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Abstract—Recently, a volume formulation of the 
ElectroMagnetic-Power-based Characteristic Mode Theory 
(CMT) for Material bodies (Mat-EMP-CMT) is built by 
expressing various electromagnetic powers as the functions of the 
total fields in material bodies, so it can be simply called as 
Vol-Mat-EMP-CMT. As a companion to the Vol-Mat-EMP-CMT, 
several Surface formulations of the Mat-EMP-CMT 
(Surf-Mat-EMP-CMT) are established in this paper by expressing 
various electromagnetic powers as the functions of the surface 
equivalent sources on the boundaries of material bodies. 

The physical essence of Surf-Mat-EMP-CMT is the same as the 
Vol-Mat-EMP-CMT, i.e., to construct the various power-based 
Characteristic Mode (CM) sets for material bodies, but the former 
is more advantageous than the latter in some aspects. For example, 
the former saves computational resources; the former avoids to 
compute the modal scattering field in source region; the 
field-based definitions for the impedance and admittance of 
material bodies can be easily introduced into the former. 
 
 

Index Terms—Characteristic Mode (CM), Electromagnetic 
Power, Input Admittance, Input Impedance, Input Power, 
Interaction, Material Body, Output Power, Surface Equivalent 
Principle. 
  
 

I. INTRODUCTION 

HE Characteristic Mode Theory (CMT), which was firstly 
established by Robert J. Garbacz in 1965 [1], is a new 
modal theory which is different from the traditional 

Eigen-Mode Theory (EMT) [2] in classical mathematical 
physics. In 1971, Roger F. Harrington and Joseph R. Mautz 
refined Garbacz’s CMT by placing the CMT into the Integral 
Equation-based MoM (IE-MoM) framework, and established a 
Surface EFIE-based CMT for PEC systems (PEC-SEFIE-CMT) 
[3]. Subsequently, many variants of the PEC-SEFIE-CMT were 
developed under the IE-MoM framework, such as the Volume 
Integral Equation-based CMT for Material bodies 
(Mat-VIE-CMT) [4], the PMCHWT-based CMT for Material 
bodies (Mat-PMCHWT-CMT) [5], the Surface MFIE-based 
CMT for PEC systems (PEC-SMFIE-CMT) [6], and the 
Surface CFIE-based CMT for PEC systems (PEC-SCFIE-CMT) 
[7]. A very comprehensive review for the CMT and its 
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applications can be found in [8]. In addition, the Poynting’s 
theorem-based interpretations for the PEC-SEFIE-CMT and 
Mat-PMCHWT-CMT are respectively given in [8] and [9], 
such that the physical pictures of these two IE-MoM-based 
CMTs become clearer. 

Recently, some ElectroMagnetic-Power-based CMTs 
(EMP-CMTs), such as the EMP-CMT for PEC systems 
(PEC-EMP-CMT) [10] and the EMP-CMT for Material bodies 
(Mat-EMP-CMT) [11] are introduced. Not only some classical 
Characteristic Mode (CM) sets, such as the CM set derived 
from PEC-SEFIE-CMT and the CM set derived from the 
Mat-VIE-CMT for lossless non-magnetic material bodies, are 
generalized, but also many new power-based CM sets, such as 
the radiated power CM set which has ability to optimize the 
radiation of electromagnetic system, are constructed under the 
EMP-CMT framework. 

In [11], the optimization problems for various power 
functionals were transformed into the matrix characteristic 
value problems by expressing various objective 
electromagnetic powers as the functions of the total field in 
material body. Based on this, the Mat-EMP-CMT developed in 
[11] is specifically called as the Volume formulation of the 
Mat-EMP-CMT, and simply denoted as Vol-Mat-EMP-CMT. 
As a companion to the Vol-Mat-EMP-CMT, several Surface 
formulations of the Mat-EMP-CMT (Surf-Mat-EMP-CMT) are 
developed in this paper by expressing various objective 
electromagnetic powers as the functions of the surface 
equivalent sources on the boundary of material body. 

The physical essence of Surf-Mat-EMP-CMT is the same as 
the Vol-Mat-EMP-CMT, i.e., to construct various power-based 
CM sets for material bodies, which have abilities to depict the 
inherent characteristics of material bodies to utilize various 
electromagnetic energies. The applicable range of 
Surf-Mat-EMP-CMT is similar to the Vol-Mat-EMP-CMT, for 
example, the Surf-Mat-EMP-CMT is valid for the lossy 
material bodies placed in any electromagnetic environment like 
the Vol-Mat-EMP-CMT, and any kind of objective power 
optimized by the Vol-Mat-EMP-CMT can be selected as the 
object to be optimized by the Surf-Mat-EMP-CMT. 

In addition, the Surf-Mat-EMP-CMT is more advantageous 
than the Vol-Mat-EMP-CMT in some aspects. For example, the 
former saves the computational resources; the former avoids to 
compute the modal scattering field in source region [12]; the 
field-based definitions for the impedance and admittance 
introduced in [10] can be easily generalized to the former. 
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Although many electromagnetic powers can be selected as 
the objects to be optimized by Surf-Mat-EMP-CMT, only the 
theory and formulations corresponding to the input/output 
power given in [10]-[11] are explicitly provided in this paper 
because of its notable importance as explained in [10]-[11]. The 
CM sets derived by optimizing other objective powers can be 
similarly obtained, and they will not be specifically provided in 
this paper. 

In what follows, the j te ω  convention is used throughout. 
 
 

II. INTERACTION, OUTPUT POWER, AND INPUT POWER 

The material body is simply called as scatterer in this paper. 
When an external excitation field incF  incidents on the scatterer, 
the scattering sources will be excited on the scatterer V , and 
then the scattering field scaF  is generated in whole space 3 , as 
illustrated in Fig. 1. The summation of incF  and scaF  is the total 
field, and it is denoted as totF , i.e., tot inc scaF F F= + , here 

,F E H= . 
When the conductivity of scatterer is not infinity, the 

scattering sources include the volume ohmic electric current 
voJ  and the related electric charges { },vo soρ ρ  due to the 

conduction phenomenon, the volume polarized electric current 
vpJ  and the related electric charges { },vp spρ ρ  due to the 

polarization phenomenon, and the volume magnetic current 
vmM  and the related magnetic charges { },vm sm

m mρ ρ  due to the 
magnetization phenomenon [13]-[15]. The { }, ,vo vp vm

mρ ρ ρ  are 
the volume charges, and the { }, ,so sp sm

mρ ρ ρ  are the surface 
charges on the boundary of scatterer. The various charges are 
related to the corresponding currents by current continuity 
equations, so it is sufficient to only use the scattering currents to 
determine the scattering field [13]-[15]. 

A. The interaction between incident field and scatterer. 

The interaction between the incident field and scatterer is just 
the interaction between the { },inc incE H  and { },vop vmJ M , and its 
mathematical expression is as follows 
 

 

( ) ( )
( ) ( )

( ) ( )

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

vop inc inc vm

V V

vop tot tot vm

V V

vop sca sca vm

V V

J E H M

J E H M

J E H M

= +

= +

− −



 (1) 

 
In (1), the inner product is defined as ,g h g h d∗

Ω Ω
⋅ Ω , and the 

symbol “ ∗ ” represents the complex conjugate of relevant 
quantity, and the symbol “ ⋅ ” is the scalar product for field 
vectors. The second equality in (1) is due to that 

inc tot scaF F F= − . 
Inserting the (A-2) into the second line in (1), and inserting 

the (A-4) into the last line in (1), the interaction   can be 
rewritten as follows 
 
 ( ), , , , , ,sca rad tot loss sca react vac tot react matP P j P P= + + +  (2) 

 
here the ,sca radP  is the radiated power carried by scattering field 

[16]; the , ,sca react vacP  is the reactively stored scattering power in 
vacuum [16]; the ,tot lossP  is the ohmic loss power due to the 
interaction between the total electric field totE  and scatterer 
[16]; the , ,tot react matP  is the reactive power due to the polarization 
and magnetization originating from the interaction between the 
total fields { },tot totE H  and scatterer [16]. 

