
Unbalanced Winternitz Si�natures

(Draft)

Santi J. Vives Macallini
@jotasapiens

http://jotasapiens.com

Abstract: We introduce 'uwots' (unbalanced Winternitz one-time si�natures): an optimized,
tweakable �eneralization of the Winternitz si�nature scheme.

Keywords: si�natures, hash, postquantum, crypto�raphy.

In this paper we will introduce uwots, a family of one-time, hash-based, di�ital si�natures. Uwots
is an optimized, tweakable �eneralization of the Winternitz si�nature scheme.

Winternitz One-Time Si�natures (wots)

In a wots scheme, the si�ner picks n numbers uniformly at random to create the private key v (at
the bottom of the �raph).

Then, a (keyed) one-way function is iterated over each of the numbers at the bottom to compute
the public key p at the top. The one-wayness of the function ensures the values at a lower level
cannot be computed from a hi�her one.

In order to si�n, the hash of a messa�e and a checksum are encoded as a list f, composed of n w-
bit numbers. The parameter w determines the compression level of the si�nature. The one-way
function is iterated over each part of the private key v, a number ot times determined by f.

1. Introduction

1.1 Concepts

http://twitter.com/jotasapiens
http://jotasapiens.com/

To verify, the iterations remainin� to reach the hi�her level are applied to the si�nature. The result
is compared a�ainst the public key p.

Unbalanced Winternitz One-Time Si�natures (uwots)

In the case of uwots, we encode the messa�e and the checksum as mix-radix numbers instead.
The different bases result in different (unbalanced) levels for different parts of the si�nature, as
seen in the �raph.

In the different sections of this paper, we will:

describe the mix-radix (unbalanced) �eneralization of the Winternitz one-time si�nature
scheme (2.2, 2.3, 2.4).

describe a method for findin� optimal parameters, that minimize the number of hash
evaluations (2.1, 3.).

show that the optimal parameters within the �eneralized form outperform wots, leadin� to
si�natures of the same size and reduced cost. (4.)

Uwots takes 2 parameters: Lp and bits.

An uwots si�nature with parameters (Lp, bits) is a one-time si�nature of len�th=Lp (measured in

hash outputs), capable of si�nin� at least 2bits distinct messa�es.

Computin� necessary constant from the parameters

Given the parameter Lp and a bits:

2. Description of the al�orithm

2.1 Parameters and constants

1. List all the ways sn that an inte�er Lp can be split in two parts: a main part LAB and a
checksum LCD:
s = (1, Lp-1), (2, Lp-2), (3, Lp-3), ..., (Lp-2, 2), (Lp-1, 1)
sn = (LAB, LCD)

2. For each sn = (LAB, LCD):

Compute the bases bA and bB, �iven by:
bA = ceil (2bits ^ (1 / LAB))
bB = bA - 1
Find the smallest inte�er LA >= 0 that satisfies:
bA ^ LA * bB ^ LB >= 2bits
Where, for each LA, LB is �iven by:
LB = LAB - LA
Compute zA and zB:
zA = bA - 1
zB = bB - 1
Compute the size of the checksum:
check = zA * LA + zB * LB
Compute the bases bC y bD:
bC = ceil (check ^ (1 / LCD))
bD = bC - 1
Find the smallest inte�er LC >= 0 that satisfies:
bC ^ LC * bD ^ LD >= check
Where, for each LC, LD is �iven by:
LD = LCD - LC
Compute zC and zD:
zC = bC - 1
zD = bD - 1
Compute the cost W of sn:
W = zA * LA + zB * LB + zC * LC + zD * LD

3. Pick the sn value with the minimal cost W.

4. Return the constants (LA, LB, LC, LD), (bA, bB, bC, bD) and (zA, zB, zC, zD) correspondin� to the
sn value we picked in step 3.

The constants Ln, bn, bn are expanded into the lists baseAB, baseCD, zetaAB, zetaCD, zeta as
followin�:

1. Define list (c, len�th) as a list with len�th copies of the element c. For example:
list (1, len�th=4) = 1, 1, 1, 1

2. Define the lists baseAB, baseCD, zetaAB, zetaCD and zeta as followin�:
baseAB = list (bA, len�th=LA) || list (bB, len�th=LB)
baseCD = list (bC, len�th=LC) || list (bD, len�th=LD)
zetaAB = list (zA, len�th=LA) || list (zB, len�th=LB)
zetaCD = list (zC, len�th=LC) || list (zD, len�th=LD)
zeta = zetaAB || zetaCD

Given (LA, LB) and (bA, bB):

1. Compute M:
M = bA ^ LA * bB ^ LB

2. Define the output size mbits of the one-way functions hashA and hashB:
mbits = len (binary (M - 1))

1. Generate the private key by pickin� numbers (with size=bits) uniformly at random:
priv = priv0, priv1, priv2,..., privlen�th-1
privn = urandom (bits)

2. For each privn, apply zetan iterations of a one-way function hashUp with output size bits:
pub = pub0, pub1, pub2,..., publen�th-1
pubn = hashUp (privn, iterations=zetan)

3. Publish the list pub as the public key.

Given a messa�e and a private key priv:

1. Compute the hash value h of the messa�e.
h = hashA (messa�e)

2. Given a counter n = 0, 1, ...

Compute
m = hashB (n || h)
until a value m is found that satisfies
m < M.

