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Abstract

We determine nonlinear Lorentz transformations between coordinate systems
which are mutually in a constant symmetrical accelerated motion. The maximal
acceleration as an analogue of the maximal velocity in special relativity follows
from the nonlinear Lorentz group of transformtion. The mass formula was derived
by the same method as the Thomas precession formula by author. It can play
crucial role in particle physics and cosmology.

1 Introduction

In physics, mass is a property of a physical body. According to Ernst Mach, it is a measure

of an resistance to acceleration i.e. a change in its state of motion, represented by the

relationship F = ma, when a force is applied.

It also determines the strength of its mutual gravitational attraction to other bodies.

Although some theorists have speculated that some of these phenomena could be inde-

pendent of each other, current experiments have found no difference in results, whatever

way is used to measure mass.
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Active gravitational mass measures the gravitational force exerted by an object.

Passive gravitational mass measures the gravitational force exerted on an object in a

known gravitational field. Mass-energy measures the total amount of energy contained in

a body.

Origin of mass and mass generation mechanism are the crucial problems of particle

physics. A mass generation mechanism in particle physics is a theory which attempts to

explain the origin of mass from the most fundamental laws of physics. To date, a number

of different models have been proposed which advocate different views of the origin of

mass. The problem is complicated by the fact that the notion of mass is strongly related

to the gravitational interaction but a theory of the latter has not been yet reconciled with

the currently popular model of particle physics, known as the Standard Model.

We derive here the dependence of mass on acceleration as an analogue phenomenon

in special theory of relativity. The derived formulas are based on the non-linear Lorentz

transformation for accelerated systems and can play crucial role in particle physics and

cosmology.

2 Acceleration in special theory of relativity

The problem of acceleration of charged particles or systems of particles is the permanent

and the most prestige problem in the accelerator physics. Particles can be accelerated by

different ways. Usually by the classical electromagnetic fields, or, by light pressure of the

laser fields (Baranova et al., 1994; Pardy, 1998, 2001, 2002). The latter method is the

permanent problem of the laser physics for many years.

Here, we determine transformations between coordinate systems which moves mutually

with the same acceleration. We determine transformations between non relativistic and

relativistic uniformly accelerated systems.

Let us remind the special theory of relativity velocity and acceleration The Lorentz

transformation between two inertial coordinate systems S(0, x, y, z) and S ′(0, x′, y′, z′)

(where system S ′ moves in such a way that x-axes converge, while y and z-axes run

parallel and at time t = t′ = 0 for the origin of the systems O and O′ it is O ≡ O′) is as

follows:

x′ = γ(v)(x− vt), y′ = y, z′ = z′, t′ = γ(v)
(
t− v

c2
x
)
, (1)

where

γ(v) =

(
1− v2

c2

)−1/2

. (2)

The infinitesimal form of this transformation is evidently given by differentiation of

the every equation. Or,
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dx′ = γ(v)(dx− vdt), dy′ = dy, dz′ = dz, dt′ = γ(v)
(
dt− v

c2
dx
)
. (3)

It follows from eqs. (3) that if v1 is velocity of the inertial system 1 with regard to S

and v2 is the velocity of the inertial systems 2 with regard to 1, then the relativistic sum

of the two velocities is

u2 =
v1 + v2
1 + v1v2

c2

. (4)

The mathematic object called four-velocity follows from the Lorentz transformation

after some additional operations. From the ordinary three-dimensional velocity vector

one can form a four-vector. This four-dimensional velocity (four-velocity) of a particle is

the vector

uµ =
dxµ

ds
, (5)

where, according to Landau et al. (1987)

ds = cdt

√
1− v2

c2
(6)

with v being the ordinary three-dimensional velocity of the particle and c being the velocity

of light. Thus

u1 =
dx1

ds
=

dx

cdt
√
1− v2

c2

=
vx

c
√
1− v2

c2

. (7)

Then,

uµ =

 1√
1− v2

c2

,
v

c
√
1− v2

c2

 . (8)

Note, that the four-velocity is a dimensionless quantity. The components of the four-

velocity are not independent. Noting that dxµdxµ = ds2, we have

uµuµ = 1. (9)

Geometrically, uµ is a unit four-vector tangent to the world line of the particle.

