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Line-Surface Formulation of the
Electromagnetic-Power-based Characteristic
Mode Theory for Metal-Material Combined

Objects

Renzun Lian

Abstract—An ElectroMagnetic-Power-based Characteristic
Mode Theory (CMT) for Metal-Material combined objects
(MM-EMP-CMT) was built by expressing the various
electromagnetic powers as the functions of the line current on
metal line, the surface current on metal surface, the surface
current on the boundary of metal volume, and the total field in
material volume, so it can be simply called as the
Line-Surface-Volume formulation for the MM-EMP-CMT
(LSV-MM-EMP-CMT). As a companion to the
LSV-MM-EMP-CMT, a Line-Surface formulation for the
MM-EMP-CMT (LS-MM-EMP-CMT) is established in this paper
by expressing the various powers as the functions of the line and
surface currents on metal part and the surface equivalent current
on the boundary of material part.

The physical essence of LS-MM-EMP-CMT is the same as
LSV-MM-EMP-CMT, i.e., to construct the various power-based
Characteristic Mode (CM) sets for metal-material combined
objects, but the LS-MM-EMP-CMT is more advantageous than
the LSV-MM-EMP-CMT in some aspects. For example, the
former saves computational resources; the former avoids to
calculate the modal scattering field in source region; the
field-based definitions for the impedance and admittance of
metal-material combined electromagnetic systems can be easily
introduced into the former.

Index Terms—Admittance, Characteristic Mode (CM),
Electromagnetic Power, Impedance, Input Power, Interaction,
Metal-Material Combined Object, Output Power, Surface
Equivalent Principle.

I. INTRODUCTION
THE Characteristic Mode Theory (CMT) was firstly

introduced by R. J. Garbacz in 1965 [1]. Subsequently, R. F.

Harrington et al. built a series of MoM-based CMTs, such as
the Surface EFIE-based CMT for PEC systems
(PEC-SEFIE-CMT) [2], the Volume Integral Equation-based
CMT for Material bodies (Mat-VIE-CMT) [3], and the Surface
Integral Equation-based CMT for Material bodies
(Mat-SIE-CMT) [4].
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The Poynting’s theorem-based interpretations for the power
characteristics of the Characteristic Mode (CM) sets derived
from the PEC-SEFIE-CMT and Mat-SIE-CMT are provided in
[5] and [6], such that the physical pictures of these two
MoM-based CMTs become clearer.

Recently, some ElectroMagnetic-Power-based CMTs
(EMP-CMT) are established, such as the EMP-CMT for PEC
systems (PEC-EMP-CMT) [7], the EMP-CMT for Material
bodies (Mat-EMP-CMT) [8]-[9], and the EMP-CMT for
Metal-Material combined objects (MM-EMP-CMT) [10]. The
metal-material combined objects discussed in [10] can include
metal part (metal line, surface, and volume) and material part
(material volume).

In [10], the various electromagnetic powers generated by
metal-material combined systems are expressed as the
functions of the line current on metal line, the surface current
on metal surface, the surface current on the boundary of metal
volume, and the total field (the summation of incident field and
scattering field) in material volume, so the theory developed in
[10] can be simply called as the Line-Surface-Volume
formulation for the MM-EMP-CMT (LSV-MM-EMP-CMT).
As a companion to the LSV-MM-EMP-CMT, a new
Line-Surface  formulation for the MM-EMP-CMT
(LS-MM-EMP-CMT) is provided in this paper by expressing
the various powers as the functions of the line and surface
currents on metal part and the surface equivalent current on the
boundary of material part.

The physical essence of LS-MM-EMP-CMT is the same as
LSV-MM-EMP-CMT, i.., to construct the various
power-based CM sets for the metal-material combined objects,
which have abilities to depict the inherent power characteristics
of the metal-material combined objects. However, the
LS-MM-EMP-CMT is more advantageous than the
LSV-MM-EMP-CMT in some aspects. For example, the
former saves the computational resources; the former avoids to
compute the modal scattering field in source region; the
field-based definitions for the impedance and admittance
introduced in [7] and [9] can be easily generalized to the
former.

Although many power-based CM sets can be constructed by
optimizing various objective powers, only the theory and
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formulations corresponding to the input/output power are
explicitly provided in this paper because of its notable
importance as explained in [8].

This paper is organized as follows. The Secs. II-VII provide
the fundamental principles and essential formulations of the
LS-MM-EMP-CMT, and the Sec. VIII concludes this paper. In
what follows, the ¢/ convention is used throughout.

II. SCATTERING SOURCES, SURFACE EQUIVALENT SOURCES,
AND BASIC VARIABLE

In this paper, the metal-material combined object is simply
called as scatterer, and the scatterer includes two parts, that are
the metal part (including three subparts: metal line part, metal
surface part, and metal volume part) and the material part (i.e.,
material volume part). When an external excitation F™
incidents on the scatterer, some scattering sources will be
excited on the scatterer, and then the scattering field F* is
generated by the scattering sources, here F=E,H . The field
generated by the scattering sources on the metal part is denoted
as F'“, and the field generated by the scattering sources on the
material part is denoted as F'“ ; it is obvious that
F* =F* +F* because of the superposition principle [11].
The summation of the F™ and F*“ is the total field F, i.e.,
F = F" + F*,

In addition, it is restricted in this paper that the source of F™
doesn’t distribute on the scatterer.

