
The origin of the coupling constant (e) and some other 

important dimensionless physical constants within General 

Relativity 

by Nikola Perkovic 

e-mail: perce90gm@gmail.com 

Institute of Physics and Mathematics, Faculty of Sciences, University of Novi Sad 

Abstract: This paper will answer the mystery of the coupling constant (𝑒), a puzzle of its origin 

that was made popular by Richard Feynman, by using what will be defined as “temporal 

kinematics”. Temporal kinematics study the motion of time, we will name this “temporal 

motion” and provide a detailed explanation and kinematics to why this concept is far more 

accurate than the current concept of “repulsive gravity” that dominates in the cosmic inflation 

studies. Temporal motion should not be confused with cosmic inflation, it can only act as an 

initiator of it most probably caused by quantum vacuum fluctuations. 
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Introduction 

Some of the unexplained problems in physics can be explained and proven in a relatively simple 

way if we apply the logic of General Relativity on other fields of physics. The simplest way is to 

use “temporal motion” instead of “repulsive gravity” [1] to explain the inflation of space from 

the initial inflation, often called “cosmic inflation”, to the present time. 

We use a (-, +, +, +) metric, where (-) marks the dimension of time (𝑡) as usual [2]. Even in the 

simplest form of a (𝑅4) flat spacetime with (𝑡, 𝑥, 𝑦, 𝑧)  we have a metric: 

(1) 𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑥2 + 𝑦2 + 𝑧2 

We will proclaim that temporal motion inflates space; the inflation is its equivalent of what a 

trajectory is for spatial motion. Temporal motion has a velocity (𝑐) which is the speed of light 

and can be thought of as a speed limit of the Universe. This limit exists due to temporal motion 

since nothing can move in space faster than time due to the entanglement of space and time 

known as the spacetime continuum. 

Cosmological model 

The Universe will be represented as homogenous and isotropic. Isotropy means that the metric 

must be diagonal since it will be show that space is allowed to be curved. Therefore we will use 

spherical coordinates to describe the metric.  

The metric is given by the following line element: 

(2) 𝑑𝑠2 = 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) 

where we measure (𝜃) from the north pole and at the south pole it will equal (𝜋). 

In order to simplify the calculations, we abbreviate the term between the brackets as: 

(3) 𝑑𝜔2 = 𝑑𝜃2 + sin2 𝜃 𝑑𝜑2 

because it is a measure of angle, which can be thought of as “on the sky” from the observers 

point of view [4]. It is important to mention that the observers are at the center of the spherical 

coordinate system. 

Due to the isotropy of the Universe the angle between two galaxies, for the observers, is the true 

angle from the observers’ vantage point and the expansion of the Universe does not change this 

angle. 

Finally, we represent flat space as: 



(4) 𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜔2 

Robertson and Walker proved that the only alternative metric that obeys both isotropy and 

homogeneity is: 

(5) 𝑑𝑠2 = 𝑑𝑟2 + 𝑓𝐾(𝑟)
2𝑑𝜔2 

where (𝑓𝐾(𝑟)) is the curvature function given by: 

(6) 𝑓𝐾(𝑟) = {

𝐾−1 2⁄  𝑓𝑜𝑟 𝐾 > 0
𝑟 𝑓𝑜𝑟 𝐾 = 0

𝐾−1 2⁄ sin ℎ (𝐾1 2⁄ 𝑟) 𝑓𝑜𝑟 𝐾 < 0

 

which means that the circumference of a sphere around the observers with a radius (𝑟) is, for 

(𝐾 ≠ 0), not anymore equal to (𝐶 = 2𝜋𝑟) but smaller for (𝐾 > 0) and larger for (𝐾 < 0). 

The surface area of that sphere would no longer be (𝑆 = (4𝜋 3⁄ )𝑟
3) but smaller for (𝐾 > 0) and 

larger for (𝐾 < 0). If (𝑟) is (𝑟 ≪ |𝐾|−1 2⁄ ) the deviation from (𝐶 = 2𝜋𝑟) and (𝑆 = (4𝜋 3⁄ )𝑟
3) is 

very small, but as (𝑟) approaches (|𝐾|−1 2⁄ ) the deviation can become rather large. 

The metric in the equation (1) can also be written as: 

(7) 𝑑𝑠2 =
𝑑𝑟2

1 − 𝐾𝑟2
+ 𝑟2𝑑𝜔2 

If we determine an alternative radius (𝑟) as: 

(8) 𝑟 ≡ 𝑓𝐾(𝑟) 

This metric is different only in the way we chose our coordinate (𝑟). 