Similarly to the definition of the four-velocity, the second derivative

aµ =
d2xµ

ds2
=

duµ

ds
(10)

may be called the four-acceleration. Differentiating formula (9), we find:

uµaµ = 0, (11)
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i.e. the four-vectors of velocity and acceleration are ”mutually perpendicular”.

Now, let us determine the relativistic uniformly accelerated motion, i.e. the rectilinear

motion for which the acceleration aµ in the proper reference frame (at each instant of time)

remains constant. We proceed as follows.

In the reference frame in which the particle velocity is v = 0, the components

of the four-acceleration aµ = (0, a/c2, 0, 0) (where a is the ordinary three-dimensional

acceleration, which is directed along the x axis). The relativistically invariant condition

for uniform acceleration must be expressed by the constancy of the four-scalar which

coincides with a2 in the proper reference frame:

aµaµ = const = −a2

c4
. (12)

In the ”fixed” frame, with respect to which the motion is observed, writing out the

expression for aµaµ gives the equation:

d

dt

v√
1− v2

c2

= a, (13)

or,

v

c
√
1− v2

c2

= at+ const. (14)

Setting v = 0 for t = 0, we find that const = 0, so that

v =
at√

1 + a2t2

c2

, (15)

Integrating once more and setting x = 0 for t = 0, we find:

x =
c2

a

√1 +
a2t2

c2
− 1

 . (16)

For at ≪ c, these formulas go over the classical expressions v = at, x = a
2
t2. For

at→∞, the velocity tends toward the constant value c.

The proper time of a uniformly accelerated particle is given by the integral (Landau

et al., 1987)

∫ t

0

√
1 +

v2(t)

c2
dt =

c

a
arcsinh

at

c
. (17)

At the limit t→∞ it increases much more slowly than t, according to the law

c

a
ln

2at

c
. (18)

The infinitesimal form of Lorentz transformation (3) evidently gives the Lorentz length

contraction and time dilation. Namely, if we put dt = 0 in the first equation of system
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(3), then the Lorentz length contraction follows in the infinitesimal form dx′ = γ(v)dx.

Or, in other words, if in the system S ′ the infinitesimal length is dx′, then the relative

length with regard to the system S is γ−1dx′. Similarly, from the last equation of (3) it

follows the time dilatation for dx = 0. Historical view on this effect is in the Selleri article

(Selleri, 1997).

3 Uniformly accelerated frames with space-time

symmetry

Let us take two systems S(0, x, y, z) and S ′(0, x′, y′, z′), where system S ′ moves in such a

way that x-axes converge, while y and z-axes run parallel and at time t = t′ = 0 for the

beginning of the systems O and O′ it is O ≡ O′. Let us suppose that system S ′ moves

relative to some basic system B with acceleration a/2 and system S ′ moves relative to

system B with acceleration −a/2. It means that both systems moves one another with

acceleration a and are equivalent because in every system it is possibly to observe the

force caused by the acceleration a/2. In other words no system is inertial.

Now, let us consider the formal transformation equations between two systems. At this

moment we give to this transform only formal meaning because at this time, the physical

meaning of such transformation is not known. On the other hand, the consequences of

the transformation will be shown very interesting. The first published derivation of such

transformation by the standard way was given by author (Pardy, 2003; 2004; 2005), and

the same transformations were submitted some decades ago (Pardy, 1974). The old results

can be obtained if we perform transformation

t→ t2, t′ → t′2, v → 1

2
a, c→ 1

2
α (19)

in the original Lorentz transformation (1). We get:

x′ = Γ(a)(x− 1

2
at2), y′ = y, z′ = z, t′2 = Γ(a)

(
t2 − 2a

α2
x
)

(20)

with

Γ(a) =
1√

1− a2

α2

. (21)

We used practically new denotation of variables in order to get the transformation

(20) between accelerated systems.

The transformations (20) form the one-parametric group with the parameter a.