A. Various domains and scattering sources.

For the metal-material combined scatterers, the scattering
currents include the following kinds: the line electric current
J' on the metal line part, the surface electric current J;, . on
the metal surface part, the surface electric current J,, ,, onthe
boundary of the metal volume part, the volume ohmic electric
current J* on the material part, the volume polarized electric
current J*” on the material part, and the volume magnetized
magnetic current M on the material part [12]-[14]. In
addition, the summation of the J” and J* is denoted as J'”
in this paper. Various scattering charges are related to the
corresponding scattering currents by current continuity
equation, so the scattering field can be uniquely determined by
the scattering currents mentioned above.

The domains occupied by the metal line part, the metal
surface part, the metal volume part, and the material part are
respectively denoted as D", D" D" and D™,
and their boundaries are correspondingly denoted as 9D™ ",
op™*7 - 9p™" | and oD"*' respectively. In the
three-dimensional Euclidean space R’, it is obvious that [15]

aDmet, line
a Dmez. surf

Dmet, line  __
Dmez‘, surf —

(1.1)
(1.2)

To simplify the symbolic system of this paper and to efficiently
distinguish the different domains from each other, the D™
and D"’ are respectively denoted as L™ and S™ , and
their boundaries have the same symbolic representations as
themselves because of the relations in (1); the D", D™,

oaD™" and oaD™""' are respectively denoted as V", V",
oy™ , and V" .

When the magnetized magnetic current model is utilized to
describe the magnetization phenomenon of material part, there
doesn’t exist the material-based surface electric current on
ay™ [12]-[14]. In addition, it is obvious that only the case
cl(S™ \cly™*)=8"" is necessary to be considered, so the
metal-based surface electric currents J,,, .. and J,, ,, canbe
uniformly denoted as the J*, i.e.,

17;6,,3[,,,.(7) R (7e S”’”\BV’”“’)
T(F) = Towa(F) » (Fedr™) )
0 , (Fesmefuaw“)

The symbol “clS ” represents the closure of set S, and
clS=SUdS =intSUaS for any set S [15]; the symbol “intS”
represents the interior of set §, and intS=S\9S [15]. In fact,
the above-mentioned relation cl(S™ \cly™)=5" is equivalent
to that S™NintV™ =@ A cl(S’”‘” \aV”"”) =S5" ; the relation
S™ NintV™ =& means that the metal surface part is neither
completely nor partially submerged into the metal volume part;
the relation cl(s" \BV"“”) = 5" means that the set " NaV"
can only be the & or some lines, but cannot contain any
surface. Based on that cl($™ \cl/"™)=5"" , the domain
S™Jar™ in (2) can be equivalently rewritten as follows [15]

S,m,r U anr — a(Smez U Vmez) — a(Dmpl,Squ U Dmez,vol) (3)

so the domain S$™ UadV™ in (2) can also be simply denoted as
oD™"*  and then the domain "™ UV" is simply denoted as
D"

Similarly to the relation c1($™\cl"*)=5"", only the case
cl(L™ \elD"™ )= L" is necessary to be considered, and this
means that the metal line part is neither completely nor partially
submerged into the metal volume part, and that the set
L™ NaD"™"* can only be the & or some points but cannot
contain any line.

Some typical examples of the various scattering currents,
domains, and boundaries mentioned above are illustrated in the
Fig. 1. In addition, the cases plotted in the Figs. 2 and 3 are not
considered in this paper.

a D met, sV

et ol \a
S - ‘V—"‘” y

met

Fim'
Metal Volume Part
met _ arm
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/ r -
_ JZ \\\‘ ,/\Vmar

Metal Line Part

Metal Surface Part

Material Part

Fig. 1. The metal-material combined object excited by incident field.
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Smet n int Vmet

Fig. 2 (a). The case $"“ NintV'"™ =& which is not considered in this paper.

R aVM\ﬁ

Fig. 2 (b). The case cl S’”’ \BV”“r # S™ which is not considered in this paper.

! Lme/ n int Vmet

Fig. 3 (a). The case L™ \intV'"* #& which is not considered in this paper.

<«

N e

Fig. 3 (b). The case cl(L’”e’ \BV'"“) # L™ which is not considered in this paper.

m& S met

Fig. 3 (¢). The case cl e \S'””’

# L™ which is not considered in this paper.

B. The decompositions for the various domains and scattering
sources.

Based on the discussions in [10], the L™ can be decomposed
into two parts, Ly, and L7  ; the dD™" ™ can be decomposed
into two parts, dD7* and oD!e:* ; these domains and
subdomains satisfy the following relations (4) and (5).

firee unfree

Lme! U Lmet — Lmet

'free ‘unfree

Lmet m Lmzt — @

free ‘unfree

4.1)
4.2)

and

Dy U apey = oD (5.1)
oD N oDt = @ (5:2)
The L}, and L7 in (4) are defined as follows [10]
Ly, = { crel™ \int(L"“” U clV"‘“’) } 6.0
= {7 :rer\int(ar)}
Lo, &2 7 Fe e Nint(L Uev™) | ©2)
= {7 :7erNint(carm)}

and the oD7"*" and 9D”*:* in (5) are defined as follows [10]

free unfree

apye 2 L7 Feap ™ \int($" Ucly ™ Uely ™) | |
7.
= {7 1 Te aD"’e”“”\int(clV”’e‘UclV'””‘)} D
opp £ 17 - Feap ™ Nint(s™ Uely™ Uelr™) | -
= {7 : Feap" " Nint(cly " Uelr ™) |

