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The Borsuk-Ulam Theorem (BUT) states that a single point, if embedded in one spatial dimension higher, gives rise to
two antipodal points with matching descriptions and similar features.  Novel BUT variants allow the assessment of
countless physical systems, from entropies to quantum entanglement.  We argue that BUT, cast in a quantitative fashion
which has the potential of being operationalized, is a universal principle underlying a number of natural phenomena.

Topology, which assesses the properties that are preserved through deformations, stretchings and twistings of objects
(Manetti; Krantz), is a underrated methodological approach with countless possible applications.  In particular, we show
that novel incarnations of the “classical” Borsuk-Ulam theorem (BUT) lead to a better comprehension and assessment
of several physical phenomena. BUT and its variants provide indeed a topological methodology for the evaluation of
the most general features of systems activity, cast in an empirical fashion that has the potential to be operationalized.

The “standard” version of the Borsuk-Ulam theorem (BUT).   The  notation nS  denotes  an  n-sphere,  which  is  a
generalization of the circle (Weeks).  A n-sphere is a n-dimensional structure of constant, positive curvature, embedded
in a n+1 space (Marsaglia; Henderson).  For example, a 1-sphere (S1) is the one-dimensional circumference surrounding
a 2-dimensional disk, while a 2-sphere (S2) is the 2-dimensional surface of a 3-dimensional ball (a beach ball is a good
example).  A 3-sphere is a 3-dimensional manifold which is enclosed in a Euclidean 4-dimensional space called a 4-
ball.  A 3-sphere is thus the surface of a 4-dimensional ball, while a 4-dimensional ball is the interior of a 3-sphere, in
the same way as a bottle of water is made of a glass surface and a liquid content.  The Borsuk-Ulam Theorem (Borsuk
1933;  Dodson)  states  that,  if  a  sphere  Sn is mapped continuously into a n-dimensional Euclidean space Rn,  there is at
least  one  pair  of  antipodal  points  on  Sn which  map  onto  the  same  point  of  Rn (Beyer)  (Figure A).   Points  on  Sn are
antipodal, provided they are diametrically opposite.  Examples of antipodal points are the opposite points along the
circumference of a circle, or the poles of a sphere (Matousek). The SUPPLEMENTARY INFORMATION 1 provides
a mathematical treatment for technical readers.

Matching signals (Signal-BUT).  The concept of antipodal points can be generalized to countless types of systems’
signals (Borsuk 1958-59; Borsuk 1969).  They can be used not just for the description of simple topological points, but
also of more complicated structures, such as shapes of space (spatial patterns), of shapes of time (temporal patterns),
vectors or tensors, functions, signals, thermodynamical parameters, movements, trajectories and general symmetries
(Peters 2016) (SUPPLEMENTARY INFORMATION 2).   If we simply evaluate systems activity instead of
“signals”, BUT leads naturally to the possibility of a region-based, not simply point-based, geometry, with many
applications.  A region can have indeed features such as area, diameter, average signal value, and so on.  We are thus
allowed to describe systems features as antipodal points on a n-sphere.  If we map the two points on a n-1 –sphere, we
obtain a single point.  This means that signal shapes can be compared (Weeks; Peters 2016): the two antipodal points
standing for systems features are assessed at one level of observation, while the single point at a lower level (Tozzi
2016a).

BUT for non-antipodal points (Re-BUT). The BUT can be generalized not just for the evaluation of antipodal, but
also of non-antipodal points on an n-sphere (Figure B).  We can consider regions on an n-sphere that are either adjacent
or far apart (Tozzi 2016a).  And ReBUT applies, provided there are a pair of regions on n-sphere with the same feature
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value.  Therefore, the two points (or regions) do not need necessarily to be antipodal, in order to be described together
(Peters 2016).  This makes it possible to evaluate matching signals, even if they are not “opposite”, but “near” each
other: the antipodal points restriction from the “standard” BUT is no longer needed.

Generalization of BUT to antipodal points occurring on hyperbolic manifolds (Hyper-BUT). The original
formulation of BUT describes antipodal points on spatial manifolds in every dimension, provided the n-sphere is a
convex structure with positive curvature (i.e, a ball).  However, many natural phenomena occur on manifolds endowed
with  other  types  of  geometry.   BUT  can  be  generalized  also  to  symmetries  occurring  either  on  flat  manifolds,  or  on
Riemannian hyperbolic n-manifolds of constant sectional curvature -1 and concave shape (i.e, a saddle) (Mitroi-
Symeonidis). In other words, whether the systems function displays a concave, convex or flat structure, it does not
matter:  we  may  always  find  the  points  with  matching  description  predicted  by  BUT.   For  further  details,  see  Tozzi
(2016a).

