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Abstract

Einstein used the term ‘unified field theory’ in a title of a publication for the first time in 1925.
Somewhat paradoxically, an adequate historical, physical and philosophical understanding of the
dimension of Einstein’s unification program cannot be understood without fully acknowledging
one of Einstein’s philosophical principles. Despite many disappointments, without finding a solu-
tion besides of the many different approaches along the unified field theory program and in ever
increasing scientific isolation, Einstein insisted on the unity of objective reality as the foundation of
the unity of science. Einstein’s engagement along his unification program was burdened with a
number of difficulties and lastly in vain. Nevertheless, a successful geometrization of the gravita-
tional and the electromagnetic fields within the framework of the general theory of relativity is
possible. Thus far, it is a purpose of the present contribution to geometrize the electromagnetic
field within the framework of the general theory of relativity.
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1. Introduction

It is very easy to get lost in the maiy and conceptually somewhat very different attenapthe unified field
theories. Lastly, the progress at unification has been very slow. Therefore hils paper in order to “geome-
trize” the electromagnetic field | will follow néier the scalar gravitational theory of electromgigneand its
introduction of an additional (four spatial and dimae dimension) space dimension (Nordstrgi Kaluza
[41), nor Weyl's trial for generalising Riemannian gegiry and his concept of “gauging” (We¥l]), nor will |
use an asymmetric Ricci tensor (Eddingiéin), nor will | try to add an antisymmetric tensor ttee metric
(Bach[7], Einstein[8]), nor will | use the framework of quantum fielcetiry et cetera as the point of departure
to “geometrize” the electromagnetic field. Thearally, it seems to be possible to approach unificain the
framework of quantum field theory. Still, a satistfary inclusion of gravitation into the scheme afgtum field
theory is not in sight. From this point of viewnBler[9] geometry introduced by Randéefg)], as a kind of a
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generalization of Riemann geometry, is another @tetnative approach to the geometrization of edecag-

netism and gravitation. Taken all together, thenpof departure for including the electromagneiitdfinto a

geometric setting will be general relativity. Ingltontext, at least one point has to be considered

Taken Einstein for granted, we must give up genefativity theory. Einstein himself in his huntrfprogress at
the unification went so far to force us to givehip own general theory of relativity and the susé@sgeome-
trization of the gravitational field. According Einstein, a generalization of the theory of thevgagional field

is necessary with the consequence that we musegonkd the general theory of relativity. In this teod, Ein-

stein’s position concerning the unified field theds very clear and strict.

“The theory we are looking for must therefore be a gaimation of the theory of the graviten-
al field. The first question is: What is the natgeneralization of the symmetrical tensor fieldhat
generalization of the field is going to provide thest natural theoretical system? The answer thais
the symmetrical tensor field must be replaced bprasymmetrical one. This means that the conditjon
gk = g4 for the field components must be dropped.

Figure 1.Einstein and the problem of the unified field theo

Anyhow, if we follow Einstein's proposal at thisipbto account for a classical unified field theafythe gravi-
tational and electromagnetic fields with the corigapunification of the gravitational and electranatic field
into one single and uniqugyper-field[12], it appears to be necessary and justified on adational level to
concentrate at the heart of general relativity,dheial mathematical concept of the metric terisdd g,

The following paper can be characterized as follolwse attempt to develop some new, basic and fuedtah
insights is grounded on a deductive-hypotheticathodological approach. In the sectioraterial and methods
the basic mathematical objects and tensor calqules needed to achieve the “geometrization” ofeteetro-
magnetic field will be defined and described.

In this context, physicists should be able to fwlithe technical aspects of this paper without argblgms,
while reader without prior knowledge of generahbtwiity or of the mathematics of tensor calculugimigain
an insight into the new methods and the scientifickground involved. In general, it is necessargdorease
the amount of notation needed. Thus far, | willnesmyself as much as possibledovariantsecond rank ten-
sors. | apologize for the shortcoming.

Especially, to enable the fusion of quantum theamy relativity theory into a new and single conaapfor-
malism the starting point of all theorems in thetigm resultsis axiom | or+1 = +1 (lex identitatiy. The same
axiom | possess the strategic capacity to sena @smmon ground for relativity and quantum theoithwe-
gard to unified field theory. The sectigliscussionexamines some the consequences of the theoremsdpro
This paper does not provide any proof, whethertBins general theory of relativity is correct atnthis pub-
lication assumes only that Einstein’s general th@drelativity is correct.

In this context, from the conceptual point of viefithe unified field theory, it is the purpose bist publication
to in find a convincing formulation af geometrization of the electromagnetic fielaeler conditions of the va-
lidity of the general theory of relativity.

2. Material and Methods

2.1. Definitions

Einstein’s general theory of relativity
Definition: Einstein’s field equations

Einstein field equations (EFE), originally:3] published[14] without the extra ‘cosmological’ termxg,,
may be written in the form

R R
G *AXGy =R, =% g, *AX g, = Eﬂv-(gx g A &j

O,

_ 4><2><7r><yx
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where G, is the Einsteinian tensor,Jis the stress-energy tensor of matter (still &lfaevoid of any geomet-
rical significance), R, denotes the Ricci tensor (the curvature of spaejgnotes the Ricci scalar (the trace of
the Ricci tensor)\\ denotes the cosmological “constant” and denotes the metric tensor (a 4x4 matrix) and
whereTttis Archimedes' constanitE 3.14159265358979323846264338327950288419716933938209...),
yis Newton's gravitational “constant” and the speétight in vacuum is ¢ = 299 792 458 [m/s] inlSunits.

Scholium.

The stress-energy tensoy,Tstill a tensor devoid of any geometrical sigrifice, contains all forms of energy
and momentum which includes all matter presentdfutourse any electromagnetic radiation too. O&lijn
Einstein’s universe was spatially closed and finite1917, Albert Einstein modified his own fieldjuations
and inserted the cosmological constanidenoted by the Greek capital letter lambda) msotheory of general
relativity in order to force his field equationspcedict a stationary universe.

“Ich komme namlich Zu der Meinung, dai die von
mir bisher vertretenen Feldgleichemg der Gravitation noch ei-
ner kleinen Modifikation bedirfen ...” [15]

By the time, it became clear that the universe egmnding instead of being static and Einstein dbaed the
cosmological constank. “Historically the term containing the ‘cosmologicconstant’A was introduced into
the field equations in order to enable us to acttheoretically for the existence of a finite medensity in a
static universe. It now appears that in the dynahtase this end can be reached without the inttamuof A“
[16] But lately, Einstein's cosmological constant isived by scientists to explain a mysterious forcanter-
acting gravity called dark energy. In this contiéxs important to note that neither Newton’s gtational “con-
stant” big G[17], [18] nor Einstein’s cosmological constahi19] is a constant.

Definition: General tensors

Independently of the tensors of the theory of galnelativity, we introduce by definition the folleng covari-
ant second rank tensors of preliminary unknowncstime whose properties we leave undetermined ds Wel
define the following covariant second rank tengdrget unknown structure as

Apv’ pr’ va’ Dpv 'R Upv ’RLJuv ’OV\{N ’prv ’R\/\ﬁv (2)

while the tensors A, By, G Dyy may equally denote something likee four basic fields of naturé&special-
ly, the Ricci tensor R, itself can be decomposed in many different wayshé following of this publication we
define the following relationships. We decomposeRicci tensor R, by definition as

Ry,= A,+ B,+ C,+ D, =.U

uv pv

+ e Uy = W, + oW, = W ©

pv uv v uv uv

to assure that both gravitation and electromagmeiss geometrized simultaneously. Since everythg@gx-
pressed in terms of curvature tensor, the electgoetic field itself is completely geometrized frahe begin-
ning. By the following definition, the electromagitestress energy tensor, denoted as Bppears as part of
Einstein’s stress-energy tensor ((t&y)/(c4))><Tpv), while the tensor A, also part of curvature, denotes the
stress energy tensor of ‘ordinary’ matter. Thus & obtain

_ _4><2><7er
Auv+ BW=RUW=WX W (4)

&
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Scholium.
By this definition, we are followinyranceanuin his claim that the energy tensag ¢an be treated as the sum
of two tensors one of which is due to the electrgmnedic field.

