
) +

3

vR
}vR4
vR3

,

= −2.5740.

The change in reduced internal energy is found by taking the difference in internal energy

at each stage, determined with equation 20. Finally, the value of the heat transfered during

each stage is found with the first law of thermodynamics equation 22. These results are

tabulated in Table 3. It can be noted that the summation of the heat and work changes is

equal to zero, as this is an internally reversible cycle.

Stage 12 23 34 41
Q -2.8420 1.6584 3.9255 -1.3042
W 1.1363 0 -2.5740 0

Table 3: Heat and work changes between each stage during the condensing Stirling cyle
heat engine demonstrated in Figure 2, with a low reduced temperature of TR = 0.8 and a
high reduced temperature of TR = 1.1. The summation of the heat and work changes in
this table is equal to zero.

What is interesting about this engine cycle is the entropy change of the universe (Table

4) for each phase of the cycle, when entropy is determined with equation 13, which was

determined for the ideal Carnot cycle, which assumes an ideal gas equation of state (equation

1). For the isothermal compression and expansion stages, these are easily determined

δs12 = −Q12

T12
=

2.8420

0.8
= 3.5526,

δs34 = −Q34

T34
= −3.9255

1.1
= −3.5686.

The reduced constant specifc heat of a constant volume is determined with equation 21

CV,41 =
3

2
·{ 8·vR,gas

3·vR,gas − 1
} =

3

2
·( 8·4.1724

3·4.1724− 1
) = 4.3473,

and CV,41 can be used to find the equivalent entropy change out of the universe during stage

41,

δs41 = −
∫ T1

T4

CV ·dT
T

= CV ·log(
T4
T1

) = 4.3473·log(
1.1

0.8
) = 1.3844.

11



Because of Maxwell’s Construction, the entropy change during stage 2-3 had to be deter-

mined numerically until the fluid was a single-phase super-heated gas. At each subsequent

reduced temperature increment, the saturated liquid and gas reduced volumes are found

numerically with Maxwell’s Construction, the quality is determined as the volume is held

constant during the heating, and then the cumulative internal energy is found as the sum-

mation of the liquid and gas reduced internal energies (equation 8). The gas becomes

super-heated after TR = 0.9930, and then the reduced internal energy increase is found the

same way as δs41. The change in entropy is determined by finding the change in internal

energy for each temperature increment, and dividing by the reduced temperature. When

heating a two-phase fluid from TR = 0.8 to a super-critical gas at TR = 1.1 at a constant

reduced volume of vR = 1.2083, the entropy increase is demonstrated in Figure 4, and the

total reduced entropy increase is δs23 = 1.7487.

S12 S23 S34 S41 Snet
3.5526 -1.7487 -3.5686 1.3844 -0.3803

Table 4: The change in reduced entropy to the universe, calculated with equation 13, for
each stage of the condensing Stirling cycle heat engine demonstrated in Figure 2, with a low
reduced temperature of TR = 0.8 and a high reduced temperature of TR = 1.1. The entropy
in Stage 23 cannot be calculated analytically; it was solved numerically, and the reduced
entropy increase as a function of reduced temperature can be found in Figure 4.

In ideal heat transfer, where the difference in temperature is kept to a minimum, the

summation of the entropy changes out of the known universe

−(δs12 + δs23 + δs34 + δs41)R = δsnet

3.5526− 1.7487− 3.5686 + 1.3844 = −0.3803.

is observed to be negative. This phenomenon is observed for real gases; when the specific

volume is expanded significantly (reducing the influence of intermolecular attractive forces)

to simulate ideal gases, the net-total entropy goes to zero. This phenomenon can be observed

by the fact that the heat engine efficiency, assuming perfect regeneration between isochoric

heating and cooling,

η =
Wnet

Qin
, (24)

=
W12 +W34

Q34 +Q23 −Q41
= 0.3359,
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exceeds the ideal-gas Carnot efficiency,

ηC = 1− TL
TH

, (25)

= 1− 0.8

1.1
= 0.2727,

This reduction in ideal-gas entropy is increased due to Maxwell’s Construction and mixed-

phase condensation; the reduced pressure and work input to compress the gas results in less

heat transfer out and thus less entropy generated to the surrounding universe. Of course,

this does not encompass the real losses, as heat transfer has to have a temperature gradient,

and there is some irreversible loss from friction. Nevertheless, under ideal conditions, the

condensing Stirling cycle heat engine demonstrated in Figure 2, with a low reduced tem-

perature of TR = 0.8 and a high reduced temperature of TR = 1.1, can have a theoretical

reduction in total entropy within the universe; all the while heat transfer flows consistently

from hot to cold, consistent with the second law of thermodynamics.

4. Conclusions

The first law of thermodynamics, described in equation 22, is consistently observed, as

energy can never be created or destroyed (disregarding relativistic physics). The second law

of thermodynamics has multiple definitions, but at its most fundamental level the second

law can be ascribed as the fact that heat can only flow from hot to cold, thus increasing the

overall disorder during heat transfer. The fact that in a natural process heat transfer only

flows from hot to cold has consistently been observed, and is therefore a fundamental law

of nature.

How can this condensing Stirling cycle heat engine be reconciled with the second law of

thermodynamics? This can be explained by the fact that the reduction in overall entropy

is only observed near the point of condensation, when the intermolecular attractive VDW

forces are profound due to the fluid molecules being in close proximity. During the isothermal

compression, these intermolecular forces pull the gas molecules together, in effect generating

order with less work input by the boundary piston. By removing the intermolecular force

component a from the equation of state, which effectively happens when the specific volume

is increased and the fluid becomes an ideal gas, there is no reduction in net entropy. For

this reason, this condensing Stirling cycle heat engine can have a theoretical thermodynamic
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efficiency greater than the Carnot efficiency, and reduce the net overall entropy in the

universe without violating the first and the second law of thermodynamics.
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Figure 1: The labile Van der Waal isotherm (solid line), and the stable Maxwell’s Construc-
tion (thick dashed curve), for a reduced temperature TR = 0.90. The thin line represents
the phase change as determined with Maxwell’s construction for a reduced VDW equation
of state.
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Figure 2: The Pv diagram of this modified Stirling cycle heat engine, for a low reduced
temperature of TR = 0.8, and a high reduced temperature of TR = 1.1. The thin line
represents the phase change as determined with Maxwell’s construction for a reduced VDW
equation of state.
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Figure 3: The comparison of the change in reduced specific internal energy during isothermal
compression from a saturated gas to a saturated liquid, following equation 15, at a reduced
temperature of TR = 0.8.
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Figure 4: The entropy increase, determined numerically, from heating the mixed phase fluid
at a reduced temperature of TR = 0.8 and a quality χ = 0.1890, to a super-critical gas at
a reduced temperature of TR = 1.1. The diamond marker points out the point, determined
to be at TR = 0.9930, when the fluid is entirely a super-heated gas, before it becomes
super-critical past TR = 1. The total reduced entropy is δsR = 1.7487 at TR = 1.1.
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