Based on the (4) and (5), the scattering currents J' and J*
can be correspondingly decomposed as follows [10]

‘7l (7) = '7/1‘ (F)+Ju[nfree(7) (8)
T (7) = T3 () + T (F) ©
here
J(F) . (FeLy)
Ji(T) 21 0 (Fely) (10.1)
0 ., (FeL™)
0 . (rery)
T (F) 2 3T'(F) . (FeLl.) (10.2)
0 . (FeL™)
and
J(F) . (Feopp™)
Tre(F) 24 0 (FeaDiir) (11.1)
0 . (FeoDp™™)
0, (FeaDpiT)
Togee(F) & 4T (F) . (FeaDiy) (11.2)
0, (rFeop™™)
It is restricted in this paper that L =@ , and then

L =rr and J'=J, . The above restriction implies that the
metal line part is neither completely nor partially submerged
into the material part. The reason to do the above restriction is
that: the case L =@ will lead to that the oV is not a pure

‘unfree

surface, and then leads to that the surface equivalent sources on
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aV™ cannot be easily defined.
Some typical examples are illustrated in the Figs. 4-6. In
addition, the case L' #@ which is not considered in this

‘unfree

paper is plotted in the Fig. 7.

Lmet — Lmet

free \
prma ‘/

Fig. 4 (a). The metal line and material parts don’t contact with each other.

7\

met __ ymet
L - Lf’ ee Vmat

Fig. 4 (b). The metal line and material parts contact with each other.

>

Vmat

Fig. 5 (a). The metal surface and material parts don’t contact with each other.

>

met __ met, sv
™ =D

Vmat

Fig. 5 (b). The metal surface and material parts contact with each other.

met,

— T

aDmet,xv aDmez,:v

free unfree

»

Vmat

Fig. 5 (c). The metal surface part is partially immerged into the material part.

anet — aDmet, sv

Jree \

Fig. 6 (a). The metal volume and material parts don’t contact with each other.

met
D™ — v

unfree

met, sv
aD free

S

Fig. 6 (b). The metal volume and material parts contact with each other.

Lmet

free \

s
met
Lunfree /

#J which is not considered in this paper.

Fig. 7. The case L

unfree

C. Surface equivalent sources.

Based on the discussions in [9]-[10], the surface equivalent
sources on dV"* can be defined as follows

TEFE) = {TE(F)TE(), T (F) ) (12)
M (F) o { MG (F) M () M (7) ) a3
here
: o (P)X A ()], 7 ey (s oD
Ty 2 [ (P)xH (7] reo ( 1 ,)(14-1)
0 L F e\ (S" NaDg )
) 3 (FxA"(7)] L Fe s naDs
7e ()2 [ (F)x i (7)] .7 z (14.2)
0 [ Fes™NaD
A, — Xf_]lm _, , Fe SmﬂnaD:::.;:v
T (7) [ (F)xH" (7)) .7 ’ (14.3)
0 , Fe S" oD
and
Etox 7 Xﬁ—)mat )L _,re v\ (™ Na :‘ne:;:v
MY (F)2 [E(7) QL ( ’ )(15-1)
0 L Fearm(sm Nab)
) B (7)xi, (F)]_, Fe 5™ nappes
()2 (LA ' (152)
0 , Fe S" NoDp
) B (7 )xi (F)] . 7eS™napms
()2 [E“(F)xi(F)], , .7 ’ (15.3)
0 , Fe S™ NoDp

In (14.1) and (15.1), the subscript “7 — 7 ” represents that the
7 belongs to set int¥", and that the 7 approaches to the 7 ;

met, sv
unfiee

gmet m p)

T i :’V/\(Sﬂa )

Fig. 8. The sectional view of the Fig. 5 (c), and the surface equivalent sources
on 9V .



R. Z. LIAN: LINE-SURFACE FORMULATION OF THE MM-EMP-CMT 5

the 74,,, 1is the normal direction vector of surface
oy \(S"™ NoDye> ), and it points to the interior of material
part. The two sides of surface $™ NaD;,"" are in the material
part, and they are respectively called as the “+” side and the
“—7side of §™ NaD,:" ;in (14.2), (14.3), (15.2), and (15.3),
the subscript “7, — 7 ” represents that 7, € int/’", and that the
7, approaches to the 7 from the “+” side.

Taking the Fig. 5 (c) as a typical example, the surface
equivalent sources corresponding to this example are illustrated
in the Fig. 8.