“On peut aussi supposer que le tenseur d’énergie
Tu soit la somme de xdeu tenseurs dont un
da au champ électromagnétique ...” [20]

In English:

“One can also assume that the energy tengdoelthe sum of two tensors one of which is duéhéoedlectro-
magnetic field”

In other words, the stress-energy tensor of thetrelmagnetic field B, is equivalent to the portion of the
stress-energy tensor of energy ((I(By)/(c“))XTw) which is determined by the stress energy tenktheoelec-
tromagnetic field B, itself. The stress-energy tensgy, Tias the unit oénergy densityd/nT] or pressuregfN/m?|
which are actually the same unit. In the InternaidSystem of Units the joule is a derived unienérgy and is
defined as 1 [J] = 1 [kgm?/s?] = [Nxm] while 1 [N] = 1 [kggm/s?] = 1 [J/m] denotes the unit of force. Tthble

1 (Table 1) may illustrate the relationship above in some enietail.

Table 1.The relationship between ordinary mattgr, And the electromagnetic fielq, 8

AHV Buv

()T
Einstein himself was demanding something similar.
“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’
und ‘Materie’ in dem Sinne, dafi alles aul3er
dem Gravitationsfeld als ‘Matérie bezeichnet wird, also
nicht nur die ‘Materie’ im Ublichen Sinne sondern
auch das elektromagnetische Feld.” [14]
We define aranti tensor[2] of Einstein’s stress energy tensqg, Tas
_ _R (5)
va + Dpv = Rguv =Exgpv AR guv
while Einstein’s tensor  is defined by
_ _ _ R 6
Gpv = Apv + va = Ova - R_IV _Ex giv (6)

where A, is the known the stress energy tensooodinary matter.

©



[lija Baruk¢ic¢

Scholium.

One consequence of the definition before is thattéimsor of ordinary matter,Abecomesa joint tensorsince
the same tensor is a determining part of the Himststress energy tensor (((®<y)/(c4))><Tw) and equally a
determining part of Einsteinian tensog,&n probability theory, such a tensor would représa joint distribu-
tion function. The Ricci scalar curvature R [fnis a contraction of the Ricci tensopm/mz]. The Ricci ten-
sor itself is a contraction of the Riemann tensbileva contraction as such doesn't change the.units

Finally, we define amanti-tensorG,, of Einsteinian tensor (G, as

R
OWW =% (7)

GEB+D“V 5 G

v pv

Scholium
The following 2x2 tableTable 2) may illustrate the basic relationships above

Table ZThe decomposition of the Ricci tend®y, in general.

Curvature
yes no
Energy / e A“V B“V R U“V
momentum no Cuv Duv o Q "
OWuv OWW RWuv = Ruv

The four basic fields under conditions of generaliteory of relativity.

The tensors A, B, G Dy may have different meanings depending upon cirtamegs. In our attempt to
reach a common representation of all four fundaaienteractions, the unified fieldw,, or the Ricci tensor
R.vis decomposed into several (sub-) fields,A,., C... D, in order to achieve unification between general
relativity theory and quantum (field) theory frolretbeginning. The unification of the fundamentatiactions
is assured by the (sub-) fields.AB., C.., D,y which denotehe four basic fields of natur@uantum field the-
ory itself is describing particles as a manifestatf an (abstract) field. In this context a péetig can be asso-
ciated with the field 4, the particle bcan be associated with the fielg,Bthe particle ccan be associated with
the field G,,, the particle dcan be associated with the fielg,Din the following, we can define something like
Au=axpA,, and By= b x By, and G,= ¢ x pC,, and Q,,= d x gD,,, where the subscriptcan denote an in-
dividual particle field Maxwell's theory unified the electrical and thegnetic field into arelectromagnetic
field. Meanwhile, the electromagnetic ameak nuclear forcehave been bound together ased@actroweak
force. The electroweak force and thieong interactionhave been unified into the standard model of garti
physics. Such an approach has not enabled a calieeenetical framework of physics which fully eapis and
links together the today known physical aspectshjéctive reality. In contrast to quantum fieldahg in this
paper, we will not link the electromagnetic and kveaclear forces together into tetectroweakforce. On the
contrary, we link thestrong interactionand theweak nuclear forcénto anordinary force In this sense, all but
the electromagnetic force is treated or definedrasnary force. The ordinary force and the electagretic
force are or can be linked together into the stethd#odel of particle physics. In our above settihg, ordinary
force is determined by the tensog,Avhile the electromagnetic force is determinedh®y tensor B, Quantum
field theory itself focuses on the three known mavitational forces and has been experimentalhficoed
with tremendous accuracy under some appropriatantenof applicability while general relativity it§éocuses
on gravity. Still, quantum field theory and geneamhtivity, as they are currently formulated, amatually in-
compatible. Lastly, only one of these two theodan be correct or both are incorrect.

&
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Definition: The stress energy tensor of the electro-magnetic field B,.,

We define the second rank covariant stress-enemgot of the electromagnetic field Bananti tensor2] of
the tensor A, as

B )
Under conditions of general relativity, wherg,Alenotes the stress energy tensor of ordinary gfmeadter, the
stress-energy tensor of the electromagnetic figldiSananti tensor[2] of ordinary energy/matter & Under
conditions of general relativity, the second rankariant stress-energy tensor of the electromagfietd B, is
determined by an anti-symmetric second-order tekisown as the electromagnetic field (Faraday) teRsdn
general, under conditions of general relativityy #econd rank covariant stress-energy tensor cfldsdromag-

netic field B,, in the absence of ‘ordinary’ matter, which itssldifferent from the electromagnetic field tensor
F, can be derived many different ways. One forrthizf tensor is

1 c 1 v
BHV E((4x”]x((ﬁmx Fv )_(4X guv X de X Fd ]]J (9)

where F is the electromagnetic field tensor apndsgthe metric tensor of general relativity.

Scholium.
The probability tensof2] of the second rank covariant stress-energy teofstre electromagnetic field Bis

defined as
1 c 1 dv
(Gl froraxe )

R

i

(10)

One possible theoretical geometric formulationhef stress-energy tensor of the electromagnetid figl fol-
lows as

[(43(-7[))(((':“0 XF\; C)_[ixgw x de % FW\JJ\J il p(BW) n R”“ (11)

Tensors with relation to the Ricci scalar R

In general, we define the second rank covariantionnsorxg,, of the tensor ¥, under conditions of a Ricci
scalar as

2% XHV (12)
R

where R denotes the Ricci scalar ang denotes a second rank (even a metric) tensor. finusven a metric
tensor can possess a metric. Further, we defing ngs

Xguv =

X (13)
n(x,) =7
R
where R denotes the Ricci scalar ang, Menotes a second rank (even a metric) tensorhéurive define

l/nkn(xuv) as

©
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X, (14)
n(x, )=

where R denotes the Ricci scalar ang denotes a covariant second rank (even a metrispte

Definition: The tensor n(Aw)

We define the second rank tensor pjfas

Ax2xmxy - L °)— ,1 dv
(Cxcxcxcx-r“vj [(4X7rjx((':u°x':v) (4><gw><|:dvx|:

n(A,) = (15)

where R denotes the Ricci scalar.

Definition: The metric tensor ;g

We define the second rank metric tenggy, as

X Mx - 71 X X c\_ }X x % v
=2 ((CXCXCXC T“Vj [(4xﬂj ((Fuc Fv) (4 g, xRy xF DD

Agpv - R

:an(Aw) (16)

where R denotes the Ricci scalar.

Definition: The tensor n(B,)

We define the second rank tensor pfEs

(&M )

n(B, )= - 17)

where R denotes the Ricci scalar.

Definition: The metric tensor ggyv

We define the second rank metric tengmy, as

1 c 1 v
2x((4xnjx((Fuchv )—(4x g, X Fy, X Fe Dj oxB

R ~ =2xn(B,) a9

ngv =

where R denotes the Ricci scalar.