The mathematical expressions for the various powers 
mentioned above are given as follows [16] 
 

 ( ) ( ), 1 2sca rad sca sca

S
P E H dS

∞

∗ = × ⋅    (3.1) 

 ( ), , , ,2sca react vac sca vac sca vac
m eP W Wω= −  (3.2) 

 
and 
 
 ( ), 1 2 ,tot loss tot tot

V
P E Eσ=  (4.1) 

 ( ), , , ,2tot react mat tot mat tot mat
m eP W Wω= −  (4.2) 

 
In (3.2), the ,sca vac

mW  and ,sca vac
eW  are respectively the magnetic 

and electric energies stored in scattering field; in (4.2), the 
,tot mat

mW  and ,tot mat
eW  are respectively the total magnetized and 

polarized energies stored in matter due to the interaction 
between the total field and scatterer, and their mathematical 
expressions are as follows [16] 
 
 ( ) 3

,
01 4 ,sca vac sca sca

mW H Hμ=


 (5.1) 

 ( ) 3

,
01 4 ,sca vac sca sca

eW E Eε=


 (5.2) 

 
and 
 
 ( ), 1 4 ,tot mat tot tot

m V
W H Hμ= Δ  (6.1) 

 ( ), 1 4 ,tot mat tot tot
e V

W E Eε= Δ  (6.2) 

 
The meanings of various material parameters appearing in (5) 
and (6) can be found in Appendix A. 

B. Output power. 

Based on the physical meanings of the various powers in (2) 
and the discussions in the Appendix B, it is easily found out that 
the interaction   equals to the output power outP  generated by 
material scatterer, i.e., 
 

 

( )
( ) ( )

( ) ( )

, , , , , ,

1 2 , 1 2 ,

1 2 , 1 2 ,

out sca rad tot loss sca react vac tot react mat

vop tot tot vm

V V

vop sca sca vm

V V

P P P j P P

J E H M

J E H M

= + + +

= +

− −

 (7) 

 

Material Body

vopJ
vmM

incF

scaF

  
Fig. 1. The material body excited by incident field. 
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C. Input power. 

If the input power from the external excitation to the material 
scatterer is denoted as symbol inpP , the following (8) can be 
derived from the conservation law of energy [17]. 
 
 inp outP P=  (8) 

 
Based on the (1), (7), and (8), it can be found out that the 
physical essence of the interaction   is just the input power 

inpP  which is the power done by the incident fields { },inc incE H  
on the scattering currents { },vop vmJ M , i.e., 
 
 ( ) ( )1 2 , 1 2 ,inp vop inc inc vm

V V
P J E H M= + =   (9) 

 
 

III. THE SURFACE EQUIVALENT SOURCE-BASED EXPRESSIONS 

FOR OUTPUT POWER 

Based on the conclusions given in Appendix C, the scaF  on 
3 , the totF  on V , the incF  on V , and the { },vop vmJ M  on V  

can be written as the following linear operator forms. 
 

 

( ) ( )
( ) ( )
( ) ( )3

, ;

, ; ,

, ; , \

sca sca SE SE

sca SE SE

sca SE SE

F r F J M r

F J M r r V

F J M r r V

−

+

=

 ∈= 
∈ 

 (10) 

 ( ) ( ) ( ), ; ,tot tot SE SEF r F J M r r V− −= ∈  (11) 

 ( ) ( ) ( ), ; ,inc inc SE SEF r F J M r r V− −= ∈  (12) 

 ( ) ( ) ( ), ; ,vop vop SE SEJ r J J M r r V= ∈  (13.1) 

 ( ) ( ) ( ), ; ,vm vm SE SEM r M J M r r V= ∈  (13.2) 

 
here the SEJ  and SEM  are the surface equivalent sources 
defined in (C-17) and (C-18). 

A. The operator form I of output power. 

By inserting the (10), (11), and (13) into the second equality 
in (7), the output power outP  can be expressed as the function of 
surface equivalent sources SEJ  and SEM  as follows 
 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 , , ,

1 2 , , ,

1 2 , , ,

1 2 , , ,

out vop SE SE tot SE SE

V

tot SE SE vm SE SE

V

vop SE SE sca SE SE

V

sca SE SE vm SE SE

V

P J J M E J M

H J M M J M

J J M E J M

H J M M J M

−

−

−

−

=

+

−

−

 (14.1) 

 
here the position vectors r  in various operators have been 
omitted to simplify the symbolic system of this paper. In fact, 
the (14.1) can also be simply rewritten as the following operator 
form. 
 
 ( )1 ,out out SE SEP P J M=  (14.2) 

 

B. The operator form II of output power. 

By inserting the (10) into the (A-8)-(A-10), and inserting the 
(11) into the (4) and (6), and utilizing the relation (A-13), and 
employing the first equality in (7), the output power outP  can be 
expressed as the function of surface equivalent sources SEJ  
and SEM  as follows 
 

( ) ( ) ( ){ }
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0

0

1 2 , ,

1 2 , , ,

2 1 4 , , ,

1 4 , , ,

2 1 4 , , ,

1 4 , ,

out sca SE SE sca SE SE

V

tot SE SE tot SE SE

V

sca SE SE sca SE SE

V

sca SE SE sca SE SE

V

tot SE SE tot SE SE

V

tot SE SE

P E J M H J M dS

E J M E J M

j H J M H J M

E J M E J M

j H J M H J M

E J M E

σ

ω μ

ε

ω μ

ε

∗

+ +∂

− −

− −

− −

− −

− −

 = × ⋅ 

+

+ 
− 

+ Δ

− Δ



( ),tot SE SE

V
J M 



 (15.1) 

 
and the (15.1) can also be simply rewritten as the following 
operator form. 
 
 ( )2 ,out out SE SEP P J M=  (15.2) 

 

C. The operator form III of output power. 

By inserting the (12) and (13) into the (9) and employing the 
relation (8), the output power outP  can be expressed as the 
function of surface equivalent sources SEJ  and SEM  as follows 
 

( ) ( ) ( )
( ) ( ) ( )

1 2 , , ,

1 2 , , ,

out inp vop SE SE inc SE SE

V

inc SE SE vm SE SE

V

P P J J M E J M

H J M M J M

−

−

= =

+
 (16.1) 

 
and the (16.1) can also be simply rewritten as the following 
operator form. 
 
 ( )3 ,out out SE SEP P J M=  (16.2) 

 

D. The uniform form for the output power operators (14.2), 
(15.2), and (16.2). 

It is obvious that 
 
 ( ) ( ) ( )1 2 3, , ,out SE SE out SE SE out SE SEP J M P J M P J M= =  (17) 

 
though the mathematical expressions of the operators in (14.2), 
(15.2), and (16.2) are different from each other. In the 
following discussions, the above three output power operators 
are uniformly written as the following (18). 
 
 ( ),out out SE SEP P J M=  (18) 

 
In fact, all other powers which are intrinsically related to the 

material scatterer as discussed in Appendixes A and B can also 
be expressed as the functions of surface equivalent sources SEJ  
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and SEM , and they are not repeated here. 
 
 

IV. THE MATRIX FORMS FOR OUTPUT POWER 

In this section, several matrix forms for the output power 
outP  are provided. 

A. The matrix forms for output power. 

The surface equivalent source SEC  is expanded in terms of 
the basis function set { }

1

C
Cbξ ξ

Ξ

=
 as follows 

 

 
1

C

SE C C C CC a b B aξ ξ
ξ

Ξ

=

= = ⋅  (19) 

 
here ,C J M= , and the symbol “ ⋅ ” in (19) represents matrix 
multiplication, and 
 
 1 2, , , C

C C C CB b b b
Ξ

 =    (20.1) 

 1 2, , , C

TC C C Ca a a a
Ξ

 =    (20.2) 

 
In (20), the superscript “ T ” represents the transpose of related 
matrix. 