Because of the (14) and the magnetic field boundary

condition on surface aD":*" [12], [14], it can be found out that

unfree

met, sv

T (F) . (FeoppsyNovm)
Tiee(F) = W5 (F)+ T(F) o (FedDiirns™)  (16)
0 . (Feopp)

In fact, the (16) can be concisely written as the following
operator form.
- j:"/"ee(j SE) , (768 ﬂ/'e)

‘z:zfree (?) (17)

Based on the discussions in [9], the J** and M** are not
independent of each other; in this paper, the J* is selected as a
part of basic variable [8] because of (17), i.e., the M is
expressed as the function of J* based on the method given in
[9], so

M*(¥) = M*(T*) . (reor™) (18)
The specific mathematical expression for the operator (18) can
be found in [9].

D. The mathematical expressions of various fields.
Due to the above (18), the F* on int/" and the F** on

mat
R*\9V™ can be expressed as the functions of J% , and their
operator forms are as follows [9]
ﬁ/al (F) — ]:lol (j_SE) , (76 int Vma/)

int int

(19)

Fao(r) = Fo(7%) . (FeRNOV™)  (0)
here F=E,H , and correspondingly F=&,H . To use the
subscript “int ” in (19) is to emphasize that the operator (19) is
only suitable for the total field on intV" .

Based on the (20), the scattering field F** on R*\dD can be
expressed as the following linear operator form.

() = B (F)+ Fi (7)

mat
F(TLT )+ F (77)
1

mat

J

J jjree + j;n/r(’(’ ) + ‘7_—;:? (jSE )
S oesd

J

I
9

21

free?

Treerd e )+ F (0.5 e )+ Fst (T)

;ree’ 7;"66) + ’7:(0’ 1fn/iee (‘75E )) + }—Sm (jSE )

(
(
|
(

I
K,.]

mat

In (21), 7e R*\dD ; F=E,H , and correspondingly F =& H ;
the operator 7 (J',J*) represents the field generated by the line
current J' and the surface current J* in vacuum, and its
mathematical expression can be found in [12] and [14]; the
third equality is based on the (9) and that J' =}, as explained
in the Sec. II-B; the fourth equality is due to the superposition
principle [11]; the fifth equality originates from the (17).

Considering of the above (21), the F™ on intV"™ can be

expressed as the function of J; =J', J;., and J¥ as
follows
Fuc(7) = Fy (7)=F(7)
= 7‘7,:7(17 SE) (22)

~F (T T ) = F (0. T e (7)) = i (%)

here reintV™ ; F=E,H ,and correspondingly F=&,H .
Because the J'” and M™ in intV"™ are uniquely
determined by the F* in intV™ [8]-[9], [12]-[14], they can be
expressed as the following operator forms.
jwlp (7)

= j”"”(jSE) , (?eintV'"“’) (23.1)

Mvm (7) — MW‘ (jSE) , (FE int Vma/) (23'2)

The specific mathematical expressions for the operators in (19),
(20), and (23) can be found in [9], and then the specific

mathematical expressions for the operators in (21) and (22) can
be easily obtained, and they are not specifically provided here.

E. Basic variable.

As pointed out in [8]-[9], to express the various scattering
sources as the functions of some independent variables is
indispensable for the EMP-CMT, and the independent
variables are called as basic variables. Based on the discussions
in [9]-[10] and the discussions in the above Sec. II-D, it is
obvious that the basic variables for the LS-MM-EMP-CMT can
be selected as the {J;, =J'.7,..7%] , and they can be
uniformly written as follows

(F)=J'(F) . (FeLp=L")
T (7). (FeoDje™)

(F ey )
0 , (Fe Lmet U a met, sv U anal)

free

Basic Variable ¥ (7) 2 (24)

Because oD, < V™ and oD™" " =0D} " UdD," and
L™ =9p"" " and 9V™ =3D"" , the set L™ D" U™
in (24) can also be equivalently denoted as the
D™ | JoDp™ " |JaD™™ , or more simply denoted as the oD,

i.e.,

aDmet,lme U a met, sv U a mat
yis U oD U )
Lmﬂl U aDmEf,SV U aVWlﬂf

free

1>

oD

(25
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Inserting the (24) into the (9), (17), and (19)-(23), the various
fields and scattering currents can be further written as the
following linear operator forms.

FX(F) = .7-7,,),(( ) , (FGintV"’"') (26)

() = _7:\'(”(17) , (FG Rs\aD) (27)
and

T =) (rer) =

6) =) . frewm) o9

Ju)p(;) — j”"”(i) , (FEil’lthm) (301)

M (F) = M (7)), (Feinty™) (30.2)

here X =inc,tot ; F =E,H , and correspondingly F =&,H .

In fact, the tangential component of E** on the domain 9D
can be determined as the following (31), because there don’t
exist the line and surface magnetic currents on aD .

Escatan (7) —

G

25

here #¢ oD ; the # is the tangential direction of L™ ; the #
and 7, are parallel to the surface oD\ L™ =9D™"" JoV™" , and
they are orthogonal to each other.

III. INTERACTION, OUTPUT POWER, AND INPUT POWER

In this section, the mathematical expression and physical
meaning of the interaction between the incident field and the
metal-material combined scatterer is discussed, and then the
mathematical expressions for the output and input powers are
provided.