O
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Definition: The Tensor n( ((8x1xy)/c*)xTw)
We define the second rank tensor n(t8y)/(c)) XTy) as

[4)( 2x;7;><yx_|_ )
A +B W 19
n(A,)+n(B,)= n(((4x2><7r><y)/c“)><'l'w)5 SR cxcx(;:c (19)
where R denotes the Ricci scalar.
Definition: The metric tensor gguv
We define the second rank metric tengmy, as
4x 2any
ZX(7><T
2x(A, +B, CXCXCX C “"j (20)
ngEan(Aw)+2xn(%v)E ( “R “)E =

where R denotes the Ricci scalar.

Definition: The tensor n(Cyy)

We define the second rank tensor pj@s

o (B ea)

n(G)=5 = R (21)

where R denotes the Ricci scalar.

Definition: The metric tensor cg,v

We define the second rank metric tenggy, as

rec, 2x[((4injx((FuchV0)_(jx g X Fyy X deDJ_(/\x gu)J

G =2n(G, ) == 2t = = (22)

where R denotes the Ricci scalar.
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Definition: The tensor n(D,y)

We define the second rank tensor pj2s

D, (ngwj—((&jx(( Fe % FVC)—G" G X Ry F"“D]

n(DW)E = = (23)

where R denotes the Ricci scalar.

Definition: The metric tensor pg,v

We define the second rank metric tensgy, as

2xD,,
R R

Dguv = 2)( n(Duv)

where R denotes the Ricci scalar.

Definition: The tensor n( (R/2)Xg u -AXg w)
We define the second rank tensor n((RéR)-Axg,,) as

C.*+D ““_(%Z:T:XTW) (?x%]-(Axm) (25)
n(CW)+n(DW)E n((Rlaxgw—/\XQw)E uvR W= A - :

where R denotes the Ricci scalar.

Definition: The tensor _ggu

We define the second rank metric tensay,, as

o(R-(mae ™)) 25 )] 26
ngwEZXH(CW)*'ZXH(DW)E2Xn((R/2)><gw—/\ng)zzx(c““R+D'”)E chCXCXC = 2 = ( )

where R denotes the Ricci scalar.
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Definition: The tensor n(Gy)

We define the second rank tensor pj@Gs

R
Ruv_ixgpv 27
() #0(G) =g, )= e G (; ) @

where R denotes the Ricci scalar ang i& the Einsteinian tensor.

Definition: The metric tensor ¢gyuv

We define the second rank metric tensgy, as

o0, = 2 n( AN)+ . n( qJv) - r( (ﬁv) _ ZX(Aulv;'Cuv) _ 2><(Rle —E{Zx QWD 28)

where R denotes the Ricci scalar ang i& the Einsteinian tensor.

Definition: The tensor n(Gyv)

We define the second rank tensor pj@s

v

B +D [Bxgw] (29)
n(B.)+n(D,)=n(g,) == =22

where R denotes the Ricci scalar ang i& the anti Einsteinian tensor.

Definition: The metric tensor _¢guv

We define the second rank metric tensgy,, as

R
2x(B,, +D Zx(*"gvj 30
ﬂGgwszxn(Bw)+2x n( QN)EZ([‘(Q\))E x( HVR+ W) 2R g =g, (30)

where R denotes the Ricci scalar ang i& the anti Einsteinian tensor.

Definition: The of the metric tensor gg,v of the metric tensor g,

We define the second rank metric tenggr, as

oG = ZXFf““ =2xn(g,) (31)

where R denotes the Ricci scalar.
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Definition: The tensor n(Ry)

We define the second rank tensor pjRs

R, 1
n(Rw)=n(A,)+n(8,)+n(G)+ ()= =2xR,
where R denotes the Ricci scalar angdenotes the Ricci tensor.
Definition: The metric tensor ricgyuv
We define the second rank metric tengay,, as
_ _ _2xR,
Ricguv=2x”(R’lV)=2<(r(AV)+r(%\’)-'- r((:f")-'- Iﬁ Q’))= R

where R denotes the Ricci scalar ang denotes the Ricci tensor.

Scholium
The following 2x2 table 3Table 3) may illustrate the basic relationships above

Table 3The decomposition of the Ricci tenggyy,.

(32)

=2
R

* R (33)

T Curvature =
ereray yes n( AW) n( Bw) n( Aw)m( BW)
momentum g n( C,) n( D,) n( C,)+n( D,)
n( Aw)m( Cw) n( Bw)+n( DW) n(RW)

The unified field under conditions of the generaltieory of relativity.

The 2x2 table 4Table 4) illustrates the basic relationships between tleérimtensors.

Table 4The decomposition of the Ricci tend®y, in terms of metric tensors.

Curvature
yes no
Energy / ‘ yes A gu\/ B guv E gp\}
momentum ‘ no cYw o 9w 9w
Gguv ﬂGguv = guv Ricguv

The unified field under conditions of the generaltieory of relativity.

®
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Definition: The tensor gy

The mathematics of general relativity are moreesslcomplex. As a result, the curvature of spa@dsented

by the Einstein tensor @ is caused by the presence of matter and eneegyegented by the stress—energy
tensor T,,) and vice versa. The curvature of space is theecan determines how matter/energy has to move.
The Riemannian metric tensor for a curved space-tiingeneral relativity theory, a kind of generatian of

the gravitational potential of Newtonian gravitatiés denoted as

J (34)
In the following, let us define the following. Let
& =dyxdy + ..+ dyx dy (35)
and
‘=dy'xdy'= cx (36)

The (unitless) metric tensoy,gis a central object in general relativity and diss more or less the local ge-
ometry of space-time while representing the gréeiteal potential. The metric tensor determinesithariant
square of an infinitesimal line element, denotedsand often referred to as an interval. In genehad,gener-
alization of the standard measure of distastebetween two points in Euclidian space due to tythdjorean
theorem is defined as

ds’ =(dyx dy)+( dy’x dy+ .+ dyx dy) (37)

or

n \2 (38)
=3 (o)
i=1
In general, a coordinate system can be changedthrerRuclidean Y's to some coordinate system ofh¢€a

m 39
dy™ an—uxax“ (39)
and 0Xx
n 40
dy" = oy x0x" (40)
ox"

The Pythagorean theorem is defined as

WY x5, xow xax (41)

m a n v m
dsZE; Z awxay‘xsmnszm: z %xawx%xax X6mn5; z ;)’(u o

X

While usingEinstein’s summation conventicthe metric tensor,gis defined as

CYANCY
ox*  ox"

anda curved space compatible formulation of the Pytiiagn theorenfollows as

®

Oy =0y, % (42)
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m n 43
ds Eémnxaananx“xax": d X dy¥' x dy 43)
ox"  ox"
In other words, it is
ds’ =(dyx dy)+( dyx dy+ .+ dyx df)= g dx db (44)
Under conditions, where
c’x, t? = (dylx dyl) (45)
it is
ds =(Ex, t)+( dyx dy+ .+ dyx dj)= g dk d (46)
Dividing the equation before by the speed of thhtlsquared, c?, it is
(47)

d¢ _ (1) (dyxay)  (dy™xdy) (1

+o4—— 1= =
¢

. Z Z : z Jx g,dx'dx' = g, dX dX

whereg,, = (1/c2xg,.. The term ds?/c? yields the time squared or ds¥g® as do the other terms. The equa-
tion before can be rearranged as

det? =(,t?) +(dt*x dt?) + .+ ( df'x df)s(ijx g, dX d¥ (48)

CZ

Rearranging equation, we obtain

det® =(,t?) +(dt*x dt*) + ..+ ( di'x df)Etc—lzjx g, dX d¥= g, é(g éI(ClE g dtd (49

or while usingginstein’s summation convention

m n 50
Ao =5, x 0 x % gt = g, x dt'x %0
N v ot
o ((ot?)*(d,txd,0+..4(d, b d,}) _ 1)
drdt” dt dt’ = G
Multiplying by ((R/2)A), it is
(R—/\)x o, :[R_ij((0t2)+(d2txd2t)+...+(dnt>< d, ) E[R—/\)Xg ) (52)
2 dt*dt 2 dt dt 2 "

®



Ilija Baruk¢ic¢

Definition: The metric tensor of the electromagnetic field gmg,v

We define the second ranketric tensowf the electro-magnetic fielg,g,, of preliminary unknown structure as

w (53)

EM gp\) = Y

where Y denotes an unknown (i.e. scalar) parambtee.to this definition, it is B = YX gu0y.