Changes  in  the  n  value  of  Sn spheres (Sn-BUT).  Although  BUT  was  originally  described  just  in  case  of  n  being  a
natural number which expresses a structure embedded in a spatial dimension, nevertheless the value of n can stand for
other types of numbers.  The n value of Sn can be also cast as an integer, a rational or an irrational number (Tozzi 2016).
The n value could express completely different parameters: for example, we might regard functions or shapes as
embedded in a sphere in which n does not stand for a spatial dimension, but for the time or a fractal dimension. This
makes it possible to use the n parameter as a versatile tool for the description of systems features.

Systems’ symmetry breaking (Sym-BUT).  Symmetries are widespread invariances underlining countless physical
systems (Weyl).  A symmetry break occurs when the symmetry is present at one level of observation, but “hidden” at
another level (Roldàn).  BUT tells us that symmetries can be found when evaluating the system in a proper dimension,
while they disappear (are hidden or broken) when we evaluate the same system in just one dimension lower.   The
symmetries are widespread at every level of organization and may be regarded as the most general feature of systems,
perhaps more general than free-energy and entropy constraints too (Tozzi 2016).  Thus, giving insights into symmetries
provides a very general approach to every kind of systems function.

BUT without euclidean spaces (No-R-BUT). A Sn manifold can also not map to a Rn-1 Euclidean space, but straight to
a Sn-1 manifold.  In other words, in this BUT formulation the Euclidean space is not mentioned.  In many applications
(for example, in fractal systems), we do not need the Euclidean manifold (the ball) at all: by an intrinsic, “internal”
point of view, a manifold may exist in - and on – itself, and does not need to lie in any dimensional space (Weeks).
Therefore, we do not need a Sn manifold curving into a dimensional space Rn: we may think that the manifold just does
exist by itself.  Without the BUT limitation of the Euclidean space, we are allowed to modify the Sn exponent such that
it  can  be  not  just  a  natural  number,  but  also  other  kinds  of  numbers,  as  already  described  above  for  the  Sn-BUT.
Another important consequence is that a n-sphere may map on itself: the projection of two antipodal points to a single
point into a dimension lower can be internal to the same n-sphere.

 Energy-BUT. There exists a physical link between the abstract concept of BUT and the energetic features of the
system formed by two spheres Sn and Sn-1.  We start from a n-sphere Sn equipped with two antipodal points, standing for
a  symmetry  according to  Sym-BUT.   When these  opposite  points  map to  a n-Euclidean manifold (where Sn-1 lies),  a
symmetry break/dimensionality reduction occurs, and a single point is achieved (Tozzi and Peters 2016). However, it is
widely recognized that a decrease in symmetry goes together with a decrease in entropy and free-energy (in a closed
system).  It means that the single mapping function on Sn-1 displays energy parameters lower than the two corresponding
antipodal functions on Sn.  Thus, a decrease of dimension in a system gives rise to a decrease of energy and energy
requirements.  In such a way, BUT and its variants become physical quantities, because we achieve a system in which
the energetic changes do not depend anymore on thermodynamic parameters, rather on affine connections and
homotopies.
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BUT’s four versatile ingredients (summarized in the Table) can be modified in different guises, in order to achieve a
wide range of uses.  To make an example, when we just consider quantum systems just one dimension higher, we are
able to assess entanglement from an unusual perspective.  A quantum entanglement’s composite system does not
display separable states and a single constituent cannot be fully described without considering the other states. If we
introduce quantum entanglement on a hypersphere -, derived from signals originating on the surface of an ordinary 3D
sphere - a separable state can be achieved for each of the entangled particles, just by embedding them in a higher
dimensional space.  When the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we
accomplish a composite system in which each local constituent is equipped with a pure state.  Other examples of BUT
applications are provided in Figures C-E.  For additional applications in nonlinear chaotic dynamics (evaluation of Sn