A. Interaction.

The interaction between incident field and scatterer is just the
interaction between F™ and {i’,isj ""”,MW} , and its
mathematical expression is as follows

T = revline | met.sv 4 gmat (32)

The Z"" in (32) is the interaction between E™ and J', and

Imer, line __

%< Jl >L _ % (7', Fer)

et

1 33.1)
—_ _ [ 7! fgsca,tan _
= - (T B =

et

1 /= Foea
‘5<J’»E )

et

here E™" is the tangential component of the E™ on L™ ; the
inner product is defined as <g,h>,2],g -7 dQ , and the

symbol “* ”” denotes the complex conjugate of relevant quantity,
and the symbol “- ” is the scalar product for field vectors. The
Z"* in (32) is the interaction between E™ and J*, and [7]

e l<jx’ B _ l<js’ Frem)
2 D" 2 ap"e
1 | (33.2)
_ _ Y/ 7s fscaan _ _ Y |7s fesca
here E™ is the tangential component of the E™ on aD™"™,

and the third equality is based on the surface EFIE [12], [14].
The Z" in (32) is the interaction between {E™,H™] and
[T 57"} , and [8]-[9]

T = (2T B+ (),
= (12)(",E"™) L+ (Y2)(E" M)
v I tot tot vm
1/2)< " E > nt )" (1/2)<H M >intV'“’ (333)
(2T B, — R H M,
= —(Y2) (7", B) | —(2) (B, M),
+(Y2) (T E”) L+ (V2)(H M)
here  the second equality is due to  that

(2)<J*” E™ > ., =0=(1/2)<H" M™ >, , because there
doesn’t exist the materlal based surface scattering current on
ay™  [12]-[14]; the third equality is due to that
F™"™ = F — F* ; the fourth equality is due to the same reason as
the second equality. The reason to use the second equality in
(33.3) is that the specific mathematical expressions for the F*',
H*, and E*““"™ = E* — E*“"“" on 9V™ are not provided in
this paper.

Inserting the last equalities of (33) into the (32), the
interaction Z can be written as follows

Iz = -(12)(JE"),.
~02)(7 ), 0
DT ), = ),
+(1/2)(7* E*) | +(12)(H" M)

Based on the source Poynting’s theorem, the first three lines in
(34) can be rewritten as follows

_(1/2)<J[,Exca> '
-(1/2)( {E7>}D o .
_(1/2)<J"”p,Es(-a>Vm _ (1/2)<HSM,MW">

— P:ca.md +] Psac,rearr,vac

ymat

here

Psm.md (36.1)

1 I sca r7sca\" N
= o, [ x(i) |4
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R?

sac, react, vac 1 r7sca 7 sca 1 Isca  prsca
precreact =2w{Z<H M H > —Z<50E JE >R}
(36.2)

1) ma |, 7sca 1/ e fsca
:2w|:Z<H Mot >R3\ao_z<g°E E >R3\au:|

The symbol “S_~ in (36.1) represents a closed spherical
surface at infinity; the second equality in (36.2) is due to that
(1/4) < H*, u,H** >,,=0=(1/4) < £,E*“,E* >,, .

Based on that J'” = joAe E and M™ = joAuH™ on V™
[8]-[9], and employing that ¢, =+ 0/ jw and Ae, =€, —¢, and
Ae=e—-¢, and Au=u—y,, the fourth line in (34) can be
rewritten as follows

,,,,, ymat (37)
— Plol,loss +jP10/,/eacl.mat
here
tot, loss 1 Iotot potot
P = —(cE",E")
f (38.1)
_ - tot otot
- 2<O-E B >intV"’“’
ot react, mat _ 2a)|:l<[flmz,Alu[flroz> _1<A€Emz,gﬂoz> :|
4 4 ymat
1 1 (38.2)
_ — [ fgtot 77 tot _ - Ttot  Trtot
- 2(0|:4<H AuH >intV”"” 4<A€E E >intV”"”i|
In (38.1), the second equality originates from that

(1/2)<oE",E" >, ,,=0. The second equality in (38.2) is due
to that (1/4)< H ,AuH"™ >, ,,=0=(1/4) < AeE” ,E” >, .

Inserting the (35) and (37) into the (34), the interaction
can be written as follows

T = Psca,md +P[nt‘/n.rs + ] (Psca‘react,vac +sz,reacz.mat) (39)

B.  Output power and input power.

Based on the discussions in above Sec. III-A and the
conclusions given in [7]-[10], the output power P** and input
power P™ are respectively as follows

Pour — P.vca,rad + sz.luss + ] ( Pvca.react,vac + Ptot,reacz.mat)
_ 1 Tosca, tan
= —(1/2)(J B

js’Esca,mn> (40)

et
() A
+ (1/2)<[§m,,]‘7[vm>

intpmat

rrrrrrrrrr t

intV
and

P =T = (1J2)(J',E™)

VA
+(1/2)<(7“',E"’“‘>wmw
AT s )

yma yrmat

and the conservation law of energy [11] corresponding to the

electromagnetic power version is as follows

Pou[ — I — Pmp (42)

Inserting the (26)-(31) into the (40)-(41), the output and

input powers can also be written as the following operator
forms.

P = (7) (43)

P = p(P) (44)

IV. THE MATRIX FORM FOR OUTPUT POWER

The basic variable ¥ can be expanded in terms of the basis
function set {5, ()} as follows

7(F) = iag};(f) - B.a . (FeoD) (45)

here E:[E(?),@(?),---,I;E(F)}, and @ =[a,a,-,a.] , and the
superscript “7 ” represents matrix transposition; the symbol “- ”
represents matrix multiplication.