We can now build our model by taking for each point in time a RW space. We allow the scale 

factor and the curvature of the RW space to vary with time [3]. This gives the generic metric: 

(9) 𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2[𝑑𝑥2 + 𝑓𝐾(𝑥)
2𝑥2𝑑𝜔2] 

the function (𝑎(𝑡)) is the spatial scale factor that depends on time and it will describe the spatial 

expansion of the Universe. We use (𝑥) instead of (𝑟) because the radial coordinate, in this form, 

no longer has meaning as a true distance. 

Temporal Motion 

Temporal motion needs three equations for a trajectory to successfully explain inflation since 

inflation can only occur in three spatial dimensions, unlike expansion that can happen in one or 

two dimensions. 



The equation for temporal motion has to be on a quantum level to satisfy the observational 

evidence that suggests the opinion that the Universe comes from a singularity. We do so by 

establishing (𝑑Д) where (Д) represents the number of temporal dimensions which is (1), however 

having in mind that time has a negative value in the metric (−,+,+,+ ) we give it a value of 

(−1). We will represent this as (−𝑝) where (𝑝 = 1) and it is a very low constant pressure.  

We write a simple equation of motion: 

(10) 𝛿 ↠ = 𝛿 ∫𝑑Д 𝐿(𝑎(𝑡), 𝑎̇(𝑡))   

Where (↠) is the symbol for temporal motion, (𝑎(𝑡)) is the three-dimensional 

trajectory/inflation and (𝑎̇(𝑡)) is the velocity that equals (𝑐) the speed of light. However: 

(11) 𝑎̇−1(𝑡) = −𝑝𝑐  

Where the pressure (𝑝) equals 1. This allows us to form the equations, three of them, for the 

temporal course of inflation. 

And the trajectory describing inflation (𝑎(𝑡)) becomes (𝑎−1(𝑡)) and functions as: 

(12) 𝑎−1(𝑡)

{
  
 

  
 
↠ (𝑥) = log

lim
𝑥→∞

(
𝑝
𝑥
+𝑝)

𝑥(𝑥)

↠ (𝑦) = log
lim
𝑦→∞

(
𝑝
𝑦
+𝑝)

𝑦(𝑦)

↠ (𝑧) =  ∑𝜋𝑦𝑖 + 𝛿𝑥𝑖     

𝑛

𝑖=1

 

The equations might seem too complicated to comprehend but they are practical when we apply 

that (𝑝 = 1) we get the solutions ( lim
𝑥→∞

(
1

𝑥
+ 1)

𝑥

) equals (𝑒) and ( lim
𝑦→∞

(
1

𝑦
+ 1)

𝑦

) equals (𝑒) as 

well, where the first two equations become (↠ (𝑥) =  log𝑒(𝑥)) and (↠ (𝑦) =  log𝑒(𝑦)) and the 

number (𝑒) is the Euler’s number, not the coupling constant we are looking for. The third 

equation (↠ (𝑧)) is the “wave function”, representing “temporal waves”. Every temporal wave 

can be thought of as a spatial layer, or a frame. We will define them as “z-frames” and state that 

each value of (𝑖) represents every individual z-frame from (1) to (𝑛).   

The mathematical core of the equations is: 

(13) 𝑒 = 𝜋 − 𝛿 

This equation is the symmetry of temporal motion and therefore it is the mathematical logic 

behind the temporal kinematics, simply put the mathematical foundation of temporal motion. We 

shall name this equation the “logos equation”.  Now we conclude from the equation that (𝛿 =

0.423310825130748) and define that: 



(14) 𝛿 =
𝒆

𝐷
+ Ω + (𝛿𝐶𝐾𝑀 − 𝛿𝑃𝑀𝑁𝑆) 

Where (𝐷 = 3) is the number of spatial dimensions, (Ω ≈ 0.3) is the ratio of the actual density of 

the Universe to the critical minimal density, (𝒆) is the coupling constant and it is measured to be 

(𝒆 = 0.08542455), (𝛿𝐶𝐾𝑀 ≈ 0.995) is the CKM cp-violating phase and (𝛿𝑃𝑀𝑁𝑆) is the PMNS 

cp-violating phase and its value is currently unknown. After doing the calculus we conclude that 

(𝛿𝑃𝑀𝑁𝑆 = 0.900164024869252) however we approximate it to be (𝛿𝑃𝑀𝑁𝑆 ≈ 0.900164 ±

0.0000001) where we are making a prediction that can be tested experimentally in order to 

confirm the claims of this paper. 