3. Represent m as a mix-radix number with bases baseAB:
uAB = mixradix (m, baseAB)

4. Compute the downs values dABn from each uABn value:
dAB = dAB0, dAB1, ..., dABLA+LB-1
dABn = zetaABn - uABn

2.2 Keys creation

2.3 Si�nin�

5. Compute the checksum, �iven by:
check = sum (dAB)

6. Represent check as a mix-radix number with bases baseCD:
uCD = mixradix (check, baseCD)

7. Compute the downs values dCDn from each uCDn value:
dCD = dCD0, dCD1, ..., dCDLC+LD-1
dCDn = zetaCDn - uCDn

8. Define the ups list (needed for si�nin�) as the concatenation of the two lists dAB and dCD:
ups = dAB || dCD

9. Apply upsn iterations of the one-way function hashUp to each privn in priv:
f = f0, f1, ..., flen�th-1
fn = hashUp (privn, iterations=upsn)

10. Publish (f, n) as the si�nature.

Given a messa�e, a si�nature (f, n) and a public key pub:

1. Compute the hash value h of the messa�e.
h = hashA (messa�e)

2. Compute the hash value m of the messa�e.
m = hashB (n || h)

3. Check that m < M.

4. Represent m as a mix-radix number with bases baseAB:
uAB = mixradix (m, baseAB)

5. Compute the downs values dABn from each uABn value:
dAB = dAB0, dAB1, ..., dABLA + LB - 1
dABn = zetaABn - uABn

6. Compute the checksum, �iven by:
check = sum (dAB)

7. Represent check as a mix-radix number with bases baseCD:
uCD = mixradix (check, baseCD)

8. Define the ups list (needed for verification) as the concatenation of the two lists uAB and
uCD:
ups = uAB || uCD

2.4 Verification

9. Apply upsn iterations of the one-way function hashUp to each fn:
t = t0, t1, ..., tlen�th-1
tn = hashUp (fn, iterations=upsn)

10. Check that t == pub.

11. The si�nature is valid if all test (steps 3 and 10) evaluate to true, invalid otherwise.

mixradix

Given a number and a list of bases b:

1. Set the variable n:
n = number

2. Create the empty tuple r:
r = ()

3. For each blast, .., b1, b0:
Compute
e = n mod bn
n = floor (n / bn)
Append e to the tuple r:
r = r || e

4. Return r as the result.

The table shows computed L, z values for parameters bits=256 and various len�ths Lp.
L = LA, LB, LC, LD
z = zA, zB, zC, zD

Other constants can be derived easily from them:
bn = zn + 1
M = bA ^ LA * bB ^ LB

(bits=256)

2.5 Auxiliary functions

3. Table of L, z constants

len�th L z

16 (15, 0, 1, 0) (137270, 137269, 2059049, 2059048)

20 (8, 10, 2, 0) (19112, 19111, 586, 585)

24 (10, 12, 2, 0) (3183, 3182, 264, 263)

28 (12, 14, 2, 0) (920, 919, 154, 153)

32 (16, 14, 1, 1) (370, 369, 105, 104)

40 (26, 12, 1, 1) (106, 105, 63, 62)

48 (17, 29, 1, 1) (47, 46, 46, 45)

56 (40, 14, 1, 1) (26, 25, 37, 36)

64 (21, 40, 1, 2) (18, 17, 10, 9)

80 (2, 75, 3, 0) (10, 9, 8, 7)

96 (82, 10, 4, 0) (6, 5, 4, 3)

112 (20, 88, 3, 1) (5, 4, 4, 3)

128 (25, 99, 2, 2) (4, 3, 4, 3)

160 (25, 130, 2, 3) (3, 2, 3, 2)

192 (120, 66, 4, 2) (2, 1, 2, 1)

224 (67, 150, 2, 5) (2, 1, 2, 1)

256 (12, 237, 2, 5) (2, 1, 2, 1)

To evaluate the scheme we will take into account the cost of keys creation W, �iven by the hash
evaluation needed to �o from the private key to the public key. The cost W equals the costs of
si�nin� and verifyin� combined, and can be computed from the equation:

W = La * zA + LB * zB + LC * zC + LD * zD

The followin� table compares the cost of keys creation for 256-bit uwots and wots+ si�natures of
the same size. Notice that the performance improvement tends to increase as the si�natures �et
smaller (more compressed).

(bits=256)

4. Evaluation

L len�th (bits) uwots wots+ relation

20 5376 bits 345.18 msh 655.34 msh 52.7%

22 5888 bits 143.37 msh 180.20 msh 79.6%

28 7424 bits 24.21 msh 28.64 msh 84.5%

39 10240 bits 4.57 msh 4.95 msh 92.3%

55 14336 bits 0.15 msh 0.17 msh 89.7%

For reference, a msh equals 1 ms, assumin� a computer performin� 1 million hash iterations per
second. The len�th in bits includes the size of a salt (or seed), used to randomize the hash
functions.

A python implementation is provided to further illustrate the uwots family of si�natures. The code
can be found at:

[1] http://jotasapiens.com/

5. Source code

http://jotasapiens.com/