Inserting the (19) into (18), the output power outP  can be 
written as the following matrix form. 
 

 out H outP a P a= ⋅ ⋅  (21) 

 
here 
 

 
J

M

a
a

a

 
=  

 
 (22.1) 

 
out out

JJ JMout

out out
MJ MM

P P
P

P P

 
 =
  

 (22.2) 

 
and 
 

 , C C

out out
C C C CP p ξζ ′ ′′′ ′′ ′ ′′ Ξ ×Ξ

 =    (23) 

 
here , ,C C J M′ ′′ = , and 1, 2, , Cξ ′= Ξ , and 1, 2, , Cζ ′′= Ξ . 

In the (23), 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

, 1 2 ,

1 2 ,

1 2 ,

1 2 ,

out vop C tot C
C C

V

tot C vm C

V

vop C sca C

V

sca C vm C

V

p J b E b

H b M b

J b E b

H b M b

ξζ ξ ζ

ξ ζ

ξ ζ

ξ ζ

′ ′′
′ ′′ −

′ ′′
−

′ ′′
−

′ ′′
−

=

+

−

−

 (24.1) 

 
for the operator form I given in (14), or 
 

( ) ( ) ( ){ }
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

,

0

0

1 2

1 2 ,

2 1 4 ,

1 4 ,

2 1 4 ,

1 4 ,

out sca C sca C
C C V

tot C tot C

V

sca C sca C

V

sca C sca C

V

tot C tot C

V

tot C tot C

V

p E b H b dS

E b E b

j H b H b

E b E b

j H b H b

E b E b

ξζ ζ ξ

ξ ζ

ξ ζ

ξ ζ

ξ ζ

ξ ζ

σ

ω μ

ε

ω μ

ε

∗′′ ′
′ ′′ + +∂

′ ′′
− −

′ ′′
− −

′ ′′
− −

′ ′′
− −

′ ′′
− −

 = × ⋅ 

+

+ 
− 

+ Δ
− Δ 



 (24.2) 

 
for the operator form II given in (15), or 
 

( ) ( ) ( ) ( ),

1 1
, ,

2 2
out vop C inc C inc C vm C
C C

V V
p J b E b H b M bξζ ξ ζ ξ ζ

′ ′′ ′ ′′
′ ′′ − −= +  (24.3) 

 
for the operator form III given in (16). In (24.1), 

( ) ( ),0;vop J vop JJ b J b rξ ξ= , and ( ) ( )0, ;vop M vop MJ b J b rξ ξ= , and the 
other symbols can be similarly explained. 

B. The improved matrix forms for output power. 

Because the scattering sources don’t distribute on the 
boundary V∂  as explained in Appendix C, the surface 
equivalent sources satisfy the following surface electric field 
integral equation for any r V∈∂ . 
 

 ( ) ( )tan tan

, ; , ;sca SE SE sca SE SE

r r V r r V
E J M r E J M r

+ −
+ + − −→ ∈∂ → ∈∂

   =     (25) 

 
here 3 \r V+ ∈ , and r V− ∈ ; the superscript “ tan ” and the 
subscript “ r r V± → ∈∂ ” represent that the above equation is 
satisfied by the tangential field component on the boundary V∂ , 
and the relevant operators in (25) are defined in (10). 

Of course, a similar equation can be established for the 
scattering magnetic field. 

Inserting (19) into (25), the following equation is derived. 
 

 

( ) ( )

( ) ( )

tan

1 1

tan

1 1

,0; 0, ;

,0; 0, ;

J M

J M

J sca J M sca M

r r V

J sca J M sca M

r r V

a E b r a E b r

a E b r a E b r

ζ ζ ζ ζ
ζ ζ

ζ ζ ζ ζ
ζ ζ

+

−

Ξ Ξ

+ + + +
= = → ∈∂

Ξ Ξ

− − − −
= = → ∈∂

 
+ 

 

 
= + 

 

 

 
 (26) 

 
By making the inner products of (26) with bξ

Φ  over V∂ , here 
1,2, ,ξ Φ= Ξ , the following matrix equation is constructed. 

 

 ; ; ; ;
sca J sca M sca J sca M

J M J ME a E a E a E a+ Φ + Φ − Φ − Φ⋅ + ⋅ = ⋅ + ⋅  (27) 

 
here MΦ =  or J , and 
 

 ; ; ; C

sca sca
C CE e ξζ Φ± Φ ± Φ Ξ ×Ξ

 =    (28.1) 

 
in which ,C J M= , and 
 

 ( ) ( ); ; , ;sca sca C
C

V
e b r E b rξζ ξ ζ

Φ
± Φ ± ± ∂

=  (28.2) 
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In (28.2), r r V± → ∈∂ ; ( ) ( ); ,0;sca J sca JE b r E b rζ ζ± ± ± ±= , and 
( ) ( ); 0, ;sca M sca ME b r E b rζ ζ± ± ± ±= . 

From (27), the following transformation relation is derived. 
 

 C Ca T aΦ →Φ= ⋅  (29) 

 
here ( ) ( ), ,C M JΦ =  or ( ),J M , and it depends on whether 

MΦ =  or JΦ =  in (27). In (29), 
 

 ( ) ( )1

; ; ; ;
C sca sca sca sca

C CT E E E E
−

→Φ
+ ΦΦ − ΦΦ − Φ + Φ= − ⋅ −  (30) 

 
in which the superscript “ 1− ” represents the inverse of matrix. 

The relation (30) is valuable for the surface equivalent 
source-based MoM formulation of material scattering problem, 
such as the PMCHWT-based MoM [5], [14]-[15], because the 
(30) makes the unknowns be reduced to the half of original. In 
fact, the relation (30) is also indispensable for the surface 
equivalent source-based CMT for material bodies, such as the 
Mat-PMCHWT-CMT [5], [8]-[9] and the Surf-Mat-EMP-CMT 
developed in this paper, and the reason can be found in [8]-[9] 
and the following parts of this section. 

By inserting the (29) into (21), the outP  can be rewritten as 
 

 ( ) ( )Hout C C out C
CP a a P a= ⋅ ⋅  (31) 

 
here C J=  or C M= , and it depends on whether MΦ =  or 

JΦ =  in (27). In (31), 
 

 

H

out out
J

J M J M

I I
P P

T T→ →

   
   = ⋅ ⋅
      

 (32.1) 

 

H
M J M J

out out
M

T T
P P

I I

→ →   
   = ⋅ ⋅
      

 (32.2) 

 
The I  in (32) is identity matrix. 

C. The Hermitian decomposition for matrix out
CP . 

Similarly to the papers [10] and [11], if the matrix out
CP  is 

decomposed as follows 
 

 ; ;
out out out

C C CP P j P+ −= +  (33) 
 
here 
 

 ( );

1

2

H
out out out

C C CP P P+
 = +  

 (34.1) 

 ( );

1

2

H
out out out

C C CP P P
j−
 = −  

 (34.2) 

 
then [11] 
 

 
( ){ } ( ) ( )

( )

, ,

;

Re out C sca rad C tot loss C

HC out C
C

P a P a P a

a P a+

= +

= ⋅ ⋅
 (35.1) 

 
( ){ } ( ) ( )

( )

, , , ,

;

Im out C sca react vac C tot react mat C

HC out C
C

P a P a P a

a P a−

= +

= ⋅ ⋅
 (35.2) 

 
In fact, if the decomposition (33) is directly applied to the 

matrix outP  in the absence of relation (29), neither the positive 
definiteness nor semi-definiteness of matrix ( )1 2 ( )out out HP P +   
can be guaranteed, and the reason can be found in [11]. 
However, it must be clearly pointed out here that the relation 
(29), which is used to relate the SEJ  with SEM  in this paper, is 
essentially different from the relation used in [8] and [9]. 
 
 

V. SURF-MAT-EMP-CMT 

The Output CM (OutCM) set and corresponding modal 
expansion method are provided in this section. The 
fundamental principles and procedures to construct the OutCM 
set are similar to the Vol-Mat-EMP-CMT [11], so only some 
important conclusions and formulations corresponding to the 
surface equivalent source-based OutCM set are simply given as 
follows. 

A. Output power CM (OutCM) set. 

When the matrix ;
out

CP +  is positive definite at frequency f , the 
OutCM set can be obtained by solving the following 
generalized characteristic equation [10]-[11], [20]. 
 