The first objective of the paper was to explain how the coupling constant (𝒆) arises or comes to 

be in physics, explaining its origin along with the other important dimensionless constants which 

provide the basis for a “finely tuned” Universe. 

 When we draw the functions, we get an image: 

 

Figure 1: Functions ↠ (𝑥) is red, ↠ (𝑦) is green and ↠ (𝑧) are the ellipses from 1 to n. 

When we remove the coordinate system it looks like this: 



 

Figure 2: Trajectory of temporal motion. 

Since space and time are entangled in a relationship that is spacetime, all fundamental forces 

function in a reverse way than temporal motion but within the same symmetry, forming potential 

wells or local potential minimums while temporal motion constantly strides to form a global 

potential maximum which results in a constant increase in entropy on the global level. This led to 

the shape of atoms, celestial bodies etc. and to time dilatation. The low constant pressure (𝑝) 

prevents anything in space to travel faster than time (𝑐) due to the equation (12). 

Z-frames 

Every individual z-frame is represented by a value of (𝑖) from eq. (13), for example the current 

period is (𝑖 = 1), to represent different eras of the Universe. [5] 

For: 

(15) (𝑖 ≃ 1000)  

we have a value: 

 (16) 𝑎(𝑡) ≃ (
3

2
𝐻0√𝛺𝑚;0𝑡)

2 3⁄

 

which is a z-frame know as “matter dominated era”. Earlier than that, in a z-frame known as the 

“radiation dominated era”, a period when the Universe was dominated by radiation, around (𝑖 ≳

3200) we have a value: 

(17) 𝑎(𝑡) ≃ (2𝐻0√𝛺𝑟;0𝑡)
1 2⁄

 

The early, radiation dominated Universe expanded as: 

(18) 𝑎 ∝ √𝑡  



Every frame has slightly more temporal-kinetic energy, or “dark energy”, than the previous one 

but since the differences in the trillions of frames is complicated to determine it is therefore 

simpler and more productive to use only some frames. 

Due to the low negative pressure of temporal motion, its kinetic energy which is “dark energy”, 

also has a low negative pressure (−𝑝 = −1) [6]. Having such a pressure, dark energy accelerates 

the inflation of space conducted by temporal motion. 

Fundamental forces 

Due to the relationship of space and time fundamental forces also have their temporal equations, 

which are the same for all of them, they function opposite to temporal motion.  

(19) 𝑃𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠
−1 (𝑡)

{
  
 

  
 
↠ (𝑥) = log

lim
𝑎−1→0

(
𝑝
𝛼𝑥
+𝑝)

𝑥
𝛼𝑥⁄ (𝑥)

↠ (𝑦) = log
lim

𝑎−1→0
(
𝑝
𝛼𝑦
+𝑝)

𝑦
𝛼𝑦⁄
(𝑦)

↠ (𝑧) =  ∑𝜋𝑦𝑖 + 𝛿𝑥𝑖

𝑛

𝑖=1

             

 

All the forces are centralized due to (𝑎−1 → 0) and function as potential wells. We will draw an 

imaginary temporal line to represent the axis. Angles (𝛼𝑥) and (𝛼𝑦) are the angles between the 

imaginary line, the axis, and dimensions (𝑥) and (𝑦). Same as with the first temporal equations, 

(𝑝 = 1) providing the solutions ( lim
𝑎−→0

(
1

𝛼𝑥
+ 1)

𝑥
𝛼𝑥⁄
= 𝑒) and ( lim

𝑎−→0
(
1

𝛼𝑦
+ 1)

𝑦
𝛼𝑦⁄

= 𝑒) meaning 

that (↠ (𝑥) = log𝑒(𝑥)) and (↠ (𝑦) = log𝑒(𝑦)) where (𝑒) is the Euler’s number. The third 

equation also functions as a wave equation, depending on the nature of waves and the (𝑒 = 𝜋 −

𝛿) also applies explaining how waves spread though space and time, that is the spacetime 

continuum. What we get are timelike curves that form spatial potential wells. 



 

Figure 3: Two dimensional representation of the temporal equations for fundamental forces. 

There are three cases to explain in order to understand the evolution of fundamental forces. 

1)  The Gravitational force. We draw an ellipse to represent a celestial body: 

 

Figure 4: The Gravitational field of Earth. 

The best way to describe the centralized nature of gravity is by gravitational compression, 

meaning that we need to describe the center of a gravitational field. 



Any body that falls under the influence of a gravitational field of a celestial body will 

instantaneously react to its gravitational center regardless of the distance from the center. The 

body will react by gaining its own center of weight which is essentially the gravitational center 

of the body. A good example for this is a stick, holding a stick by its end takes more effort than 

to hold it by its center. 