Inserting the (45) into (43) and employing that
F™ = F" _ F* the matrix form for output power P* can be
written as follows

pr = pou (E a) = g". ﬁam 7 (46.1)
here P™ = [ p;?LxE , and
p = {7 (B).E (B)
-7 (b)), (46.2)

L/ o (7 gine (7 L/ (5N g (7
oo )es @), Lo @) M (5),
for any &,{=1,2,---,=. The superscript “H ” in (46.1) is the
transpose conjugate of relevant matrix.

The matrix P* in (46.1) can be decomposed as [7]-[10]

P = P™ 4 j P (47.1)
here
SRRNNEY
2
3 B o (47.2)
P = L.|:ﬁout_(ﬁoul) :|
2j

Obviously, the matrices P and P are Hermitian, so the

@’ P".g and z"-P".g are always real numbers for any
vector @ e C* [16], and then [8]-[9]
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a"-p"-a = Re{P”“’SE-E)} ) 45.1)
— pren(5.a)+ P (B-7)
a” P".a = Im{P"(B-a)}

s ’ _ . (482)
— rP.s(a,rLqu,VaL (B .a ) + Ptor,reau,mar (B .a

In (48), the P*/(B-a) is the operator form of the power
P generated by the currents corresponding to the ¥ =B-a,
and the other symbols can be similarly explained.

V. OUTPUT POWER CM (OUTCM) SET AND OUTCM-BASED
MODAL EXPANSION

Similarly to the PEC-EMP-CMT [7], the Mat-EMP-CMT
[8]-[9], and the LSV-MM-EMP-CMT [10], a new line-surface
formulation of the Output power CM (OutCM) set and the
corresponding modal expansion method for the metal-material
combined objects are discussed in this section.

A. Output power CM (OutCM) set.

When the matrix Igj‘“ is positive definite at frequency 1, the
OutCM set can be obtained by solving the following
generalized characteristic equation [7]-[10], [16].

P (f)-a@(f) = ()P (f)a@(f)  (49.0)

When the matrix E‘ is positive semi-definite at frequency f;,
the modal vectors can be obtained by using the following
limitations for any £=1,2,---,2 [7]-[10].

a.(f,) = tima.(f) (49.2)

f=1

The modal basic variables are as follows for any £=1,2,---,2

V.(¥) = B-a, , (FedD) (50)
The modal scattering currents are as follows
Jir)y = 7). (rer) (51)
iR =T (et o)
T (F) = (7). (Feinrm) (53.1)
i) = M), (Feinym) (53.2)

for any £=1,2,---,Z, and the relevant operators are defined as
(28)-(30).

The various modal fields corresponding to the above modal
currents are as follows

Fue(r)=7i(7) o (Feinty) (54)
Fe(r) = 7<(V,), (FeR'\oD) (55)

for any £=1,2,---,Z. In (54) and (55), X =inc,tot ; F=E,H ,
and correspondingly F =&, H ; the relevant operators are
defined as (26) and (27). Based on the (31),

Egca,mn(;) = goeatan (175) , (76 aD) (56)

for any £=1,2,---,Z . In addition, the following relation (57) is
valid for the modal fields for any £=1,2,---,2.

Fis(7) = Fia()=Fe(r) o (Feiny™)

int, &

(57)

The above modal currents and modal fields satisfy the
following power orthogonality [7]-[10].

out _ out
P§ 554 PSC

= pou pou i (pou pout (58)
= Lipisearad T ot 005 T T ( & sea, react, vae T §§:mt,ream,mat)
In (58), the d,, is Kronecker delta symbol, and
out __ out . out
P = Re{R}+ ) Im{P"] 59)
= Pelwras * Pt + T (P racsae * P e,
and
pou _1< 7! E.\-m,m,,>
& 2 [Sate et
1 Ts prsca,tan
_5<J§, Erey (60)
" 1 Fr fine " 1 i g
E< & i’"’;>ian rrrrrr 5< int, £ >in(Vmw
and
Uet Towe o] e
out _ sca sca
P sca —Eq‘:ﬁsm[E; X(Hf ) ]dS (61.1)
o L/ =0 7
%{;’mr. loss = 5 <O-Eirmr, & E:m’ e >imymm (6 1 '2)
1= — 1 —sa B
out _ 1/ gsca sca _L sca Tosca
P2 = 20) T, (0B B, | (613)
. _ T
out — tot tot tot tot
Pﬁ{;wt.reaa.mm = 2w[Z<Him.§’AﬂHmr{ >imem _Z<A£Eim,5’Eim.§>imV rrrrrr i| (614)
out out out out
In the (59)’ })f;sca,md = })ff;sca,md > and Rf;fal,la:: = ng’;mr,[oss > and
t t t t
ijilfvz'a‘react,vac = 1)‘5?, sca, react,vac and ijlzufnt‘react,mat = 1)5‘2 tot, react, mat *

B. OutCM-based modal expansion.

Because of the completeness of the OutCM set [7]-[10], the
basic variable ¥ on oD , the scattering currents
{7'.7°,0 M} on scatterer, the scattering fields {E, 7}
on R*\aD, the tangential scattering electric field E*““" on
oD , and the fields {E™,A™} and {E”,A™} on intV’™ can be
expanded in terms of the OutCM set as follows

V() = icﬁé(?) , (reaD) (62)
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and
JF) = SedF) . (Fer) 63)
&
() = gaf;(?) . (Feop™) (64)
J(r) = ic Jr(F) ., (Feinty™) (65.1)
&
H7(F) = Yoy () . (Feimr™)  (652)
-
and
F(r) = Ech““() . (Fe®r’\aD) (66)
-
Fem(7) = e B (F) | (FeaD) 67)
&
here F=E,H ,and
Fi() = Sefiar) o (Feinom)  (69)

1

o
Il

here X =inc,tot ,and F=E,H .