The proof of this mathematical statement can be easy performed if we perform the

transformation T1 from S to S ′, transformation T2 from S ′ to S ′′ and transformation

T3 from S to S ′′. Or,
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x′ = x′(x, t; a1), t′ = t′(x, t; a1), (22)

x′′ = x′′(x′, t′; a2), t′′ = t′′(x′, t′; a2), (23)

After insertion of transformations (22) into (23), we get

x′′ = x′′(x, t; a3), t′′ = t′′(x, t; a3), (24)

where parameter a3 is equal to

a3 =
a1 + a2
1 + a1a2

α2

. (25)

The inverse parameter is −a and parameter for identity is a = 0 It may be easy to

verify that the final relation for the definition of the continuous group transformation is

valid for our transformation. Namely (Eisenhart, 1943):

(T3T2)T1 = T3 (T2T1) . (26)

The physical interpretation of the nonlinear Lorentz transformation is the same as

in the case of the Lorentz transformation in STR, only the physical interpretation of the

invariant function x = (1/2)αt2 is different. Namely it can be expressed by the statement.

If there is a physical signal in the system S with the law x = (1/2)αt2, then in the system

S ′ the law of the process is x′ = (1/2)αt′2, where α is the constant of maximal acceleration.

It is new constant and cannot be defined by the game with known physical constants.

Let us remark, that it follows from history of physics, that Lorentz transformation was

taken first as physically meaningless mathematical object by Larmor, Voigt and Lorentz

and later only Einstein decided to put the physical meaning to this transformation and to

the invariant function x = ct. We hope that the derived nonlinear Lorentz transformation

will appear as physically meaningful.

Using relations t ← t2, t′ ← t′2, v ← 1
2
a, c ← 1

2
α, the nonlinear transformation

is expressed as the Lorentz transformation forming the one-parametric group. This proof

is equivalent to the proof by the above direct calculation. The integral part of the group

properties is the so called addition theorem for acceleration.

a3 =
a1 + a2
1 + a1a2

α2

. (27)

where a1 is the acceleration of the S ′ with regard to the system S, a2 is the acceleration

of the system S ′′ with regard to the system S ′ and a3 is the acceleration of the system S ′′

with regard to the system S. The relation (27), expresses the law of acceleration addition

theorem on the understanding that the events are marked according to the relation (20).
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If a1 = a2 = a3 = .... + an = a, for n accelerated carts which rolls in such a way that

the first cart rolls on the basic cart, the second rolls on the first cart and so on, then we

get for the sum of n accelerated carts the following formula

asum =
1−

(
1−a/α
1+a/α

)n
1 +

(
1−a/α
1+a/α

)n , (28)

which is an analogue of the formula for the inertial systems (Lightman et al., 1975).

In this formula as well as in the transformation equation (20) appears constant α which

cannot be calculated from the theoretical considerations, or, constructed from the known

physical constants (in analogy with the velocity of light). What is its magnitude can be

established only by experiments. The notion maximal acceleration was introduced some

decades ago by author (Pardy, 1974). Caianiello (1981) introduced it as some consequence

of quantum mechanics and Landau theory of fluctuations. Revisiting view on the maximal

acceleration was given by Papini (2003). At present time it was argued by Lambiase et

al. (1999) that maximal acceleration determines the upper limit of the Higgs boson and

that it gives also the relation which links the mass of W -boson with the mass of the Higgs

boson. The LHC and HERA experiments presented different answer to this problem.