Definition: The anti metric tensor of the electromagnetic field oguv or cwguv
We define the second raiti metric tensoof the electro-magnetic fielgg,, of preliminary unknown struc-
ture as

O,=_0 = O (54)
W9 EM Zpv Y

where Y denotes an unknown (i.e. scalar) parambtee.to this definition, it is [ = YX w0y

Definition: The relationships between the metric tensors

In general, the metric tensor for a curved spaoe-bf general relativity theory is equally deteredras

gquguv+OEng_Wg1v+ngEEM Qv"'EM_ngEM QﬁwEL (55)

wheregmguy = Qv — wluwv andemgy, denotes the second rank metric tensor of therelesagnetic field while
w0,y is the second rardnti metrictensor of the electro-magnetic field. Both tensames of still unknown struc-
ture. From this definition, it follows that

R R R R
ExgquEX(EMguv+WQ1V)E_2xEM QN +_2xwglv5 %v-'- le (56)

Scholium.

The true meaning of the metric teng@;,, is not clear at this moment. One is for sure su@e tensor is am-
ti-tensor of the metric tensor of the electromagnetic figlg,.. There is some theoretical possibility that the
tensoryg,, is related to something like the metric tensothefgravitational waves therefore the abbreviation

ngv-

Definition: The tensor of energy of the unified field theory gE,,

In order to assure compatibility between generabiti of relativity and the unified field theory, wiefine the
following relationship between the stress energgde (((8<T[><y)/(c4))><Tw,) of general relativity and the tensor
of energy[2] of unified field theoryE,, as

=y x| BXTXY
RE“V=X><( < ijw (57)

while the value of X is undermined at this momdifite value of X can be X = 1.
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Definition: The tensor of time of the unified field theory rt,,

In order to assure compatibility between the seqanét tensor ((R/Xg,,-/Axg,,) of general theory of relativity
and tensor of timg] gt of the unified field theory, we define the follavg relationship.

RRVEXXQg—A)XgN (58)

while the value of X is undermined at this momdifite value of X can be X = 1.

Definition: The tensor of space of the unified field theory rS,

In order to assure compatibility between the secamk Ricci tensor R of general theory of relativity and
tensor of spacg] rS,y of the unified field theory, we define the follavg relationship.

Rspv = XX Ruv (59)

while the value of X is undermined at this momditite definition before does not exclude the caseXha.

2.2. Axioms.

2.2.1. Axiom I. (Lex identitatis. Principium identitatis. The identity law)

The foundation of all what may follow is the followg axiom:

+1=+1. (60)
2.2.2. Axiom II.
L. e
+0
2.2.3. Axiom III.
0 (62)
+0
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3. Results

3.1. Theorem. The unification of gravity and electromagnetism

Claim. (Theorem. Proposition. Statement.)
In general, the gravitational and the electromagriietid can be joined intone single hyperfielavhich itself is
completely determined by the geometrical structiirdne space-time. We obtain

2x cw+(/\x gw) =+B,,+C,,

(63)
Direct proof.
In general, using axiom | is it
+1=+1 (64)
Multiplying this equation by the stress-energy tarsf general relativity ((>42><n><y)/(c4))><Tp\,, it is
4% 2XTIXY _ 4x 2XTIXY
+1X(TX ij =+1x (Tx '|LV (65)

wherey is Newton's gravitational ‘constar 7], [18] , ¢ is the speed of light in vacuum ard sometimes re-
ferred to as ‘Archimedes’ constant’, is the rafi@ @ircle's circumference to its diameter. Du&tostein’s gen-
eral relativity, the equation before is equivaleith

R 4x 2XTIX Y
N )

where R, is the Ricci curvature tensor (the trace of Rimargurvature tensor), R is the scalar curvatyrgisg
the metric tensor)\ is the cosmological constant ang, TS the stress—energy tensor. By defining the Einst
tensor a$5,= Ry - (R/2)0,. it is possible to write the Einstein field eqoat in a more compact as

4x 2X TIX Y
Gpv + (/\ X gpv) = (TX Tpv] (67)
Due to our definition above it is G= A,, + C... Substituting this relationship into the equatimiore, we ob-
tain
4% 2X TIX Y
A, +Cuv+(/\xgw) :(TXT“VJ (68)

Under these conditions, we recall our definitiofiobe where ((8xy)/(c?)) XTuw = Au + By Substituting this
relationship into the equation before, we obtain

Auv+cuv+(/\xguV):Auv+B“V (69)

where A, denotes the stress energy tensor of ordinary maitte B,, denotes the stress energy tensor of the
electromagnetic field. Simplifying equation, it is

+Cu * (A % gw) =+B,, (70)

where G, denotes the gravitational field due to the stezsargy tensor of ordinary matte,AWe add the ten-
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sor G,, on both sides of the equation before. The unificadf gravity and electromagnetisms under condgio
of general relativity theory follows as

+CI1V + CHV + (/\ X gllV) =+ BHV+ CHV (71)
or in general as

ZXCMV+(/\XgHV)=+BMV+ CHV (72)
Quod erat demonstrandum.

Scholium.

The theorem of the unification of gravity and efeatagnetism does not contain any additional fieldd is
formulated in four dimensional space-time. Thus féthin the sum of the tensors, B+ G, both electromag-
netism and gravity are successfully unified anéidohto each other. Up to now, there is neither rigtizal nor
experimental evidence that there might be unobseadklitional fields or extra dimensions necessarytlie
unification of gravity and electromagnetism. Theref for geometry underlying the theorem of theficaiion
of gravity and electromagnetism we choose Riemang@metry which is known to be suitable for gratin-
al interaction. Accordingly, until today all attetapknown to geometrize electromagnetism or uni§cteb-
magnetism with gravitation in the framework of Remmian geometry were in vain. Still, the theorenthaf
unification of gravity and electromagnetism demaatsis equally that Riemannian geometry is apprtepfiar
unification of gravitation and electromagnetismeThost important and interesting thing is a préaticof the
theorem of the unification of gravity and electramnatism that the stress energy tensor of the elecignetic
field B, is a source for ordinary gravitational fielg CFrom physical point of view, this prediction dag con-
firmed by experiments in strong electromagnetitdfiery precisely.

Lastly, the electromagnetic field,Bis a source for the ordinary gravitational fielg, Gince both fields are re-
lated by the equation G+ Axg,, = B,y and the ordinary gravitational field,{s itself is a determining part of
Einstein’s tensor (3. Furthermore, the ordinary gravitational fielg,@hen the stress energy tensor of the elec-
tromagnetic field B, is equal to zero (§ = 0) is still determined by the equatiop,@ Axg,, = B, . Thus far,
under these circumstances it ig, € Axg,, =(B,, =0)=0 and the ordinary gravitational fielg,ds given exactly
by the equation & = -Axg,..

In conclusion, we note that when the ordinary gedidnal field G, is equal to zero or G = 0 the stress energy
tensor of the electromagnetic field RBlerived from the equation,C+ Axg,, = B, is determined in this context
by the equation (& =0) + Axg,, = B,. In other words, we obtaihxg,, = B,,. Under these conditions, the
metric tensogwg,, of the stress-energy tensor of the electromagfietit B, follows in general from the equa-
tion Axgyy = By = (RI2)XemGuy @S emOuv = (2XAR)Xg,y =(2xA)xNn(Quy)-
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3.2. Theorem. The anti Einsteinian tensor G,v

Claim. (Theorem. Proposition. Statement.)
The anti Einsteinian tensor,@s determined as

_ _.(R 73
gpv - pr + Duv - +(ij gpv (73)
Direct proof.
In general, using axiom | is it
+1=+1 (74)
Multiplying this equation by the Ricci TensofRit is
+1x(R,,) =+2x(R,) (75)

Due to our definition above, it is &+ By, + C,y + Dy, = Ry Substituting this relationship into the equation
before, we obtain

Apv+Buv+Cuv+Dpv=Ruv (76)

The sum of the tensor,G= B,, + D, can be obtained as

G, = pr+ Duvz va_Auv_ Cuv (77)

~uv

which can be simplified as

G, =B, +D,=R,~(A,+C,) (78)

v
Due to our definition, Einsteinian tensog,/@ defined as (z = A,y + G Rearranging equation above, it is
G = pr + Duv = Ruv_( Guv) (79)

~uv

Einstein’s tensor (g is defined as = R, — ((R/2)% g,,). Substituting this relationship into the equathme

fore, we obtain
_ _ R (80)
gpv = BHV+ Duv— Ruv_[Ruv_((ij g“vjj

Rearranging equation, we obtain
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_ _ R 81
gpv = pr + Duv - Ruv_ Ruv+(5jx gpv ( )
At the end, we obtain

G, =B, +D, = +(—jx O (82)

Quod erat demonstrandum.