 ( ) ( ) ( ) ( ) ( ); ;
out C out C

C CP f a f f P f a fξ ξ ξλ− +⋅ = ⋅  (36) 

 
When the matrix ;

out
CP +  is positive semi-definite at frequency 0f , 

the modal vectors can be obtained by using the following 
limitations [10]-[11]. 
 
 ( ) ( )

0
0 limC C

f f
a f a fξ ξ→

=  (37) 

 
for any 1,2, , Cξ = Ξ . 

The surface equivalent modal currents are as follows for any 
1,2, , Cξ = Ξ . 

 
 SE J JJ B aξ ξ= ⋅  (38.1) 

 SE M J M JM B T aξ ξ
→= ⋅ ⋅  (38.2) 

 
when MΦ =  in (27), or 
 

 SE J M J MJ B T aξ ξ
→= ⋅ ⋅  (39.1) 

 SE M MM B aξ ξ= ⋅  (39.2) 

 
when JΦ =  in (27). The scattering modal currents 
corresponding to above surface equivalent modal currents are 
 
 ( ) ( ) ( ), ; ,vop vop SE SEJ r J J M r r Vξ ξ ξ= ∈  (40.1) 

 ( ) ( ) ( ), ; ,vm vm SE SEM r M J M r r Vξ ξ ξ= ∈  (40.2) 
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and relevant operators are defined as (13). Various modal fields 
corresponding to the above modal currents are as follows 
 
 ( ) ( ) ( )3, ; ,sca sca SE SEF r F J M r rξ ξ ξ= ∈  (41) 

 ( ) ( ) ( ), , ; ,tot tot SE SEF r F J M r r Vξ ξ ξ− −= ∈  (42) 

 ( ) ( ) ( ), , ; ,inc inc SE SEF r F J M r r Vξ ξ ξ− −= ∈  (43) 

 
here the relevant operators are defined as (10)-(12). 

Above modal currents and modal fields satisfy the following 
power orthogonality [11]. 
 

( ); , ; , ; , , ; , ,

out out

out out out out
sca rad tot loss sca react vac tot react mat

P P

P P j P P

ξ ξζ ξζ

ξζ ξζ ξζ ξζ

δ =

= + + +
 (44) 

 
In (44), the ξζδ  is Kronecker delta symbol, and 
 

 
{ } { }

( ); , ; , ; , , ; , ,

Re Imout out out

out out out out
sca rad tot loss sca react vac tot react mat

P P j P

P P j P P

ξ ξ ξ

ξ ξ ξ ξ

= +

= + + +
 (45) 

 
and 
 

 , ,

1 1
, ,

2 2
out vop inc inc vm

V V
P J E H Mξζ ξ ζ ξ ζ− −= +  (46.1) 

 ( ); ,

1

2
out sca sca

sca rad S
P E H dSξζ ζ ξ

∞

∗ = × ⋅    (46.2) 

 ; , , ,

1
,

2
out tot tot

tot loss V
P E Eξζ ξ ζσ − −=   (46.3) 

 
3 3; , , 0 0

1 1
2 , ,

4 4
out sca sca sca sca

sca react vacP H H E Eξζ ξ ζ ξ ζω μ ε = −   
 (46.4) 

 ; , , , , , ,

1 1
2 , ,

4 4
out tot tot tot tot

tot react mat V V
P H H E Eξζ ξ ζ ξ ζω μ ε− − − −

 = Δ − Δ  
 (46.5) 

 
In (45), ; , ; ,

out out
sca rad sca radP Pξ ξξ= , ; , ; ,

out out
tot loss tot lossP Pξ ξξ= , ; , , ; , ,

out out
sca react vac sca react vacP Pξ ξξ= , 

and ; , , ; , ,
out out
tot react mat tot react matP Pξ ξξ= . 

B. OutCM-based modal expansion method. 

Because of the completeness of the OutCM set [10]-[11], 
[20], the surface equivalent currents { },SE SEJ M , the scattering 
currents { },vop vmJ M , the scattering fields { },sca scaE H  in 3 , and 
the fields { },inc incE H  and { },tot totE H  in V  can be expanded in 
terms of the OutCM set as follows 
 

 
( ) ( )

( ) ( )
( )1

1

,

C

C

SE SE

SE SE

J r c J r

r V

M r c M r

ξ ξ
ξ

ξ ξ
ξ

Ξ

=

Ξ

=

=
∈∂

=




 (47) 

and 

 
( ) ( )

( ) ( )
( )1

1

,

C

C

vop vop

vm vm

J r c J r

r V

M r c M r

ξ ξ
ξ

ξ ξ
ξ

Ξ

=

Ξ

=

=
∈

=




 (48) 

and 

 ( ) ( ) ( )3

1

,
C

sca scaF r c F r rξ ξ
ξ

Ξ

=

= ∈   (49) 

and 

 
( ) ( )

( ) ( )
( )

,
1

,
1

,

C

C

inc inc

tot tot

F r c F r

r V

F r c F r

ξ ξ
ξ

ξ ξ
ξ

Ξ

− −
=

Ξ

− −
=

=
∈

=




 (50) 

 
here ,F E H= ; C JΞ = Ξ  or C MΞ = Ξ , and it depends on whether 

MΦ =  or JΦ =  in (27). Based on the power orthogonality for 
OutCM set, the output power can be expanded as 
 

 

{ } { }

2

1

2 2

1 1

2 2

; , ; ,
1 1

2 2

; , , ; , ,
1 1

Re Im

C

C C

C C

C C

out out

out out

out out
sca rad tot loss

out out
sca react vac tot react mat

P c P

c P j c P

c P c P

j c P c P

ξ ξ
ξ

ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ
ξ ξ

Ξ

=

Ξ Ξ

= =

Ξ Ξ

= =

Ξ Ξ

= =

=

= +

 
= +  

 
 

+ +  
 



 

 

 

 (51) 

 
In (51), the terms corresponding to loss will disappear, if the 
material scatterer is lossless. 

C. Expansion coefficients. 

When the excitation incF  is given, the input power inpP  and 
output power outP  can be respectively written as the following 
(52.1) and (52.2) based on the (9), (16), (19), and (29). 
 

 
( )

( ) ( )1 1
, ,

2 2

inp SE

vop SE inc inc vm SE

V V

P C

J C E H M C

=

= +


 (52.1) 

 ( )3
out out SEP P C=   (52.2) 

 
In (52), C J=  or C M= , and it depends on whether MΦ =  or 

JΦ =  in (27). The incE  and incH  in (52.1) are known. 
Based on the (52), the conservation law of energy (8), and 

the variational principle [21], the SEC  will make the following 
functional be zero and stationary. 
 
 ( ) ( ) ( )3

SE SE out SEC C P C= −   (53) 

 
Inserting the (47) into (53) and employing the Ritz’s procedure 
[22], the following simultaneous equations for the expansion 
coefficients { }

1

C

cξ ξ

Ξ

=
 are derived for any 1,2, , Cξ = Ξ . 

 

 , ,
1 1

, ,
1 1

1 1
, ,

2 2

1 1
, ,

2 2

1 1
, ,

2 2

C C

C C

vop inc inc vm

V V

vop inc inc vm

V V

vop inc inc vm

V V

J E H M

J c E H c M

c J E c H M

ξ ξ

ξ ζ ζ ξ ζ ζ
ζ ζ

ζ ζ ξ ζ ζ ξ
ζ ζ

Ξ Ξ

− −
= =

Ξ Ξ

− −
= =

+

= +

+ +

 

 

 (54.1) 
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and 
 

 , ,
1 1

, ,
1 1

1 1
, ,

2 2

1 1
, ,

2 2

1 1
, ,

2 2

C C

C C

vop inc inc vm

V V

vop inc inc vm

V V

vop inc inc vm

V V

J E H M

J c E H c M

c J E c H M

ξ ξ

ξ ζ ζ ξ ζ ζ
ζ ζ

ζ ζ ξ ζ ζ ξ
ζ ζ

Ξ Ξ

− −
= =

Ξ Ξ

− −
= =

− +

= − −

+ +

 

 

 (54.2) 

 
By solving the (54), the coefficient { }

1

C

cξ ξ

Ξ

=
 can be determined. 