Based on the power orthogonality (58) for OutCM set, the
system output power P* can be expanded in terms of the
modal powers as follows

POle = =
5.
[ Cé‘ Pgmiu ad T ﬁi“}‘ P;’Zn Im\J
=1
+ .] [20.5 P.fouslau react, vac + i‘c ‘ P;mxn react, marJ
£=1 —1

‘ Pour

(69)

In (69), the terms corresponding to loss will disappear, if the
material part is lossless.

C. Expansion coefficients.

When the external excitation is given, the interaction Z and
output power P* can be respectively written as the following
(70) and (71) based on the discussions in Sec. II1.

z = 1(V)
= (2)(7'(7 )E> )T (7)) (70)
+(1/2) (7 (V).E™) _+(2)(H" M (V)
pot — Poar(y) 71)

In (70), the E™ and H™ are known.

Based on the conservation law of energy (42) and the
variational principle [17], the ¥ will make the following
functional § be zero and stationary.

Z(V)-P"(V)

Inserting the (62) and (70)-(71) into the (72) and employing
the Ritz’s procedure [18], the following simultaneous equations
for the expansion coefficients {c,} in (62)-(69) are derived for
any £=1,2,---,E

5(7) = (72)

(12)(TL E™) . +
+(1/2) (7" E> +(1/2

= —(2)(TL X e )~ 1/2< : c;J; B
TS sca, tan sca, tan (731)
—(1/2)< :72; e Ef >)D -(/12)(2 < L >)D
+(1/2)< o 3 ’5>,m; (1/2) <Z; T E, ,5>mww
HWKE“ i;&w&m-wwxz“qH“A@)Ww
and
(V2T E), - (12) T2 E),,...
2T ), () (A,
= (12)(ILY: IC;E“"’M">L,,,“ -(12)(;, C;jéfém'””>ﬂ,.‘,,
(73.2)

E,scu, tan >
&) pu

Tvop Tinc
C:Jév ,Eim,§>. mat
inty

(2T e
(X
(1/2)<Z§:1%Huf£ Mf>

M2 T8 25 e B
1/2 <7§w, ;]cgél:: >

1/2 < int, 5 z; IC{ > ,,,,,
In (73), the relation (57) has been utilized.

By solving the (73), the coefficient {c,} can be determined.
If the orthogonality of (58) is utilized in (73), the coefficient
{c.] can be concisely written as the (74) for any £=1,2,--,E.

1

] P; l(ng> IIIII +%<‘75’E"”‘>wm} = LJ; %@ ) } , (A #0,A¢, =0) )
o P;u,':;fé’E"”’)L,m+;<JE,E"’“’>BD,,,U,.M+;<J£“”,E"”">W.“J . (Au=0,Ae,#0) Y
e T O e Gty WO IR VY Ry
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The symbol -7
multiplication.

in (74) represents the ordinary scalar

VI. IMPEDANCE AND ADMITTANCE OF METAL-MATERIAL
COMBINED ELECTROMAGNETIC SYSTEMS

In this section, the field-based definitions for the impedance
and admittance introduced in [7] and [9] are generalized to the
metal-material combined electromagnetic systems.

A. System impedance and admittance.

Following the ideas of [7] and [9], the field-based definitions
for the system impedance Z and the system admittance ¥ of
the metal-material combined electromagnetic systems are
defined as follows

P (7) P (7)

z=2(r) % —3 v (75.1)
here
N o= T (7T
- 2L > e ) free> free e
1 TSE TSE
+E<J0 o >aV’"“’\(S”““ﬂap[,’,’,‘,’,’.;,j") (75.2)
1 /=g - |
T ) e T TSI ) s
2 N QBDW,/”‘“’, 2 S™ oDy
and
_ pinv (V) Pnuz (17)
A
Yy =Y(V) 2 T (76.1)
here
Np:1<131,,’.71> +1<p;@,p';.w>
2L\g & 2\ & & —
SE SE
+1<p°,”°> (76.2)
2 & & aV,m,,\(SMnaDm;;v)

SE SE SE SE
Lk pt L et
2 ’ 2 ’
€ &0 [ nange € & [nanmy

In the (75) and (76), the L is the length of L™ ; the p' is the
line electric charge on L™, and the p;,, is the surface electric
charge on dD}: ™, and the p;° and pi* are respectively the
surface equivalent electric charges on 91" \(s"* NaDy.") and
§™" MNaD,,." ; the various charges and the related currents

satisfy the corresponding current continuity equations; the

inner product for the scalars is defined as
<gh> 2, g hdQ.