For uniform gravitational fields the gravitational center is the same as the center of mass, making 

it relatively simple to determine it. For non-uniform gravitational fields the gravitational center 

(𝑐𝑔 𝑊 = ∫ з 𝑑𝑤) becomes (𝑐𝑔 𝑊 = 𝑔 ∭з 𝜌 𝑑𝑥 𝑑𝑦 𝑑𝑧) where (𝑊) is total weight, (𝜌) is the 

density, (з) is the distance from a reference line, (𝑑𝑤) is an increment of weight and (𝑐𝑔) is the 

gravitational center. Here (𝑐𝑔 𝑊 = 𝑃𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠) therefore for gravity we have: 

(20) 𝑃𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠
𝑔𝑟𝑎𝑣

= 𝑔∭з 𝜌 𝑑𝑥 𝑑𝑦 𝑑𝑧 

What we get is a gravitational well. Due to such a nature, the gravitational time dilatation is the 

strongest at the poles of a celestial body. 

2) The Electromagnetic force which is similar to the gravitational force on a macroscopic scale 

but much stronger than it. 

 

Figure 5: Electromagnetic force of Earth. 

Similarly to the gravitational force, electromagnetic force will instantaneously polarize during a 

reaction; in essence it is forming dipoles instantaneously which is the ability known as 

polarizability. 

Electromagnetic fields, such as Earths, function similarly as gravitational fields specifically it is 

their compression that is similar, with charge instead of mass. 



In case of non-uniform electromagnetic field it is difficult to determine them without examining 

each field individually. For uniform electromagnetic fields we have: 

(21) 𝑃𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠
𝑒𝑚 =

4𝜎

3𝑐
𝑇4 

where (𝜎) is the Stefan-Boltzmann constant and (𝑇) is temperature. 

We get an electric and a magnetic potential well, in short electromagnetic well. 

3)  The strong and the weak interaction. 

 

Figure 6: The Atom, where + and the green center is the nucleus and the blue cloud and 𝑒− 

represents the electrons. 

Most of the mass is in the nucleus where the nuclear force interacts between protons and 

neutrons and it is a product of the strong nuclear force that interacts between the quarks which 

form the protons and neutrons. The electromagnetic force interacts between protons and 

electrons, keeping electrons in a “cloud”. 

The simplest way to explain the electron cloud would be with an electrostatic potential well. We 

could describe this with (𝑃𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 =
𝐸2𝜀0

2
) where (𝐸 =

𝑧∙𝑒

4𝜋𝜀0𝛾2
) however it is difficult to apply a 

term such as pressure within the small microscopic size of the atom which is why we will 

describe the electrostatic well in a different manner.  

The atom doesn’t have poles but it does have “kinetic currents”, two of them or more, and the 

two sides of the electron cloud have to be equal if there are two currents or the atom will grow 



increasingly unstable until it reaches the state of radioactive decay (a neutron turns into a proton, 

electron and a anti-electron neutrino in some cases) which is governed by the weak interaction. 

Here we have a way to explain how the electrostatic potential well functions by using the kinetic 

energy of electrons. We describe the kinetic currents as up: 

(22) |𝐸̂〉 = −
ћ2

2𝑚𝑒
 ∑|𝛹|∇𝑖

2|𝛹〉

𝑛

𝑖=1

  

and down: 

(23) 〈𝐸̂| = −
ћ2

2𝑚𝑒
 ∑〈𝛹|∇𝑖

2|𝛹|

𝑛

𝑖=1

 

where (∇𝑖
2) is the Laplacian of the system and (𝑚𝑒) is the mass of the electron. The currents 

change their positions often.  

Further on we define that: 

(24) 𝛹𝑛𝑥𝑛𝑦𝑛𝑧 = √
8

𝐿𝑥𝐿𝑦𝐿𝑧
sin (

𝑛𝑥𝜋𝑥

𝐿𝑥
) sin (

𝑛𝑦𝜋𝑦

𝐿𝑦
) sin (

𝑛𝑧𝜋𝑧

𝐿𝑧
) 

also: 

(25) 𝐸𝑛𝑥𝑛𝑦𝑛𝑧 =
ћ2𝜋2

2𝑚𝑒
[(
𝑛𝑥
𝐿𝑥
)
2

+ (
𝑛𝑦

𝐿𝑦
)

2

+ (
𝑛𝑧
𝐿𝑧
)
2

] 

which defines the electrostatic potential well. It could be argued that the kinetic currents give a 

“kinetic shape” to the atom by functioning to define its orbitals. There can be more than two 

currents, depending on the nature of the atom, for example (〈𝐸̂|, |𝐸̂〉, 〈𝐸̌|, |𝐸̌〉 ). 