If the orthogonality in (46) is utilized in (54), the coefficient 
{ }

1

C

cξ ξ

Ξ

=
 can be concisely written as the following (55) for any 

1,2, , Cξ = Ξ . 
 

( )

( )

( )

( )

1 1
, , 0, 0

2

1 1
, , 0, 0

2

1 1 1 1
, , , , 0

2 2

0 , , 0

vop inc
cout V

inc vm
cout V

vop inc inc vm
cout outV V

c

J E
P

H M
P

c

J E H M
P P

ξ
ξ

ξ
ξ

ξ

ξ ξ
ξ ξ

μ ε

μ ε

μ ε

μ ε

∗

∗

 ⋅ Δ = Δ ≠

  

⋅ Δ ≠ Δ =  
   = 

 
⋅ = ⋅ Δ Δ ≠ 

   

 Δ Δ =

(55) 

 
 

VI. THE IMPEDANCE AND ADMITTANCE OF MATERIAL 

ELECTROMAGNETIC SYSTEMS 

Following the ideas of [10], the surface equivalent source 
can be normalized as follows 
 

 ( ) ( )
( ) ( )1 2 ,
1 2 ,

SE
SE

SE SE

V

J r
J r r V

J J
∂

∈∂   (56) 

 
if MΦ =  in (27), or as follows 
 

 ( ) ( )
( ) ( )1 2 ,
1 2 ,

SE
SE

SE SE

V

M r
M r r V

M M
∂

∈∂


 (57) 

 
if JΦ =  in (27). 

Based on the (56), the various fields, the scattering currents, 
and the system output power are automatically normalized as 
the following (58)-(62) because of the (10)-(13) and (18). 
 

 ( ) ( )
( ) ( )3

1 2

;
,

1 2 ,

sca SE

sca

SE SE

V

F J r
F r r

J J
∂

= ∈   (58) 

 ( ) ( )
( ) ( )1 2

;
,

1 2 ,

tot SE

tot

SE SE

V

F J r
F r r V

J J

−
−

∂

= ∈  (59) 

 ( ) ( )
( ) ( )1 2

;
,

1 2 ,

inc SE

inc

SE SE

V

F J r
F r r V

J J

−
−

∂

= ∈  (60) 

 ( ) ( )
( ) ( )1 2

;
,

1 2 ,

vop SE

vop

SE SE

V

J J r
J r r V

J J
∂

= ∈  (61.1) 

 ( ) ( )
( ) ( )1 2

;
,

1 2 ,

vm SE

vm

SE SE

V

M J r
M r r V

J J
∂

= ∈  (61.2) 

 
and 
 

 
( )

( )1 2 ,

out SE

out

SE SE

V

P J
P

J J
∂

=  (62) 

 
In (58)-(62), the SEM  has been expressed as the function of 

SEJ  based on (19) and (29), so only the SEJ  explicitly appears. 
Based on the (57), the various fields, the scattering currents, 

and the system output power are automatically normalized as 
the following (63)-(67) because of the (10)-(13) and (18). 
 

 ( ) ( )
( ) ( )3

1 2

;
,

1 2 ,

sca SE

sca

SE SE

V

F M r
F r r

M M
∂

= ∈


 (63) 

 ( ) ( )
( ) ( )1 2

;
,

1 2 ,

tot SE

tot

SE SE

V

F M r
F r r V

M M

−
−

∂

= ∈


 (64) 

 ( ) ( )
( ) ( )1 2

;
,

1 2 ,

inc SE

inc

SE SE

V

F M r
F r r V

M M

−
−

∂

= ∈


 (65) 

 ( ) ( )
( ) ( )1 2

;
,

1 2 ,

vop SE

vop

SE SE

V

J M r
J r r V

M M
∂

= ∈


 (66.1) 

 ( ) ( )
( ) ( )1 2

;
,

1 2 ,

vm SE

vm

SE SE

V

M M r
M r r V

M M
∂

= ∈


 (66.2) 

 
and 
 

 
( )

( )1 2 ,

out SE

out

SE SE

V

P M
P

M M
∂

=


 (67) 

 
In the (63)-(67), the SEJ  has been expressed as the function of 

SEM  based on (19) and (29), so only the SEM  appears 
explicitly. 

Obviously, the dimension of ( )out SEP J  is Ohm, and the 
dimension of ( )out SEP M


 is Siemens. Based on this, the 

impedance and admittance of material system can be defined as 
the following (68) and (69) respectively. 
 
 ( ) ( )SE out SEZ J P J  (68) 

 ( ) ( )SE out SEY M P M


 (69) 

 
The real and imaginary parts of ( )SEZ J  are called as system 
resistance and reactance, and the real and imaginary parts of 

( )SEY M  are called as system conductance and susceptance, and 
they are respectively denoted as follows 
 

 ( ) ( ){ }ReSE SER J Z J=  (70.1) 

 ( ) ( ){ }ImSE SEX J Z J=  (70.2) 
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and 
 

 ( ) ( ){ }ReSE SEG M Y M=  (71.1) 

 ( ) ( ){ }ImSE SEB M Y M=  (71.2) 

 
In fact, the modal currents, fields, and powers can be 

similarly normalized as system currents, fields, and powers in 
(58)-(67), and the modal impedance (resistance and reactance) 
and admittance (conductance and susceptance) can be similarly 
introduced as (68)-(71). 
 
 

VII. CONCLUSIONS 

Just like the previous PEC-EMP-CMT and 
Vol-Mat-EMP-CMT, the CM sets derived from 
Surf-Mat-EMP-CMT can reveal the system’s inherent 
characteristics to utilize various electromagnetic energies. 

The physical effectiveness of Surf-Mat-EMP-CMT is the 
same as the Vol-Mat-EMP-CMT. For example, the 
Surf-Mat-EMP-CMT is applicable not only to the material 
bodies placed in vacuum, but also to the ones surrounded by 
any electromagnetic environment; any kind of power-based 
CM set constructed in Vol-Mat-EMP-CMT can also be derived 
from Surf-Mat-EMP-CMT. However, the 
Surf-Mat-EMP-CMT is more advantageous than the 
Vol-Mat-EMP-CMT in some aspects, such as saving 
computational resources and avoiding to compute the modal 
scattering field in source region etc. 

An efficient way to establish the relation between the surface 
equivalent electric and magnetic currents on the boundary of 
material body is provided in this paper. The relation is valuable 
for the surface equivalent source-based MoM for material 
scattering problem, because the unknowns are reduced to the 
half of original. The relation is also indispensable for the 
surface equivalent source-based formulation of the CMT for 
material bodies, because the unrelated surface equivalent 
electric and magnetic currents will lead to unphysical fields. 

In addition, a surface equivalent source-based variational 
formulation for the scattering problem of material bodies is 
provided based on the conservation law of energy, and the 
field-based definitions for the impedance and admittance of 
material systems are introduced in this paper. 
 
 

APPENDIXES 

In this section, some valuable principles and formulations 
related to the theory developed in this paper are provided. Some 
conclusions given in this section can be found in many classical 
textbooks on electromagnetics, and to specifically list them 
here is for the convenience of the discussions in this paper. 

A. Poynting’s theorem. 

The Maxwell’s equations for the scattering fields { },sca scaE H  
generated by material scatterer are as follows [13]-[14] 

 0
sca vop scaH J j Eωε∇ × = +  (A-1.1) 

 0
sca vm scaE M j Hωμ∇ × = − −  (A-1.2) 

 
here 
 
 vop vo vpJ J J= +  (A-2.1) 
 vm totM j Hω μ= Δ  (A-2.2) 

 
in which vo totJ Eσ= , and vp totJ j Eω ε= Δ , so vop tot

cJ j Eω ε= Δ . In 
the (A-1) and (A-2), 0μ μ μΔ = − , 0ε ε εΔ = − , and 0c cε ε εΔ = − ; 
the c jε ε σ ω= +  is complex permittivity; the ε  and 0ε  are the 
permitivities in scatterer and vacuum; the μ  and 0μ  are the 
permeabilities in scatterer and vacuum; the σ  is the electric 
conductivity in scatterer, and its vacuum version is zero. The 

2 fω π=  is angle frequency, and the f  is frequency. 
Multiplying the complex conjugate of (A-1.1) with scaE  and 

doing some necessary simplifications, the following relation is 
obtained [15]. 
 