4 Dependence of mass on acceleration

If the maximal acceleration is the physical reality, then it should have the similar

consequences in a dynamics as the maximal velocity of motion has consequences in the

dependence of mass on velocity. We can suppose in analogy with the special relativity

that mass depends on the acceleration for small velocities, in the similar way as it depends

on velocity in case of uniform motion. Of course such assumption must be experimentally

verified and in no case it follows from special theory of relativity, or, general theory of

relativity (Fok, 1961). So, we postulate ad hoc, in analogy with special theory of relativity:

m(a) =
m0√
1− a2

α2

; v ≪ c, a =
dv

dt
. (29)

Let us derive as an example the law of motion when the constant force F acts on the

body with the rest mass m0. Then, the Newton law reads (Landau et al., 1997):

F =
dp

dt
= m0

d

dt

v√
1− a2

α2

. (30)

The first integral of this equation can be written in the form:

Ft

m0

=
v√

1− a2

α2

; a =
dv

dt
, F = const.. (31)

Let us introduce quantities
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v = y, a = y′, A(t) =
F 2t2

m2
0α

2
. (32)

Then, the quadratic form of the equation (31) can be written as the following

differential equation:

A(t)y′2 + y2 − A(t)α2 = 0, (33)

which is nonlinear differential equation of the first order. The solution of it is of the form

y = Dt, where D is some constant, which can be easily determined. Then, we have the

solution in the form:

y = v = Dt =
t√

m2
0

F 2 + 1
α2

. (34)

For F → ∞, we get v = αt. This relation can play substantial role at the beginning

of the big-bang, where the accelerating forces can be considered as infinite, however the

law of acceleration has finite nonsingular form.

At this moment it is not clear if the dependence of the mass on acceleration can be

related to the energy dependence on acceleration similarly to the Einstein relation uniting

energy, mass and velocity (Okun, 2001, 2002; Sachs, 1973 ).

The infinitesimal form of author transformation (20) evidently gives the length

contraction and time dilation. Namely, if we put dt = 0 in the first equation of system

(20), then the length contraction follows in the infinitesimal form dx′ = Γ(a)dx. Or, in

other words, if in the system S ′ the infinitesimal length is dx′, then the relative length

with regard to the system S is Γ−1dx′. Similarly, from the last equation of (20) it follows

the time dilatation for dx = 0.

5 Discussion

The maximal acceleration constant which was derived here is kinematical one and it differs

from the Caianiello (1981) definition following from quantum mechanics. Our constant

cannot be determined by the system of other physical constants. It is an analogue of

the numeric velocity of light which cannot be composed from others physical constants,

or, the Heisenberg fundamental length in particle physics. The nonlinear transformations

(20) changes the Minkowski metric

ds2 = c2dt2 − dx2 − dy2 − dz2 (35)

to the new metric with the Riemann form. Namely:

ds2 = α2t2dt2 − dx2 − dy2 − dz2 (36)
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and it can be investigated by the methods of differential geometry. So, equations (20)

and (36) can form the preamble to investigation of accelerated systems.

If some experiment will confirm the existence of kinematical maximal acceleration α,

then it will have certainly crucial consequences for Einstein theory of gravity because this

theory does not involve this factor. Also the cosmological theories constructed on the

basis of the original Einstein equations will require modifications. The so called Hubble

constant will be changed and the scenario of the accelerating universe modified.

Also the standard model of particle physics and supersymmetry theory will require

generalization because they does not involve the maximal acceleration constant. It is not

excluded that also the theory of parity nonconservation will be modified by the maximal

acceleration constant. In such a way the particle laboratories have perspective programes

involving the physics with maximal acceleration. Many new resuls can be obtained from

the old relativistic results having the form of the mathematical objects involving function

f(v/c).

The prestige problem in the modern theoretical physics - the theory of the Unruh

effect, or, the existence of thermal radiation detected by accelerated observer - is in the

development (Fedotov et al., 2002) and the serious statement, or comment to the relation

of this effect to the maximal acceleration must be elaborated. The analogical statement

is valid for the Hawking effect in the theory of black holes.

It is not excluded that the maximal acceleration constant will be discovered by ILC.

The unique feature of the International Linear Collider (ILC) is the fact that its CM

energy can be increased gradually simply by extending the main linac. The mass formula

was derived by the same method as the Thomas precession formula by author (Pardy,

2014a, 2014b). It can play crucial role in particle physics and cosmology.

Let us remark in conclusion that it is possible to extend and modify quantum

field theory by maximal acceleration. It is not excluded that the kinematical maximal

acceleration constant will enable to reformulate the theory of renormalization.
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