spheres equipped with a n = Feigenbaum constant), see Tozzi (2016a and 2016b).
A shift in conceptualizations is evident in the BUT approach: the opportunity to treat physical systems as topological
structures gives us the invaluable chance to evaluate them through correspondences from topological spaces to algebraic
groups (Matoušek; Yang; Dol’nikov).  Embracing systems in the framework of algebraic topology (Willard; Dodson)
means that transformations (the antipodal points) can be described as paths or trajectories on “abstract” structures: the
BUT perspective allows a system’s property located in the real space (the physical melieu’s geometric space) to be
translated to an abstract space (called topological configuration space manifolds) and vice-versa, enabling us to achieve
maps from one level to another.  It makes it possible for us to study systems interactions in terms of affine connections
and “proximity” among signals, in order to explain, for example, how network communities integrate or segregate
information (SUPPLEMENTARY INFORMATION 2).
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INGREDIENTS GENERAL FEATURES SPECIFIC FEATURES

1) CONTINUOUS
FUNCTION

LANDSCAPE Observation

2) TWO ANTIPODAL
POINTS (BUT) or
REGIONS (ReBUT)

SPATIAL PATTERNS

Points
Regions
Diameters
Areas
Shapes
Concave manifolds

TEMPORAL PATTERNS Movements
Trajectories

FUNCTIONS

Symmetries
Proximities
Affine connections
Vectors
Regions
Homologies

SIGNALS i.e., average signal value

3) N-VALUES

NUMBER
Natural
Fractional
Irrational

DIMENSION

Spatial
Temporal
Thermodynamical parameters
Index dimension
Absence of Euclidean space

4) MAPPING FROM A
HIGHER  TO  A
LOWER DIMENSION
(and vice versa)

FIXED Description
IN MOTION Real-Time Description
SYMMETRIES Increased in a n-dimension;

decreased in a n-1 dimension

Table. Different features of each one of the four ingredients of BUT and its variants.
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Figure.  Many phenomena can be described by BUT and its variants. A: the “standard” BUT for different values of
Sn (a circle, a sphere and a hypersphere). B:  A simplified sketch of Re-BUT. C:  ReBUT  allows  the  evaluation  of
gravitational lenses. D: Shannon (ergodic) entropy values projected to a S1 sphere:  i.e,  when  entropy  =  0.7,  two
antipodal points are displayed on a S1’s diameter.   Also “non-ergodic” entropies (i.e. not following the Shannon’s
curve)  could  be  evaluated  on  other  diameters  of  S1:  the  use  of  BUT  variants  wipes  away  this  long-standing  limit  of
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Shannon entropy. E: on a self-similar structure, two antipodal points (corresponding to the distinctive scale-free’s
higher and lower magnifications) are embedded in a n-sphere equipped with n = rational number (the fractal dimension:
in this example, 1.3).
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SUPPLEMENTARY INFORMATION 1

The “standard” version of the Borsuk-Ulam theoerem (BUT).  The Borsuk-Ulam Theorem (BUT) is a remarkable
finding by K. Borsuk (Borsuk 1933) about Euclidean n-spheres and antipodal points.  It states that (Dodson 1997):
Every continuous map : n nf S R®  must identify a pair of antipodal points (on Sn).  (Figure 1).
An  n-sphere  is  formed  by  points  which  are  constant  distance  from  the  origin  in  (n+1)-dimensions (Marsaglia).  For
example, a 3-sphere (also called glome or hypersphere) of radius r (where r may be any positive real number) is defined
as the set of points in 4D Euclidean space at distance r from some fixed center point c (which may be any point in the
4D space) (Henderson).  From a geometer’s perspective, we have the following n-spheres, starting with the perimeter of
a circle (S1) and advancing to S3, which is the smallest hypersphere (Figure 1), embedded in a 4-ball:
1-sphere S1  : x1