 

( )( ) ( )( )
( ) ( )

( )( ) ( ) ( )0 0

1 2 1 2

1 2

2 1 4 1 4

vop sca sca vm

sca sca

sca sca sca sca

J E H M

E H

j H H E Eω μ ε

∗ ∗

∗

∗ ∗

− ⋅ − ⋅

 = ∇ ⋅ ×  
 + ⋅ − ⋅  

 (A-3) 

 
here the symbol “ × ” is the cross product for field vectors. 

If the (A-3) is integrated on whole space 3 , the following 
Poynting’s theorem can be obtained [15]. 
 

 , , ,1 1
, ,

2 2
vop sca sca vm sca rad sca react vac

V V
J E H M P j P− − = +  (A-4) 

 
here 
 

 ( ) ( ), 1 2sca rad sca sca

S
P E H dS

∞

∗ = × ⋅    (A-5.1) 

 ( ), , , ,2sca react vac sca vac sca vac
m eP W Wω= −  (A-5.2) 

 
and 
 
 ( ) 3

,
01 4 ,sca vac sca sca

mW H Hμ=


 (A-6.1) 

 ( ) 3

,
01 4 ,sca vac sca sca

eW E Eε=


 (A-6.2) 

 
and the S∞  is a closed spherical surface at infinity. 

If the (A-3) is integrated over whole scatterer V  and the 
divergence theorem is employed, the following relation is 
derived. 
 

 
( ) ( )

( ) ( ) , ,

1 2 , 1 2 ,

1 2

vop sca sca vm

V V

sca sca sca react vac
VV

J E H M

E H dS j P
∗

∂

− −

 = × ⋅ +  
 (A-7) 

 
here 
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 ( ), , , ,
, ,2sca react vac sca vac sca vac

V m V e VP W Wω= −  (A-8) 

 
and 
 
 ( ),

, 01 4 ,sca vac sca sca
m V V

W H Hμ=  (A-9.1) 

 ( ),
, 01 4 ,sca vac sca sca

e V V
W E Eε=  (A-9.2) 

 
Comparing the (A-4) with (A-7) and considering of that the 

,sca radP , , ,sca react vacP , and , ,sca react vac
VP  are real numbers, it is 

immediately found out that [15] 
 

 ( ) ( ){ } ,Re 1 2 sca sca sca rad

V
E H dS P

∗

∂
 × ⋅ =    (A-10.1) 

 ( ) ( ){ } 3
, ,

\
Im 1 2 sca sca sca react vac

VV
E H dS P

∗

∂
 × ⋅ =     (A-10.2) 

 
here 
 

 ( )3 3 3

, , , ,

\ , \ , \
2sca react vac sca vac sca vac

V m V e V
P W Wω= −
  

 (A-11) 

 
and 
 
 ( )3 3

,
0, \ \

1 4 ,sca vac sca sca

m V V
W H Hμ= 

 (A-12.1) 

 ( )3 3

,
0, \ \

1 4 ,sca vac sca sca

e V V
W E Eε=

 
 (A-12.2) 

 
The symbol “ 3 \ V ” is the whole space except the V . 

In addition, it is obvious that 
 
 3

, , , , , ,

\

sca react vac sca react vac sca react vac
V V

P P P= + 
 (A-13) 

 

B. Various electromagnetic powers related to material bodies. 

The various electromagnetic powers related to the material 
scatterer can be divided into the following four categories: the 
lossy powers, the radiated powers carried by radiative fields, 
the reactive powers due to the energies stored in non-radiative 
fields (simply called as reactively stored powers in fields), and 
the reactive powers due to the energies stored in matter (simply 
called as reactively stored powers in matter) [16]-[18]. The 
former two kinds are collectively referred to as active powers, 
and the latter two kinds are collectively referred to as reactive 
powers. 

If the material scatterer is regarded as a whole object, there 
exist only two kinds of fields in 3 , that are the scaF  generated 
by scatterer and the incF  generated by external sources. The 

scaF  and incF  respectively contribute all kinds of powers 
mentioned above, and they are detailedly listed as below. 

1) The active powers 
(1.1) The radiated powers include the ,sca radP  carried by scaF , 

the ,inc radP  carried by incF , and the ,coup radP  corresponding to 
the coupling between scaF  and incF  on the surface S∞ . The 

,sca radP  is given in (A-5.1), and the mathematical expressions 
for ,inc radP  and ,coup radP  are expressed as follows 
 

( ), 1

2
inc rad inc inc

S
P E H dS

∞

∗ = × ⋅    (B-1.1) 

( ) ( ), 1 1

2 2
coup rad sca inc inc sca

S S
P E H dS E H dS

∞ ∞

∗ ∗   = × ⋅ + × ⋅          (B-1.2) 

 
(1.2) The lossy powers include the ,sca lossP  dissipated by scaF , 

the ,inc lossP  dissipated by incF , and the ,coup lossP  corresponding to 
the coupling between scaF  and incF . Their mathematical 
expressions are as follows 
 
 ( ), 1 2 ,sca loss sca sca

V
P E Eσ=  (B-2.1) 

 ( ), 1 2 ,inc loss inc inc

V
P E Eσ=  (B-2.2) 

 ( ) ( ), 1 2 , 1 2 ,coup loss sca inc inc sca

V V
P E E E Eσ σ= +  (B-2.3) 

 
It is obvious that 
 
 , , , ,tot loss sca loss inc loss coup lossP P P P= + +  (B-3) 

 
here the ,tot lossP  is given in (4.1). 

2) The reactive powers 
(2.1) The reactively stored powers in various fields include 

the , ,sca react vacP  in (A-5.2), the , ,inc react vacP  which is the reactively 
stored power in incF , and the , ,coup react vacP  corresponding to the 
coupling between scaF  and incF  in 3 . The mathematical 
expressions for , ,inc react vacP  and , ,coup react vacP  are as follows 
 

3 3

, ,
0 0

1 1
2 , ,

4 4
inc react vac inc inc inc incP H H E Eω μ ε = −   

 (B-4.1) 

3 3

3 3

, ,
0 0

0 0

1 1
2 , ,

4 4

1 1
, ,

4 4

coup react vac sca inc sca inc

inc sca inc sca

P H H E E

H H E E

ω μ ε

μ ε

= −
+ − 

 

 

 (B-4.2) 

 
(2.2) The reactively stored powers in matter include the 

, ,sca react matP  due to the interaction between scaF  and scatterer, 
the , ,inc react matP  due to the interaction between incF  and scatterer, 
and the , ,coup react matP  due to the coupling between scaF  and incF . 
The mathematical expressions for these reactive powers are 
given as follows 
 

, , 1 1
2 , ,

4 4
sca react mat sca sca sca sca

V V
P H H E Eω μ ε = Δ − Δ  

 (B-5.1) 

, , 1 1
2 , ,

4 4
inc react mat inc inc inc inc

V V
P H H E Eω μ ε = Δ − Δ  

 (B-5.2) 

, , 1 1
2 , ,

4 4

1 1
, ,

4 4

coup react mat sca inc sca inc

V V

inc sca inc sca

V V

P H H E E

H H E E

ω μ ε

μ ε

= Δ − Δ
+ Δ − Δ 

 (B-5.3) 

 
It is obvious that 
 
 , , , , , , , ,tot react mat sca react mat inc react mat coup react matP P P P= + +  (B-6) 
 
here the , ,tot react matP  is given in (4.2). 
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Obviously, the ,sca radP , ,sca lossP , ,inc lossP , ,coup lossP , , ,sca react vacP , 
, ,sca react matP , , ,inc react matP , and , ,coup react matP  are intrinsically related 

to the scatterer. However, the ,inc radP , ,coup radP , , ,inc react vacP , and 
, ,coup react vacP  are not intrinsically related to the scatterer [11]. 