The system resistance, reactance, conductance, and
susceptance of metal-material combined systems are

respectively as follows

R = R(V) = Re{2(V)} (77.1)

X = x(V) = m{z(V)] (77.2)
and

G = G(7) = Re{y(7)} (78.1)

B = B(V) = m{y(V)] (78.2)

B. Modal impedance and admittance.

The field-based definitions for the modal impedance,
resistance, reactance, admittance, conductance, and
susceptance introduced in the papers [7] and [9] can be
generalized to the OutCMs of metal-material combined objects
as follows

A ol J
Z; = B[N (79)
;= Re{Zf} (80.1)
. = Im{z,] (80.2)
here
NJ _ 1 jl jl +1 jx js
' Z< I+ §>me E< free, &2 ﬁ‘ee,5>aD7’»i’.u
1 TSE TSE
+5<J0~f o >av """ (87 napget ) 31
1 TSE TJSE 1 TSE TSE
+E<J*~f T3 ooz E<J"f T naps;
here J;,, . =J; on dD}:", and
A ou
Y, & RMING (82)
G, = Re{Y} (83.1)
B, = Im{Y,} (83.2)
here
! ! s s
Ne :1<p¢,p¢> 1Pl Pines
2L\g & [, 2\ & & apen
SE SE
+1<Po,¢’,00.§> (84)
2\ & & (5™ nanje. )

In (84), the p; is the modal line electric charge on L, and the
Pjrec.c 18 the modal surface electric charge on oD}, and the

free
py; and p. are respectively the modal surface equivalent
electric charges on 0¥ \(s™NoDj:.") and S" oD ; the

various modal charges and the related modal currents satisfy
the corresponding current continuity equations.
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VII. MODAL QUANTITIES CORRESPONDING TO THE OUTCM
SET OF METAL-MATERIAL COMBINED OBJECTS

In fact, the introductions for the modal impedance (79) and
admittance (82) provide an efficient way to define the various
modal quantities (introduced in [7]-[8]) for the OutCM set of
metal-material combined objects, and they are discussed in this
section.

The Ae, #0 case is considered here, so the formulation

is utilized in the following discussions. Of cause, the case
(Au#0,Ag, =0) can be similarly discussed, but it will not be
repeated in this paper.

A. Modal normalization.

The field-based expression for the normalized basic variable
is as follows

(85)

for any £=1,2,---,2 . The field-based expressions for the
normalized modal currents and fields can be similarly obtained.

B. Modal quantities.

The normalized version of expansion formulation (69) is as
follows

Pout — i

(86)

n 1 < jgop JE™ >
2

2
1z
Based on the above (86), the various modal quantities can be

defined for the metal-material combined objects as the
following (87)-(92) for any £=1,2,---,Z [7]-[8].

int pmat

_ 1
GMSP ™ 2
: 12|

(387)
and

MACE?"
* (88)

11>
o
<
‘Ilrv\.
&
=
‘E
+
bl
X
&
=
+

int

and

R
MAOPgmd,ac/ A T (891)
¢
]
X,
MAOPgmd,reacl é S (89.2)
¢
]
and
SMSP™ £ GMS?""- MACE?" (90)
and
SMs.;::l'.\',u(‘l A SMSg\w,mr. MAOngm;d, act (9 1. 1)
GMs?‘s,ac/ A GMS?’S-/"‘ . MAOP;"'}’”“ (91 2)
and
SMS?S’ react & SMS?S' tot MAOPgmd' react (92. 1)
GMS;?,J),-EM,: A GMS?’V'[W‘ MAOPgn{Id,react (92.2)

The various modal quantities defined in above (87)-(92) and
the modal component ‘55‘2 Z, in (86) satisfy the relation (93) for
any £=1,2,--,E.

VIII. CONCLUSIONS

A new line-surface formulation of MM-EMP-CMT is
established in this paper, and it is simply denoted as
LS-MM-EMP-CMT. Just like the previous PEC-EMP-CMT,
Mat-EMP-CMT, and LSV-MM-EMP-CMT, the CM sets
derived from LS-MM-EMP-CMT can reveal the inherent
power  characteristics of  metal-material  combined
electromagnetic systems.

The physical effectiveness of LS-MM-EMP-CMT is the
same as the LSV-MM-EMP-CMT. However, the former is
more advantageous than the latter in some aspects, such as
saving computational resources and avoiding to compute the
modal scattering field in source region etc.

In addition, a variational formulation for the scattering
problem of metal-material combined objects is provided based
on the conservation law of energy, and the unknowns only
include the line and surface sources; the field-based definitions
for the impedance and admittance of metal-material combined
electromagnetic systems are introduced in this paper.

SMSYS !

~ |2 _ sys, act . sys, react  __
&z, = SMSP i+ jSMSP e =

SMs}

—_————

—_——
MACE?M[' GMS?’S,I(N . MAOPgwd,acl + ] MACE?od . GMszys,mz . MAOPgmd,reacl

(93)

— MACE?M' GMS%V.\',H)I' MAOP;HJL/,H(‘Z + ] MACE?WJ . GMS?‘Y’W' MAOPgmd, react

GMSY GMS P react
¢ ¢
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