3.3. Theorem. The determination of the unknown parameter Y

Claim. (Theorem. Proposition. Statement.)
The unknown parameter Y is determined as

Y = (Ej (83)
2

where R denotes the Ricci scalar.
Direct proof.
In general, using axiom | is it
+1=+1 (84)

Multiplying this equation by thanti Einsteinian tensog,,, it is

+1x(§w):+1x((3 ) (85)

~uv

The same tensor was determined by the theoremeba$oB, + D,, = G,,. Substituting this relationship into the
equation before, we obtain

R
Buv + Duv gpv = (Ej X gpv (86)

Due to our definition above, it is agB= Y X gug,y and D, =Y x wg,,. Substituting this relationship into the
equation before, we obtain

pr + Duv (Y X evd uv) + (Y *wd pv) = (BJXQ Hv ®7)

2
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Due to our definition g, = emg.v + wluw the equation before can be rearranged as

By + D, =Y *( 09 + Wguv)EYX(gw)=(%j><gm (88)

In other words, it is

Yx(guv) :(%jxguv (89)

A further manipulation of the equation before ygttie result that

Y = (Ej (90)
2

Quod erat demonstrandum.

Scholium

Such a result is logical too. Due to our definitibis
gpv = EM gpv + w qu (91)

wheregmguy = v — wluw andemgyy denotes the second rametric tensor of the electro-magnetic figddile
w0y is the second rardnti metrictensorof the electro-magnetic fieldMultiplying equation above by the term

(R/2), we obtain
R (R R (92)
E Xgpv = E X em gpv + _2 qu,lV

which is exactly the result as obtained above.
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3.4. Theorem. The geometrization of the stress-energy tensor of the electromagnetic field

Claim. (Theorem. Proposition. Statement.)
The geometrization of the stress-energy tensdnettectromagnetic field under conditions of gehesiativity
follows as

R
pr = (ij emYpv (93)

where R denotes the Ricci scalar gnd,, denotes thenetric tensoiwof the electromagnetic field.

Direct proof.
In general, using axiom | is it

+1=+1 (94)

Multiplying this equation by the stress-energy tersf the electromagnetic field, denoted ag B is
+1x(B,, ) = +1x(B,)) (%5)

Due to our definition above, the stress-energydens$ the electromagnetic field was determined ly tela-
tionship B,, = Y x gvg,y . Rearranging the equation before we obtain

Buv =YX EMg uv (96)

According to the theorem before, the unknown patamé is determined as Y = R/2. The geometrizatibthe
electromagnetic field under conditions of geneeddtivity follows as

R
pr = (ij EM gpv (97)

Quod erat demonstrandum.

Scholium.

In a more far reaching development, at least sygseeral relativity theory brought the geometryhe scenario
of physics, many attempts were made to extend gekrmlativity's geometrization of gravitation to
non-gravitational fields. In particulathe geometrization of the electromagnetic fiektame a principal focus
and a cornerstone of physical interest and inguihe many geometric theories of electromagnetismuds
lished meanwhile are still not consistent with fteanework of the quantum theory or self-contradigtalespite
the fact that the electromagnetic theory was cauated in the 19th century. The present theorerorbefle-
scribes the stress-energy tensor of the electraagtagfield as directly related or determined by #pace-time
geometry or the metric tensgyg,.. A unified field theory, in the sense of a complgtgeometrical field theory
of all fundamental interactions, is no longer oaltheoretical desire.

®
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3.5. Theorem. The determination of the metric tensor of the electromagnetic field gmg,v

Claim. (Theorem. Proposition. Statement.)
The metric tensor of the electromagnetic figld,, under conditions of general relativity is deteredras

2 1 oy (1 v - 2 _
EMg“V:(ij[(4xnjx((ﬁ‘°xﬁ’ )—(ngwadeFd jD_(ijBW=2xn(Bw) (98)

where R denotes the Ricci scalar gpnd,, denotes the metric tensor of the electromagnietia. f

Direct proof.
In general, using axiom | is it

+1=+1 (99)

Multiplying this equation by the stress-energy tensf the electromagnetic field, abbreviated ags Bis

+1x(B,,) =+1x(B,,) (100)

Due to our theorem before, the geometrization efalectromagnetic field under conditions of genszhtivity
is determined as

R
(ij EM gpv = pr (101)

The stress-energy tensor of the electromagnetit fig, is determined in detail i. e. by the relationship

1 y_(1 v
{2 o)

where F is the electromagnetic field tensor andsgthe metric tensor. The equation before chaimes

R 1 1
(ij em Oy :((4xnjx((ﬁmx FVC)_(ZX 0, X Fy % dejjj = pr (103)

The metric tensor of the electromagnetic figld,, under conditions of general relativity is deteredras

2 1 o (1 v )2 f 2 —
EMg“V:(ij[(4xnjx((ﬁ‘°xﬁ’ )—(ngwadeFd jD_(ijBW=2xn(Bw) (104)

Quod erat demonstrandum.

®
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3.6. Theorem. The tensor Cyy

Claim. (Theorem. Proposition. Statement.)
The tensor ¢, is determined as

G =8 =(035,) (3 (A oo

Direct proof.
In general, using axiom | is it

+1=+1 (106)

Multiplying this equation by the stress-energy tersf the electromagnetic field, denoted ag B is

+1x(B,, ) =+1x(B,,) (107)

Due to our theorem before, the metric tensor oktketromagnetic field under conditions of geneeddtivity is

determined as
R (108)
pr = (ij EMgpv

where R denotes the Ricci scalar apd,, denotes the metric tensor of the electromagnigtid. fDue to the an-
other theorem above, it is

R
+Cuv + (/\ X gpv) =+ Buv = (EJ X EM guv (109)

The tensor ¢ is determined by the stress energy tensor of #reinagnetic field B as

G =8 =(035,) (3 (0 o

Quod erat demonstrandum.

Scholium.

Lastly, the stress-energy tensor of the electromtigfield B,, is a source or a determining part for the ordinary
gravitational field . From physical point of view, this theorem candoafirmed by experiments in strong
electromagnetic fields.

®
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3.7. Theorem. The determination of tensor of the hyperfield of gravitation and electro-
magnetism

Claim. (Theorem. Proposition. Statement.)
The geometrized form of the hyper-tensor of untf@aof gravitation and electromagnetism is deteedias

va + Buv =Rx EMgpv_(/\x gpv)

Direct proof.
In general, using axiom | is it

+1=+1 (111)

Multiplying this equation by the stress-energy tersf the electromagnetic field, denoted ag B is

+1x(B,,) =+1x(B,,) (112)

Due to our theorem before, the stress energy terigbe electromagnetic field under conditions ehgral rela-

tivity is determined as
R (113)
pr = E X EMgpv

where R denotes the Ricci scalar apd,, denotes the metric tensor of the electromagnigtid. fDue to a the-
orem before, it is

R
+Cuv + (/\ X gpv) =+ Buv = (Ej X EM gpv (114)

The tensor ¢ is determined by the stress energy tensor of #reinagnetic field B as

C, =B, —(Axg,)= (%) X 0= (A% g,) (115)

Adding the stress-energy tensor of the electrontagfield By, = (R/2emg,v to the equation before, we obtain
the geometrized form of the hyper-tensor gf guls B,, (i. e. the unity of gravitation and electromagsei)j as

R R
va + Buv = (E] X EMng+ (ij EM gpv_(/\ X gpv) = Rx EM guv_ (/\ X g|.1v) (116)

Quod erat demonstrandum.
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3.8. Theorem. The tensor D,y

Claim. (Theorem. Proposition. Statement.)
The tensor [, is determined as

R
Dpv = (ij w9y (117)

Direct proof.
In general, using axiom | is it

+1=+1 (118)

Multiplying this equation by the stress-energy tersf the electromagnetic field, denoted ag B is

+1x(B,,) =+1x(B,,) (119)

Due to our theorem before, the stress energy terigbe electromagnetic field under conditions ehgral rela-
tivity is determined as

R
pr = (E] X Em gpv (120)

where R denotes the Ricci scalar apd,, denotes the metric tensor of the electromagnéid.fAdding the
tensor 0, we obtain

R
Buv + Duv - (EJ X EMgpv+ Duv (121)
According to a theorem before, this relationshipdsivalent with

R R
pr + Dpv = (E]X EMgpv+ Dpv: (_zjx gpv (122)

Rearranging the equation before, the tensgridetermined as

(R (R R (R (R
Dpv_ E xgpv_pr_ _2 xgpv_ _2 X EMgpv_ _2 ><(gpv_ EMgpv)_ _2 X ng\ (123)

Quod erat demonstrandum.