C. The surface equivalent principle for material bodies. 

In any environment Ω  whose material parameters are { },ε μ  , 
the electromagnetic fields { },E H  related to the currents { },J M  
satisfy the following Maxwell’s equations. 
 

 
( ) ( ) ( )
( ) ( ) ( )

( ),
H r J r j E r

r
E r M r j H r

ωε

ωμ

∇ × = +
∈Ω

∇ × = − −



  (C-1) 

 
Various electromagnetic dyadic Green’s functions are 

defined as follows [19] 
 

 
( ) ( ) ( )
( ) ( )

, ,

, ,

JH JE

JE JH

G r r I r r j G r r

G r r j G r r

δ ωε

ωμ

′ ′ ′∇ × = − +

′ ′∇ × = −



  (C-2.1) 

 
for the Green’s functions corresponding to electric-type unity 
dyadic source, and 
 

 
( ) ( )
( ) ( ) ( )

, ,

, ,

MH ME

ME MH

G r r j G r r

G r r I r r j G r r

ωε

δ ωμ

′ ′∇ × =

′ ′ ′∇ × = − − −



  (C-2.2) 

 
for the Green’s functions corresponding to magnetic-type unity 
dyadic source. In (C-2), the ( )r rδ ′−  is Dirac delta function, 
and ,r r′∈ Ω . 

Inserting ( )P E r=  and ( ),JEQ G r r′=  into the following 
vector-dyadic Green’s theorem [19]. 
 

 
( ) ( )

( ) ( ){ }ˆ

P Q P Q d

n P Q P Q dS

Ω

→Ω∂Ω

 ⋅ ∇ × ∇ × − ∇ × ∇ × ⋅ Ω  

 = ⋅ × ∇ × + ∇ × ×  




 (C-3) 

 
and employing the (C-1) and (C-2), the following integral 
expression for the electric field E  at any position r  in domain 
Ω  is derived. 
 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

ˆ ,

ˆ ,

JE

JH

JE

JH

E r J r G r r d

M r G r r d

n H r G r r dS

E r n G r r dS

Ω ΩΩ

ΩΩ

→Ω Ω Ω∂Ω

Ω →Ω Ω∂Ω

′ ′ ′= + ⋅ Ω

′ ′ ′− ⋅ Ω

′ ′ ′ + × ⋅ 

′ ′ ′ − × ⋅ 








 (C-4.1) 

 
here ∂Ω  is the boundary of Ω . In the procedure to derive 
(C-4.1), the conclusion that there doesn’t exist surface 
magnetized magnetic current [13] has been utilized, and the 
sufficient differentiability for material parameters are assumed. 
If ( )P H r=  and ( ),MHQ G r r′=  are inserted into (C-3), the 
following integral expression for the magnetic field H  at any 
position r  in Ω  can be obtained. 
 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

,

ˆ ,

ˆ ,

ME

MH

ME

MH

H r J r G r r d

M r G r r d

n H r G r r dS

E r n G r r dS

Ω ΩΩ

ΩΩ

→Ω Ω Ω∂Ω

Ω →Ω Ω∂Ω

′ ′ ′= − ⋅ Ω

′ ′ ′+ ⋅ Ω

′ ′ ′ − × ⋅ 

′ ′ ′ + × ⋅ 








 (C-4.2) 

 
In the procedure to derive (C-4.2), the conclusion that there 
doesn’t exist surface ohmic and polarized electric currents [13] 
has been utilized. In (C-3) and (C-4), the n̂→Ω  is the unity 
normal vector at boundary ∂Ω , and it points to the interior of 
domain Ω . The subscripts “ Ω ” in (C-4) represent that the 
relevant expressions for fields and Green’s functions are only 
valid for the domain Ω . 

When the sources ( ) ( ){ },inc incJ r M r , which lead to the field 
incF , don’t distribute in scatterer, the total field totF  in V  

satisfies the following Maxwell’s equations [13]. 
 

 
( ) ( )
( ) ( )

( ),
tot tot

c

tot tot

H r j E r
r V

E r j H r

ωε

ωμ
− −

− −

∇ × =
∈

∇ × = −
 (C-5) 

 
or equivalently written as the following form 
 

 
( ) ( ) ( )
( ) ( ) ( )

( )0

0

,
tot vop tot

tot vm tot

H r J r j E r
r V

E r M r j H r

ωε

ωμ
− −

− −

∇ × = +
∈

∇ × = − −
 (C-5') 

 
The total field totF  in 3 \ V  satisfies the following Maxwell’s 
equations [13]. 
 

 
( ) ( ) ( )
( ) ( ) ( ) ( )0 3

0

, \
tot inc tot

tot inc tot

H r J r j E r
r V

E r M r j H r

ωε

ωμ
+ +

+ +

∇ × = +
∈

∇ × = − −
  (C-6) 

 
The above subscripts “ + ” and “ − ” represent that the relevant 
fields respectively correspond to the external and internal 
domains of scatterer. 

By inserting the (C-5) into (C-4), and restricting the region 
Ω  to V , the following integral expressions for totF−  can be 
derived. 
 

 
( ) ( ) ( )

( ) ( )

ˆ ,

ˆ ,

tot tot JE

V

tot JH

V

E r n H r G r r dS

E r n G r r dS

− − − −∂

− − −∂

′ ′ ′ = + × ⋅ 

′ ′ ′ − × ⋅ 






 (C-7.1) 

 
( ) ( ) ( )

( ) ( )

ˆ ,

ˆ ,

tot tot ME

V

tot MH

V

H r n H r G r r dS

E r n G r r dS

− − − −∂

− − −∂

′ ′ ′ = − × ⋅ 

′ ′ ′ + × ⋅ 






 (C-7.2) 

 
for any r V∈ . The n̂−  is the unity normal vector on V∂ , and 
points to the interior of V . The subscript “ − ” represents that 
the relevant Green’s functions correspond to the internal 
domain of scatterer. 

Inserting the (C-5') into (C-4), and restricting the Ω  to V , 
the following relations are obtained. 
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( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

,

,

ˆ ,

ˆ ,

tot vop JE

V

vm JH

V

tot JE

V

tot JH

V

E r J r G r r d

M r G r r d

n H r G r r dS

E r n G r r dS

−

− −∂

− −∂

′ ′ ′= + ⋅ Ω

′ ′ ′− ⋅ Ω

′ ′ ′ + × ⋅ 

′ ′ ′ − × ⋅ 








 (C-7.1') 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

,

,

ˆ ,

ˆ ,

tot vop ME

V

vm MH

V

tot ME

V

tot MH

V

H r J r G r r d

M r G r r d

n H r G r r dS

E r n G r r dS

−

− −∂

− −∂

′ ′ ′= − ⋅ Ω

′ ′ ′+ ⋅ Ω

′ ′ ′ − × ⋅ 

′ ′ ′ + × ⋅ 








 (C-7.2') 

 
for any r V∈ . 

Inserting the (C-6) into (C-4), and restricting the Ω  to 
3 \ V , and employing the Sommerfeld’s radiation conditions 

for the fields and various Green’s functions [19], the following 
integral expressions for totF+  are derived. 
 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

3

3

0\

0\

0

0

,

,

ˆ ,

ˆ ,

tot inc JE

V

inc JH

V

tot JE

V

tot JH

V

E r J r G r r d

M r G r r d

n H r G r r dS

E r n G r r dS

+

+ +∂

+ +∂

′ ′ ′= + ⋅ Ω

′ ′ ′− ⋅ Ω

′ ′ ′ + × ⋅ 

′ ′ ′ − × ⋅ 













 (C-8.1) 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

3

3

0\

0\

0

0

,

,

ˆ ,

ˆ ,

tot inc ME

V

inc MH

V

tot ME

V

tot MH

V

H r J r G r r d

M r G r r d

n H r G r r dS

E r n G r r dS

+

+ +∂

+ +∂

′ ′ ′= − ⋅ Ω

′ ′ ′+ ⋅ Ω

′ ′ ′ − × ⋅ 

′ ′ ′ + × ⋅ 













 (C-8.2) 

 
for any 3 \r V∈ . The n̂+  is the unity normal vector on V∂ , 
and points to the exterior of V . The subscripts “ 0 ” in Green’s 
functions represent that these functions are the vacuum 
versions. 