 



Figure 7: Atomic orbitals where 1) represents two currents and 2) represents four currents 

Atoms can have even more than four currents and due to them, atoms put under high pressure 

will start forming crystallized structures that are mistakenly defined by chemists as counter-

intuitive. 

Conclusion 

If we apply the new values from the temporal equations assuming no distinction between the 

spatial directions, we can change some of the equations in the cosmic inflation theory in order to 

make them more logical. We write the FRWL metric as: 

(26) 𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2 [
𝑑𝑟2

𝑝 − 𝑘𝑟2
+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑ф2)] 

With a time-invariant Hubble constant, we have a de Sitter metric where: 

(27) 𝑑𝑠2 = −𝑑𝑡2 + 𝑒2𝐻𝑡(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) 

We also define the density parameter: 

(28) Ω ≡
𝜌

𝜌𝑐
=

3
8𝜋𝐺⁄ (𝐻2 + 𝑘 𝑎2⁄ )

3𝐻2
8𝜋𝐺⁄

= 𝑝 +
𝑘

𝑎(𝑡)2 𝐻2
 

When (𝑎(𝑡) = 𝑒𝐻𝑡) and (𝐻 = 𝑐𝑜𝑛𝑠𝑡.) we have: 

(29) Ω𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑝 +
𝑘

𝑎(𝑡)2 𝐻2
= 𝑝 + 𝑘𝐻−2𝑒−2𝐻𝑡 

Where, as before (𝑝 = 1) therefore the pressure drives (Ω) very rapidly to the value of (1). With 

enough influence by temporal motion, the initial value of (Ω) that may have differed from (1) 

could have been driven close enough to (1) that it would be approximately equal to it in the 

present period of the Universe. 

Using temporal equations allows for a much simpler and more accurate theory of inflation since 

quantum vacuum fluctuations were enough to produce the temporal motion and to start the Big 

Bang. Temporal kinematics create the cone, setting the course of inflation from the beginning 

and, possibly to an end as well. The only necessary aspect is the low negative pressure and 

quantum vacuum fluctuations to occur in the same point which results with temporal motion.  

Possible quantum fluctuations: 

(30) ф(𝑥⃗, 𝑡) = ф(𝑡) + 𝛿ф(𝑥⃗, 𝑡) 

Resulting in: 



(31) 𝛿ф = [(𝐿 𝑎(𝑡))
3
]
−1/2

∑ [𝑎𝑘⃗⃗𝑔𝑘(𝑡)𝑒
𝑖𝑘⃗⃗𝑥⃗𝑦⃗⃗ + 𝐻. 𝐶. ]

𝑘⃗⃗
 

The time dependent part of the fluctuation is: 

(32) 𝛹𝑘 ≡ 𝑎(𝑡)−3/2𝑔𝑘 

Therefore: 

(33) |𝛿ф|2 = 𝐿−3|𝛿𝛹𝑘|
2 

where (𝐿 → ∞). 

We consider an inflation field composed of a spatially homogenous term plus a first order: 

(34) ф(𝑥⃗, 𝑡) = ф(0)(𝑡) + 𝛿ф(𝑥⃗, 𝑡) 

In units f (ћ = 𝑐 = 1) we get the evolution equation: 

(35) 𝜕𝑡
2𝛿ф + 3𝐻𝜕𝑡𝛿ф − 𝑎

𝐷∙Д+𝑝(𝑡)∑𝜕𝑖
2

𝐷

𝑖=1

𝛿ф +𝑚(ф(0))
2
𝛿ф = 0 

Knowing the values of constants (𝐷 ∙ Д + 𝑝 = 3 ∙ (−1) + 1 = −2), we get: 

(36) 𝜕𝑡
2𝛿ф + 3𝐻𝜕𝑡𝛿ф − 𝑎

−2(𝑡)∑𝜕𝑖
2

𝐷

𝑖=1

𝛿ф +𝑚(ф(0))
2
𝛿ф = 0 

The mass term is related to the inflationary potential: 

(37) 𝑚(ф(0))
2
=

𝑑2𝑉

𝑑(ф(0))2
 

We can conclude that temporal kinematics provide effective answers, from dimensionless 

physical constants to improving cosmic inflation studies. The low constant pressure (𝑝) is 

necessary in order for the kinematics to function properly. Temporal kinematics have to be 

applied within General Relativity due to the necessity of a four-dimensional manifold. 
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