®
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3.9. Theorem. The geometrization of the stress energy tensor of ‘ordinary’ matter A,

Claim. (Theorem. Proposition. Statement.)
The geometrization of the stress-energy tensoorafinary’ matter 4, can be obtained as

Ej X WOt (AX0,) (124)

Auv :Ruv—Rx EMg“V—( 5

Direct proof.
In general, using axiom | is it

+1=+1 (125)

Multiplying this equation by the Ricci TensofRit is

+1x(R,,) =+1x(R,) (120

Due to our definition above, it is &+ By, + C,y + Dy, = Ry Substituting this relationship into the equation
before, we obtain

Auv+Buv+Cuv+Duv=Ruv (127)
The tensor of ordinary matter,Afollows as
Auv ZRMV_Buv_(Cuv-'- Duv) (128)

The tensor B, itself was determined as,B= (R/2)xgmg,,. The addition of the tensors,[plus G,, is deter-
mined as [, + C,y = (R/2)xg,, - AXg,, .The equation before changes to

R R
Apv :va_(zjx EMgpv_((_zjxgpv_(/\x gpv)j (129)

Rearranging equation before, we obtain
R R
Auv :Ruv_(zjx EMgpv_(ijguv-*-(/\x guv) (130)

The tensor (R/Zg,, is determined as (R/2Y,, = (R/2Xem0.v + (R/2)w0,.. The equation can be simplified as

R R R
Auv = RHV_(EJX EMgpv_(Ej>< EMguv_(_ij ngv-l_(/\>< gpv) (131)
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The geometrization of ‘ordinary’ matter follows general as

R
Auv = va -Rx EMguv—(ij Wg“v+(/\>< guv) (132)

Quod erat demonstrandum.

3.10. Theorem. The probability tensor of the electromagnetic field p(B)

Claim. (Theorem. Proposition. Statement.)
The probability tensor p(B) of the stress-energy tensor of the electromagffield is determined as

((4injx((F“°x F“C)_(zllxg““ o dem B,,

(1 v _ -
p(pr) = (ij gll X Em guv - R - R (133)

Hv Hv

Direct proof.
In general, using axiom | is it

+1=+1 (134)

Multiplying this equation by the stress-energy tersf the electromagnetic field, denoted ag B is

+1x(B,,) =+1x(B,,) (135)

Due to our theorem before, the geometrization efalectromagnetic field under conditions of genszhtivity
is determined as

R
(ij EM gpv = pr (136)

The stress-energy tensor of the electromagnetit Big, was determined i.e. by the relationship

pr E((4in—jx(( ch xF, C) —(%X O * Fa X F jj] (137)

where F is the electromagnetic field tensor andsgthe metric tensor. The equation before chaimes

(%jx EMgpv :((41'7[))(((&0)( FVC)_(?llx gw X de X dejjj = Buv (138)
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The Ricci scalar R is defined as the contractiothefRicci tensor R or it is R = §'R,,. The equation before
changes to

1 v (1 (1 v ||| —
s e o

A commutative divisiof?] by the Ricci tensor R leads to the relationship

1 (1 y
((4xnjx((F“°xF“ )_(4XQWXF"“XFG Dj B,, e

Bearas- : :
iy Ruv

This equation is identical with the probability $em p(B,,) of the stress-energy tensor of the electromagneti
field. In general it is

1 Cc 1 dv
X||F XEF *)—| =% xF, xF
1 » ((4"7[) (( uc \Y ) (4 gpv dv jjj Bu\,
E xg % EM gpv =

p(B.)= = (141)

R R

uv uv

Quod erat demonstrandum.

3.11. Theorem. The probability tensor is determined by the metric tensor

Claim. (Theorem. Proposition. Statement.)

In general let n(%,)=X,/R where X, denotes a second rank co-variant tensor and Riefetite Ricci scalar,
the contraction of the Ricci tensor as R'Ry,. Further, p(%,)=X,/R,, denotes the probability tensét| of the
tensor X,,. The probability tensor p(x) of a tensor X, is determined by the metric tensor as

p(X,)=g"xn(X,,) (142)

Direct proof.
In general, using axiom | is it

+1=+1 (143)

Multiplying this equation by the tensor,Xit is

ax(X,) =+1x(x,) oo
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A commutative 2] division of the tensor X by the Ricci tensor B yields

w K (145)
Rw va
which is equivalent with
p(X )Expv :va (146)
nv
va va
or with
X
_ v (147)
p(Xp\/) - R“V
Rearranging equation it is
p(X,)xR,, =X, (148)
Changing equation, we obtain
p(X,)*xg¥ xR, = ¢V x X, (149)

Due to the relationship R£{R,,, the equation before simplify as

p(X, )xR=g"xX,, (150)
or as
X
=gV x MY (151)
p(va) - gu X R (152)

In general, it is n(3%,)=X,/R. The probability tensor of a tensogXs determined by thérfverse or) conjugate
metric tensor as

p(X,,) =" xn(X,,) (153)

Quod erat demonstrandum.

Scholium.

Quantum physics (quantization) focuses on the gitiba(amplitudes) while general relativity theorglies on
geometry (tempo-spatial points). The definitionagbrobability tensor p(x) of a tensor }, marks a remarka-
ble degree of interaction between probability tiyeanmd the highly dimensional theory of generaltreity and
is a key step to the unification of quantum physing general relativity by probabilitizing generalativity’s
geometric background. In principle, a contradictfoee transformation of a geometrical mathematfcane-
work into a probabilistic mathematical frameworldarice versa is possible. A geometrization of plolitst
theory appears to be necessary too.
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3.12. Theorem. The normalization of the relationship between the tensors of general
theory of relativity.

Claim. (Theorem. Proposition. Statement.)
The relationship between the tensors of generakyhef relativity can be normalized as

4% 2% TIX R
(P (5o )0 59
+

R R =t

uv uv

Direct proof.
In general, using axiom | is it

+1=+1 (155)

Multiplying this equation by the stress-energy tersf general relativity ((>42><T[><y)/(c4))><Tw, it is

4% 2% TIX 4x 2X TIX
+1>{TVX Tuvj =+1x (TVX ij (156)

wherey is Newton's gravitational ‘constaritt 7], [18] , ¢ is the speed of light in vacuum ard sometimes re-
ferred to as ‘Archimedes' constant’, is the rafi@ eircle's circumference to its diameter. Du&iostein’s gen-
eral relativity, Einstein’s field equations are efehined as

4x 2% TIX R
(TVXTW) = Ruv_(_zx guvj+(/\x guv) (157)

where R, is the Ricci curvature tensor (the trace of Riraargurvature tensor), R is the scalar curvatyrgisg
the metric tensor)\ is the cosmological constant ang, TS the stress—energy tensor. Rearranging equeon
obtain

4% 2% TIX R
(TVXTW) +(Ex gpvj - (/\ X guv) = Ruv (158)

A commutativé?] division of tensors simplifies the equation as

4x 2XTIXY R

() (Gran)- ) g e

+ = Y=

R R R o
where J,, denotes the tensor of unified figle]. In general, a normalization of some tensors okga relativity
follows as
4% 2% TIX R

(P (5o )0 (160)

+ = ]'uv

R R

Quod erat demonstrandum.
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3.13. Theorem. The normalization of the relationship between the tensors of the unified
field theory.