2 +  x2
2 (circle perimeter),

2-sphere S2  : x1
2 +  x2

2 + x3
2 (surface of the common sphere, i.e., a beach ball),

3-sphere S3 : x1
2 +  x2

2 + x3
2+ x4

2(hypersphere surface),  ...,
n-sphere Sn : x1

2 +  x2
2 + x3

2+ ... + xn
2

SUPPLEMENTARY INFORMATION 2

Re-BUT variant for non-antipodal signals. Let a pair of systems modules (for sake of simplicity, we will talk about a
pair of cortical or subcortical neural modules), represented by An, Bn, be n-spheres that interact and then separate. This
is an example of the situation described by Schrödinger (1935).  Let p1,−p1 be a pair of antipodal points on An and let
q1,−q1 be a pair of antipodal points on Bn.  Also let f, g be continuous functions and, using BUT, assume that:
f ∶An→ Rn, such that f(p1) = f(−p1), and
g ∶Bn→ Rn, such that g(q1) = g(−q1).
From BUT, the signal value f(p1) from An can be used to make observations about Bn, provided f(p1) = g(−q1). This
situation is analogous to the one described by Schrödinger in his paper on separated systems  (Schrödinger 1935).  That
is, we look for an affine connexion (affinity) between modules represented by their feature vectors and by a sameness
described by continuous functions on the modules. Using BUT, if antipodal points on An, Bn  emit a common a signal
value, then an affine connexion between the physical entities is established. However, this situation is less than
satisfactory, since it is not apparent how to make the connexion between the n-spheres An, Bn based on the fact that both
n-spheres have pairs of antipodal points that map to the same vector in Rn.
Schrödinger was dissatisfied with attempting to find a connexion between vectors using a principle from Euclidean
geometry, namely, two vectors are equal when their components are equal.  He thought that it is more satisfactory to
establish a connexion between physical entities using the notion of continuous transfer (of energy) between points on a
curve finitely apart from each other (Schrödinger 1944).  But this alternative is still not satisfactory, because curvature
is described using rather complicated tensors such as the Riemann-Christoffel curvature tensor, which has 96
components, and the Weyl’s metrical tensor, which has 40 components. An alternative to Schrödinger’s approaches to
establishing affinities between physical entities (neural modules) is obtainable by introducing a region-based form of
BUT (denoted by ReBUT). To use our knowledge of one n-sphere to gain knowledge about another d-sphere with d ≤
n, we consider separated regions instead of antipodal points on an n-sphere.

The terminology we use is explained, next. Region.  A “region” (denoted by Re) on an n-sphere (i.e, a neural module)
is a set containing one or more points. A singleton region is the same as point.   Each region is a set of modules. Each
module has only feature, namely, its location identified by a vector.  By contrast, such a region Re (into a module) not
only has location represented by its centroid (center of mass) but also region features such as diameter, area, entropy,
shape, porous (shape with holes, i.e., some of the points in Re have gaps between them), average signal value and so on.
Family of regions 2Sn.  The collection (family) of all subsets on the n-sphere nS  is denoted by 2Sn. Regions Re1, Re2
∈2Sn.    Regions  Re1,  Re2 are  members  in  2Sn. Feature value probe φ : Re → R.   A feature  value  probe  is  a  real-
valued function that extracts a feature value from a region. Region feature k-vector.  Let φ1, φ2, . . . , φk be k region
feature value probes.  A feature value vector for a region on an n-sphere has the following form:
(φ1(Re), φ2(Re), . . . , φk(Re)), called region feature vector.

Theorem 1. ReBUT. Assume that the regions on an n-sphere have n features.  If  f ∶2Sn→ Rn is a continuous function,
then f(Re1) = f(Re2)Rn for at least one pair of regions Re1,Re2 Î  2Sn (Peters 2016).  (Figure B).
Proof.  The function f(Re1) is a feature vector in Rn for region Re1 ∈2Sn.  Given region Re1 ∈2Sn on an n sphere, we
know, from the symmetry of the latter, that there are many possible regions Re2 with feature vectors that match the
feature vector of Re1. Hence, f(Re1) = f(Re2) for some Re2 ∈2Sn.
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For example, let each each region on a 2-sphere (a brain module) have two features, namely, area and diameter.  Since
there are many regions on a 2-sphere with the same area and diameter, from ReBUT, we know that f(Re1) = f(Re2)R2

for at least one pair of regions Re1,Re2 2SÎ .   This means that the antipodal points restriction of the “classical” BUT is
no longer needed, when we consider regions on an n-sphere.  In fact, we can now consider neural regions that are either
adjacent or separated (far apart). And ReBUT applies, provided the feature vector for a region on an n-sphere (a nervous
module) has n feature values.