The Maxwell’s equations for incident field incF  can be 
written as the following (C-9) for any 3r ∈ . 
 

 
( ) ( ) ( )
( ) ( ) ( ) ( )0 3

0

,
inc inc inc

inc inc inc

H r J r j E r
r

E r M r j H r

ωε

ωμ

∇ × = +
∈

∇ × = − −
  (C-9) 

 
Inserting the (C-9) into (C-4), and letting the Ω  be whole 

space 3 , and employing the Sommerfeld’s radiation condition 
for the fields and various Green’s functions [19], the following 
integral expressions for incF  are obtained. 
 

 
( ) ( ) ( )

( ) ( )
3

3

0\

0\

,

,

inc inc JE

V

inc JH

V

E r J r G r r d

M r G r r d

′ ′ ′= + ⋅ Ω

′ ′ ′− ⋅ Ω








 (C-10.1) 

 
( ) ( ) ( )

( ) ( )
3

3

0\

0\

,

,

inc inc ME

V

inc MH

V

H r J r G r r d

M r G r r d

′ ′ ′= − ⋅ Ω

′ ′ ′+ ⋅ Ω








 (C-10.2) 

 
for any 3r ∈ . 

The scattering fields satisfy the following Maxwell’s 
equations for any 3r ∈  [14]-[15]. 
 

 
( ) ( ) ( )
( ) ( ) ( ) ( )0 3

0

,
sca vop sca

sca vm sca

H r J r j E r
r

E r M r j H r

ωε

ωμ

∇ × = +
∈

∇ × = − −
  (C-11) 

 
By repeating a similar procedure to derive (C-10), the 

following integral expressions for scaF  can be derived from 
(C-11). 
 

 
( ) ( ) ( )

( ) ( )
0

0

,

,

sca vop JE

V

vm JH

V

E r J r G r r d

M r G r r d

′ ′ ′= + ⋅ Ω

′ ′ ′− ⋅ Ω




 (C-12.1) 

 
( ) ( ) ( )

( ) ( )
0

0

,

,

sca vop ME

V

vm MH

V

H r J r G r r d

M r G r r d

′ ′ ′= − ⋅ Ω

′ ′ ′+ ⋅ Ω




 (C-12.2) 

 
for any 3r ∈ . 

Comparing of the (C-8) with (C-10) and considering of that 
tot inc scaF F F= + , the following integral expressions for scaF+  are 

obtained. 
 

 
( ) ( ) ( )

( ) ( )
0

0

ˆ ,

ˆ ,

sca tot JE

V

tot JH

V

E r n H r G r r dS

E r n G r r dS

+ + +∂

+ +∂

′ ′ ′ = + × ⋅ 

′ ′ ′ − × ⋅ 






 (C-13.1) 

 
( ) ( ) ( )

( ) ( )
0

0

ˆ ,

ˆ ,

sca tot ME

V

tot MH

V

H r n H r G r r dS

E r n G r r dS

+ + +∂

+ +∂

′ ′ ′ = − × ⋅ 

′ ′ ′ + × ⋅ 






 (C-13.2) 

 
for any 3 \r V∈ . 

Comparing of the (C-7') with (C-12), the following integral 
expressions for incF−  are obtained. 
 

 
( ) ( ) ( )

( ) ( )
0

0

ˆ ,

ˆ ,

inc tot JE

V

tot JH

V

E r n H r G r r dS

E r n G r r dS

− − −∂

− −∂

′ ′ ′ = + × ⋅ 

′ ′ ′ − × ⋅ 






 (C-14.1) 

 
( ) ( ) ( )

( ) ( )
0

0

ˆ ,

ˆ ,

inc tot ME

V

tot MH

V

H r n H r G r r dS

E r n G r r dS

− − −∂

− −∂

′ ′ ′ = − × ⋅ 

′ ′ ′ + × ⋅ 






 (C-14.2) 

 
for any r V∈ . 

Comparing the (C-7) with (C-14), the following integral 
expressions for scaF−  are derived. 
 

 
( ) ( ) ( )

( ) ( )

ˆ ,

ˆ ,

sca tot JE

V

tot JH

V

E r n H r G r r dS

E r n G r r dS

− − − −∂

− − −∂

′ ′ ′ = + × ⋅ Δ 

′ ′ ′ − × ⋅ Δ 






 (C-15.1) 

 
( ) ( ) ( )

( ) ( )

ˆ ,

ˆ ,

sca tot ME

V

tot MH

V

H r n H r G r r dS

E r n G r r dS

− − − −∂

− − −∂

′ ′ ′ = − × ⋅ Δ 

′ ′ ′ + × ⋅ Δ 






 (C-15.2) 

 
for any r V∈ , here 
 

 ( ) ( ) ( )0, , ,JE JE JEG r r G r r G r r− −′ ′ ′Δ = −  (C-16.1) 



R. Z. LIAN: SURFACE FORMULATIONS OF THE EMP-BASED CMT FOR MATERIAL BODIES 
 

12

 ( ) ( ) ( )0, , ,JH JH JHG r r G r r G r r− −′ ′ ′Δ = −  (C-16.2) 

 ( ) ( ) ( )0, , ,ME ME MEG r r G r r G r r− −′ ′ ′Δ = −  (C-16.3) 

 ( ) ( ) ( )0, , ,MH MH MHG r r G r r G r r− −′ ′ ′Δ = −  (C-16.4) 

 
In the (C-16), ,r r V′ ∈ . 

If the surface equivalent sources { },SE SEJ M± ±  are defined as 
follows 
 
 ( ) ( ) ( ) ( )ˆ ,SE tot

r r
J r n r H r r V

±
± ± ± ± →

 = × ∈∂   (C-17.1) 

 ( ) ( ) ( ) ( )ˆ ,SE tot

r r
M r E r n r r V

±
± ± ± ± →

 = × ∈∂   (C-17.2) 

 
and considering of that ( ) ( )tan tantot tot

r r V r r V
F r F r

+ −
+ + − −→ ∈∂ → ∈∂

=       , and 
( ) ( )ˆ ˆn r n r+ −= −  on whole V∂ , the following relations exist 

 
 ( ) ( ) ( ) ( ),SE SE SEJ r J r J r r V− += = − ∈∂  (C-18.1) 

 ( ) ( ) ( ) ( ),SE SE SEM r M r M r r V− += = − ∈ ∂  (C-18.2) 

 
and they are illustrated in Fig. 2. In (C-17), 3 \r V+ ∈ , and 
r V− ∈ . 

Inserting the (C-17) and (C-18) into the (C-13) and (C-15), 
the scaF  can be written as the following operator form. 
 

 

( ) ( )
( ) ( )
( ) ( )3

, ;

, ; ,

, ; , \

sca sca SE SE

sca SE SE

sca SE SE

F r F J M r

F J M r r V

F J M r r V

−

+

=

 ∈= 
∈ 

 (C-19) 

 
Inserting the (C-17) and (C-18) into the (C-7), the totF−  can 

be written as the following operator form. 
 
 ( ) ( ) ( ), ; ,tot tot SE SEF r F J M r r V− −= ∈  (C-20) 

 
Inserting the (C-17) and (C-18) into the (C-14), the incF−  can 

be written as the following operator form. 
 
 ( ) ( ) ( ), ; ,inc inc SE SEF r F J M r r V− −= ∈  (C-21) 

Based on the (C-20) and (A-2), the various scattering 
currents on scatterer can be written as the following operator 
forms for any r V∈ . 
 
 ( ) ( ) ( ), ;vo tot vo SE SEJ r E r J J M rσ −= =  (C-22.1) 

 ( ) ( ) ( ), ;vp tot vp SE SEJ r j E r J J M rω ε −= Δ =  (C-22.2) 

 ( ) ( ) ( ), ;vop tot vop SE SE
cJ r j E r J J M rω ε −= Δ =  (C-22.3) 

 ( ) ( ) ( ), ;vm tot vm SE SEM r j H r M J M rω μ −= Δ =  (C-22.4) 
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Fig. 2. The surface equivalent sources on the boundary of material scatterer. 
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