Claim. (Theorem. Proposition. Statement.)
The relationship between the tensors of the unfiidd theory normalized as

4% 2% TIX R
(P (5o )0 (161
+

R R =t

uv uv

Direct proof.
In general, using axiom | is it

+1=+1 (162)

Multiplying this equation by the energy tensor ehgral relativityz T, it iS

+1x(-E, ) = +1x( < E,) (163)

The field equations of the unified field thed#y are determined as

B = 2S, at

pv uv_ R “pv

(164)

wheregS,, is the tensor of spad&] of the unified field theory angt,, is the tensor of timg&] of the unified
field theory. Rearranging equation it is

REuv+ Rtuv: Rsuw (165)

A commutativé?] division of tensors simplifies the equation as

rE r!

Hv +
R Suv R

S
St (166)
%v R “uv

where ],, denotes the tensor of unified figld|. In general, a normalization of some tensors efuthified field
theory follows as

t
R pv+ R “uv 1“\, (167)

RSpv R SJV

Quod erat demonstrandum.

®
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3.14. Theorem. The determination of X

Claim. (Theorem. Proposition. Statement.)
The unknown parameter X, which can be equal tat be determined as

S
X - R>uv
{ Ry J (169)
Direct proof.
In general, using axiom | is it
+1=+1 (169)

Multiplying this equation by the tensor of the ueidf field 1,,, of the unified field, it is

+1x(1,,) = +1x(1,) 170)

or

B = d (171)

Due to the theorem about the normalization of stensors of the unified field theory, this equatiearranges
to

t
, — R pv_l_ R “uv (172)
1“ RSuv RSJV

According to the theorem about the normalizatiosahe tensors of the general theory relativity,@éhaation
before rearranges to

4% 2XTIXY J (R j
7XTV el IV b /\ng
( C4 H + 2 " ( " ) _ REpv + Rtuv (173)

Ruv Ruv R Spv R %v

A commutative multiplication and divisioa| of tensors changes the equation before to

4% 2XT[XV R _ va n REuV Ruvﬂ RtHV_
) B S S, o

Due to our definition, it iRE,, = Xx(((8x1o)/(c))xT,w) and equallyatyy = XX((((RI2)xg))-(AXQ)). Substi-
tuting these relationships into the equation befegeobtain

®
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R, nXn (%xm) R, nXn ((%ngj ~(Ax guv)j
+ =R,, (175)
R %IV R %V

4x 2XTIXY R _
(TXTHV)+[E><9“V)—(/\X gw) =

Due tocommutative operatiori&], this equation can be simplified as

R v n X 4AX 2X TIX R
Bt X (22, Jof [ B, (s - -

which itself can be simplified as

R, NnX
(“S] n(Ru) =Ry (177)
R>uv
or as
R,nX R R
B n—H=—t=1, (178)
( RSuv J Ruv (%
or as
Ry n X -1, (179)
Rsuv

The determination of the value of X follows as

X=1,n (f’“] :( Tj”J (180)

uv uv

Quod erat demonstrandum.

Scholium.

The straightforward question is, must we accept @&,/ R.) = L. or RS,/ Rw) = ¢? or S,/ Ry) = 1/c2 ?
The probability tensor of the stress-energy tensbrthe theory of general relativity is defined as
p((((8><T[><y)/(c4))><Tpv) ) =((((8><n><y)/(c4))XTHV))/RHV. The energy tensor of the unified field theondéfined as
REW=X><(((8><n><y)/(c4))><TuV). The value of X is determined agS(/R,,). The equation before changes to as
REpv = (RSJV/RH\,)><(((8><T[><y)/(c4))><Tpv). In general, the probability tensor is of usexpress the energy tensor as
REpy = (RS *( (((8xn><y)/(c4))><Tf\,) /R.). The probability tensor simplifies this equatisimplifies in other
word t0RE, =S, *P((((BxTey)/(C))XTy) ).

The probability tensor of the tensor ((((Rf8),))-(Axg.)) is defined in general something as
P((((R/2xgu))-(A*gu))) = (((((R/2x0u))-(A*gu)))/Ru. The value of X is determined equally a§(/R..).
The tensor of timest,, = Xx((((R/2)xgw))-(A%gy)) follows asgt,=(rSW/Ru)X((((R/2)xg,.))-(Axg)) or as
Rtl.l\/:(RSJV)x( ((((R/Z)xgpv))'(/\xgpv)) /va) or a-SFetpv = RSJVX p(((((Rlzygpv))'(/\xguv))) In last consequence, the
relationship between the field equations of unifiiedd theory and Einstein’s theory of general tielty is de-
termined by the equation

RSV 4 2 R v R
REW+Rtw=[( R:Jn[ x ;nxyxij{ é]n([zxguvj—(Axguv)j]= & Su (181)

®
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or by the equation

(s f 20 oo f(Sea -t a2 (#2052 o (B0 )= s a82)

Einstein’s field equation yield the result

4% 2% TIX R
[ G xa) =R oo

What is the physical meaning of Einstein’s fieldiation, if we multiply the same by the term (1/¢8)this case
we obtain

1) ( 4x2xmxy 1 (R, (1
G ([ Fo) el Gm oo

In the International System of Units tjaule, the unit of energy, is defined as 1 [J] = 14kg/s?] = 1 [Nkm]
while 1 [N] = 1 [kgxm/s?] = 1 [J/m] denotes the unit of force. The strenergy tensor,J without the mathe-
matical term ((81xy)/(c*)) has the unit oknergy densityd/nT], it is 1 [J/nf] = 1 [ (kgxm?)/(sxm?)]. Let us
multiply the stress-energy tensog, by (1/c?), we obtain 1 [3fhx(1/c?) = 1 [ (kgmd)/(sxm?)] x [1/[m?/s?]]
which is equivalent with 1 [J/fhx(1/c?) = 1 [ 6kgxm?)/(sxkm’xn¥)]. Consequently, the term s2 and m? can-
cels out and we obtain the unit 1 [3Jm(1/c?) = 1 [ (kg)/( M) ]. In other word, the stress-energy tensgy T
changes to the stress tensor of matter. Thus fateruthese conditions there is some evidence thatkes
sense to assume thag,R= S, = ¢2x gU,[2]. This assumed as correct, the tengpy [2] is determined as
rROW=((((R/2) x(1/c?) xg,))-(A x(1/c?) xg,,)) where the term (1/c¥g,,can denote something like the metric
tensor of timgg,,~ (1/c2) Xg,v.
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3.15. Theorem. The geometrization of the stress-energy-tensor T,

In general theory of relativity the gravitation&lfl is completely geometrized. Still, Einsteinldai to geome-
trize the stress-energy-momentum tensgrtdo. Einstein was convinced that the main probierthe unified
field theory was the geometrization of the stressrgy-momentum tensor of matter on the right-hddd sf

his field equations known to be determined gs-R(R/2}xg,, + AXQ,~ (((8><T[><y)/(c4))><Tu\,). The geometriza-
tion of the stress-energy-momentum tensor of thiteemd,,, should result in the geometrization of the quantum
i. e. matter fields.

Claim. (Theorem. Proposition. Statement.)

The total geometrization of all fields or Einstsifield equations with geometrized energy-momentemsor of
the matter () are determined as

R R
ExRic gpv_zxguv-'-_zx/\x grgpv:_szgpv (185)

Direct proof.
In general, using axiom | is it

+1=+1 (186)

Multiplying this equation by the tensor of the sBeenergy tensor ((wy)/(c*))xT,), we do obtain

(4xzxnxyxﬂwj:(4xZXHXVXINJ 4

c’ c

Due to Einstein’s general theory relativity, thigiation can be rearranged as
R _( 4x 2xTIXY
Ry —(Ex gwj +(Axg,)= (—dl x ij (188)

Multiplying Einstein’s field equation by the terr®/R), we obtain

2 2 R 2 2 I XTIX
g B e T e e e e o B

Due to our definition, this equation is equivaleiith

RO ~ G TAX 00, T e O (190)

Multiplying the equation before by the term (R/E)nstein’s field equation completely geometrizeliofes as

R R R R
ExRic gpv_zxguv-'-_zx/\x grgpv:_szgpv (191)

Quod erat demonstrandum.