Observations Via ReBUT for symmetrical physical entities (two separated cortical modules).   In  touch  with
Schrödinger’s Programme of Observations, we want to use our knowledge on physical entity A (a cortical module) to
gain  knowledge about  another  physical  entity  B (another  cortical  module)  that  is  separated  from A.  We do this  using
ReBUT.  Let ଵܵ

௡, ܵଶ௡ be a pair of n-spheres that represent a pair of separated cortical modules. The regions on the
surface of an n-sphere are comparable to mailboxes, each one containing information about some part of a module. All
that we know about an n-sphere is summarized by the collection of feature vectors that describe
the regions on an n-sphere.
Apply ReBUT to the pair of n-spheres ଵܵ

௡, ܵଶ௡.  Let 1: n nf S ® � be a continuous function on ଵܵ
௡and let

2: n ng S ® �   be a continuous function on ܵଶ௡.   Let ܴ݁ଵଵ, ܴ݁ଵଶ be a pair of regions on 1
nS  and let ܴ݁ଶଵ, ܴ݁ଶଶ be a pair of

regions on ܵଶ௡ that  satisfy  ReBUT.  That  is,  from  ReBUT,  we  obtain  f(ܴ݁ଵଵ) = f(ܴ݁ଵଶ) and f(ܴ݁ଶଵ) = f(ܴ݁ଶଶ) on the
separated n-spheres. Then the pair of n-spheres ଵܵ

௡, ܵଶ௡ resemble each other (similarity between the physical entities is
established, provided f(ܴ݁ଵଵ) = f(ܴ݁ଶଵ)).

Observations Via ReBUT for asymmetrical physical entities (a cortical and a subcortical module).  Let Sn, Sd, d ≤
n be n-sphere and d-sphere, respectively, that represent a pair of physical entities (in this case, a cortical and subcortical
nervous module). Assume that each region on Sn is described by a feature vector with n-components and assume that
each region on Sd is described by a feature vector with d-components with n ≠ d. All that we know about the n-sphere
(the cortical module) is summarized by the collection of feature vectors (each with n-components) that describe the
regions on an n-sphere.  By contrast, all that we know about the d-sphere (the subcortical module) is summarized by the
collection of feature vectors (each with d-components) that describe the regions on an d-sphere.
Let Re1,Re2 on Sn that satisfy ReBUT and let Re3,Re4 on Sd that satisfy ReBUT.  This means that f(Re1) = f(Re2) on
Rn and g(Re3) = g(Re4) on Rd.  Hence, the feature vectors f(Re1), g(Re3) are not comparable, since each has a different
number of components. Even so, we can compare f(Re1), g(Re3) componentwise. Let φ1, φ2, . . . , φn be n region feature
value probes. A feature value vector for a region on the n-sphere Sn has the following form:
Φ(Re1) = (φ1(Re1), φ2 (Re1), . . . , φn (Re1)), i.e, a Sn region Re1 feature vector.
Further, let φ1, φ2, . . . , φd be d region feature value probes, n ≠d. A feature value vector for a region on the n-sphere Sn

has the following form:
Φ(Re3) = (φ1(Re3), φ2 (Re3), . . . , φd (Re3)), i.e a Sd region Re3 feature vector.
The continuation of the Schrödinger’s Programme of Observations via ReBUT for asymmetrical physical entities (i.e.,
cortical and subcortical modules represented by hyperspheres with different dimensions), is made possible by the fact
that d region features are the same for both the modules. The pair of hyperspheres’ feature vectors f(Re1), g(Re3) are
descriptions of similar regions, provided Sn, Sd each contains at least one region Re1 on Sn and at least one region on Sd

with feature vectors Φ (Re1), Φ (Re3) with up to n−d matching components.  In other words, separated neural modules,
represented by hyperspheres with different dimensions, have feature vectors that are componentwise comparable. The
separated modules are similar, provided there is a feature vector f(Re1) for a region Re1 on a hypersphere Sn which has
d components with values that match the values of the corresponding components in the feature vector f(Re1) for a
region Re3 on a hypersphere Sd.  For example, we may evaluate the case of similarity between nural regions on
hyperspheres with different dimensions (a brain surface and a thalamus surface).  Let φ1, φ2, φ3 be three region feature
value probes for region features diameter, area, shape, respectively, on a 3-sphere (a cortical module). And let φ1, φ2, be
two region feature value probes for region features diameter, area, respectively, on a 2-sphere (for example, a thalamic
module).  Let Re1,Re2 be regions on a hypersphere S2 that satisfy ReBUT and let Re3,Re4 be regions on a hypersphere
S1 that satisfy ReBUT. If Φ(R1) = (φ1(R3), φ1 (R2) = φ1 (R4) (matching components), then the hypersphere S2 is similar
to S1. This tells us that there are similarities between the separated nervous structures represented by the hyperspheres
S2 and S1.
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