®
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Scholium.

In view of Einstein's geometrization of gravitygthtress-energy tensoy,Tis the source-term of Einstein's field
equations. From the geometrical point of view, skress-energy tensor,Jis still a field without any geomet-
rical significance. In particular, the main goaltbé very transparent and also highly general #meabove is to
describe matter as an inherent geometrical strei@tnd to incorporate both, the principles of genesativity
and quantum theory, in one mathematical formula&hSautheorem is expected to be able to providdisfaa
tory (geometrical) description of the microstruetwf spacetime. We rearrange the equation before as

R R R R R R
Engpv+Ex/\x grgpv:_z( Ricgpv_ gpv)+[_2x/\x grgp\J:_zx( Gg|,1v+/\>< grgp):_zx Egp (192)

or as

R R
Ex(Ggpv-'-/\x grgpv)z_szguv (193)

Einstein’s vacuum field equations can be obtaineémthe known the stress-energy-momentum tengorkis
determined as (R/2}g,, = 0. Under these conditions (F0), the Einstein vacuum equations are determiryed b
the fact that

R R

5 %60 T TS5 XA X 40 (194)

One focus of this paper is the attempt to buildridge between quantum theory and classical geometrg
equation before can be changed as

. R (R
Ixhx(ixhxzx(Ggpv+/\xgrgpv)j_[Engpvj (195)

In this context we multiply the equation beforethg wave-functiort¥. We obtain the Schrédinger’'s equation
as

. R R R
Ith[[inxhng“Vj+[2xiXhXAx grguvnxw :[Enguvjxw (196)

or a kind ofa ‘normalized’ Schrédinger'squation where R =x # ) ~ hfas

(o8, + A% 4,) X W =9, X (197)

an equation where quantum meets geometry and eiaywhere the metric (i. geometry is a determining
part of this equation, but the wave-function (gaantun) too. In last consequence, the gravitational fieddlf
can be quantized. A profound methodological chgkerior the physicist was the geometrization of the
stress-energy tensoy, I This problem is solved. The mathematical tern2JR4,, denotes the geometrical de-
scription of the stress-energy tensqy f general relativity, it is (((8rt><y)/(c4))><Tu\,)= (RI2)e0,y -
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4. Discussion

A new approach to quantum gravity and the unifiettiftheory developed by the author is already ighkd
[2]. Besides of the misprint in this pag&rt in Eq. (76)

oWy =2, Npm,, N ef, = ];lv n (GW A gJV) (76)

R ™ v

which should be changed to

0('011v52uva7ruvm Rfqu%O(Gw-‘-AXQN) (76)

R v

one way how to geometrize the electromagnetic fiellready provided. In this paper the geomeioradf the
electromagnetic field under conditions of geneeddtivity theory is developed in more (technicadtall. This
paper has answered the question about the geoatemiof the electromagnetic field under conditiafigen-
eral theory of relativity.

Thus far, this publication has not answered thestijopie whether doegeometrizatiorexcludesjuantizationand
vice versa. In other words, is there a dualism betwgeometrization and quantization in the seiteer geom-
etrizationor quantization. Thiggeometry-quantum dilemnieads straight forward to the questiwhich came
first, the geometry or the quant@nin general, are the rules of quantization morel&amental than the rules of
(classical) geometry or vice versa? The questiaouitie very first geometrgr the very first quantunalso
evokes the question of how the development ofuhiserse in general began. Thus fauantizing geometris
not only a major undertaking but a theoretical ssitg and vice versa&Geometrizing the quantushould be
provided by a self-consistent deterministic forntiola of a unified field theory of nature. In thisrdext, the
geometric entityline’ (in the framework of string-theory: the string determined by points. But what is a
point, how does geometry defines a point? A point apptaibe something quantized. In other words, within
geometry (a line, a string), the quantum (a podat) be found and surely vice versa. Within the tuan(a
point) the geometry (a line) can be found. The car@not without its own other and vice versa. Todaynified
description of all physical phenomena is endangesgecially by the incompatibility between the deli@istic
geometrical formulation of general relativity artetclaimed indeterministic nature of quantum medsan
Thus far, the problems ofuantizing geometrgr geometrizing the quantuare not solvedThe answer to such
and similar questions may be considered for futuoek. In this paper, the tensor,Pwas derived in Eq. (78) as

(R (R R (R (R
Duv_ E xguv_Buv_ _2 xg“"_ _2 8 emGy = _2 X(gw— EMgw)_ _2 * w (78)

In particular, the physical content of the tensgyi®not clear at this moment. Still, a further laigiclarity may
not stem from this fact. In order to express thgspal content of the tensor, [}t is necessary to distinguish
clearly between the tensor,2and the tensor B. To within acceptable margin of error, the infotioa carried

by the tensor [ is very different from the information as carriegl the stress-energy tensor of the elec-
tro-magnetic field B,. In this context, the tensor,Dis an anti-tensorof the stress-energy tensor of the elec-
tro-magnetic field B,. But, as noted above, there are some aspects atedneith the tensor Q. In fact, the
tensor [}, is a sub-tensor of the metric tensqy of Einstein's gravitational theory of curved sgame. Thus
far, the metric tensoy,g,vhas to do something with the gravitational fieldoglover, it is possible and highly
desirable that the metric tensgg,,is determined by fuctuations of gravitational felnd that the same tensor
represents something like "ripples” in spacetimée Tinteraction between electromagnetic and grawitat
waves and the transformation of one wave into ardbecame already a principal focus of theoretit@irest

®
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and inquiry and has been discus$ed| in literature. Under these assumptions, the teBgorcould be deter-
mined by the metric tensor of the gravitational eavwore precisely stated, it may be rather diffitm under-
stand the significance that has to be accordedeti®or ), but the assumption that the tensqy, Bepresents a
fourth and until today unknown ‘force’ does not reakny sense so far. Despite Einstein's intent atizee
something like a unified field theory, there is smierable disagreement about the extent to whigh,all, such
a theory is possible. And yet, from the epistemiglaigstandpoint, despite the long history of triatout a com-
pletely geometrical field theory of all fundamenitaieractions under conditions of Einstein's giatidinal theo-
ry of curved spacetime, it is possible to go beygaderal relativitiesdefinité advance in physical knowledge.
Furthermore, besides of the influence of Einsteiiction of physics to geometiggometry is nothing abso-
lute but something relativén fact, striving towards an extension of Einsteigravitational theory, we may ap-
pend an unknown tensor,gto Einstein’s filed equations for this purpose. @®@sure, the Einstein field equa-
tions (EFE) with the extra termXmay be written in the form

4x2Xm Xy R Ax2xmxy
—EXT |+ =X -A\Xx + - = + A X +—"
R = (cxcxcxc "j [2 Y g“’] ()ﬁv >§V) @ Q CXCXCX C x L (198)
and it follows that
A% 2% Xy R 4><2><7r><y
+ = ——*x +| —X -N\X + +AXx g+ +—r
L E L T R O R e T

More precisely, one possible extension of genelativity is viewed within the table T able 5).

Table 5.A possible extention of the theory of general et

Curvature
Yes No
R
R,-—=ng,*Ang,
v Y v R
g 2 (Ej . gw [4w n 2w N T, N Vuvj A Tuv
En- | ° R e S e
—_ n g
er/gy 2 EM Ipuv
mo
men
tum
R R
2 (Ej N em gIJV -An gHV (Ej N w gp\; i XHV (%)n Ow ~AN Gy + X,
R
Guv (Ej " Gt K Ruv + XW
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5. Conclusions

In the 1940s, the theoretical framework of quanglettrodynamics consolidated electromagnetism guidin-
tum physics. It has also to be noted that the tdajeometrize the electromagnetic field within theoretical
framework of general relativity has still not metlwmuch success. In this publication, the elecagnetic field
has been geometrized under conditions of gendediviey.
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