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Abstract. We present a spectral theory of uniform, regular and linear hyper-
graph. The main result are the nature of the eigen values of (k, r) - regular

linear hypergraph and the relation between its dual and line graph. We also
discuss some properties of Laplacian spectrum of a (k, r) - regular hypergraphs.
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1. Introduction

The spectral graph theory [2, 3] is the study of the relation between eigen values
and eigen vectors of certain associated matrices of a graph and its combinatorial
properties. There is some relation between the size of the eigen values and maximum
degree of the graph [8, 1]. Connection between spectral characteristics of a graph
and other graph theoretic parameters is a well explored area.

A graph structure is obtained when a non empty set (set of vertices) and a
subset of all unorderd pairs of elements of the set of vertices (this subset is called
the set of edges) are taken together. When the set of unorderd pairs is replaced
by order pairs we get directed graphs. For a regular graph G, eigen values of the
adjacency matrix are well studied. The second largest eigen value of the adjacency
matrix is realted to quantities such as diameter [6], chromatic number [4] etc. The
regular graph with small non trivial eigen value can be used as good expanders and
superconductors in communication network [12].

From the point of view of applications in social network and allied disciplines a
more general structure is very useful. This structure, called hypergraph is obtained
by taking a subset of the set of all proper subsets of the given set. The elements
of the second set are called hyperedges. A hypergraph is denoted by H. For
basic ideas and definitions on hypergraph readers may refer the text by [2]. Chung
[6] and Wen - Ching et al. [11] proposed the operator attached to a regular and
uniform hypergraph and obtained some estimate of the eigen values of the operation.
K. Feng and W. C. Li [8] studeid the growth of the second largest eigen value
and distribution of the eigen values of the adjacency matrix attached to a regular
hypergraph.

In the next section we go through the main definitions and important results
needed to understand the concepts included in the subsequent sections.
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2. Preliminaries

We now discuss some basic terminology of hypergraphs, which we require in the
sequel. A hypergraph H is a pair (X,E) where X = {v1, v2, · · · , vn} is a finite set
and E = {E1, E2, · · · , Em} of subsets of X, such that Ej 6= φ, j = 1, 2, 3 · · ·m
and ∪mi=1Ei = X. The elements of X are called vertices or hypervertices and the
elements of the sets {E1, E2, · · · , Em} are called hyperedges of H. The cardinality
of X is called the order of H and cardinality of E is called the size of H. In a
hypergraph two vertices are adjacent if there is a hyperedge that containing both
of these vertices. Two hyperedge are said to be adjacent if Ei ∩ Ej 6= φ. A simple
hypergraph is a hypergraph such that Ei ⊂ Ej ⇒ i = j. A hypergraph H is said to
be k - uniform for an integer k ≥ 2, if for all Ei in E, |Ei| = k for all i.

A hypergraph H is said to be linear if |Ei ∩ Ej | ≤ 1 for all i 6= j. A hypergraph
in which all vertices have the same degree is said to be regular. An r - regular
hypergraph is a hypergraph with d(vi) = r for all i ≤ n (r, k) - regular hypergraph
is a hypergraph which is r - regular and k - uniform. The following results are
important.

Theorem 2.1. [4] Let T be a real n × n matrix with non negative entries and
irreducible then there exists a unique positive real number θ0 with the following
properties.

• There is a real number x0 > 0 with Tx0 = θ0x0
• Any non negative right or left eigen vector of T has eigen value θ0. Suppose
t ∈ R and x ≥ 0, x 6= 0.
If Tx ≤ tx, then x ≥ 0 and t ≥ θ0. Moreover t = θ0 iff Tx = tx.
If Tx ≥ tx, then t ≤ θ0. Mmoreover t = θ0 iff Tx = tx.

Theorem 2.2. [4] Consider two sequence of real numbers θ1 ≥ θ2 ≥ · · · ≥ θn and
η1 ≥ η2 ≥ · · · ≥ ηmwith m < n.The second is said to interlace the first one whenevr
θi ≥ ηn−m+i for i = 1, 2, ...,m.

Theorem 2.3. [4] Let C be the quotient matrix of a symmetric matrix A whose
rows and columns are partitioned according to the partitioning {x1, x2, · · · , xm}
then the eigen values of C interlace the eigen values of A.

Let A be a real symmetric matrix and u be a non zero vector. The Rayleigh

Quotient of u [4] with respect to A is defined as uTAu
uTu

. The dual of the hyper-
graph H(X,E) [2] is a hypergraph H∗ = H(X∗, E∗) where X∗ = {e1, e2, · · · , em}
corresponding to the edges of H and E∗ = {X1, X2, · · · , Xn} where Xi = {ej :
xi ∈ Ej in H}. Also (H∗)∗ = H. Given a hypergraph H = (X,E), where
X = {E1, E2, ..., Em}. Its representative graph or line graph L(H), is a graph
whose vertices are points {e1, e2, ..., em} representing the edges of H and the ver-
tices ei and ej being adjacent if and only if Ei ∩ Ej 6= φ.

Lemma 2.4. [2] The dual of a linear hypergraph is also linear.

Proof. Given H is linear. SupposeH∗ is not linear. LetX1 andX2 inH∗ intersect at
two distinct points e1 and e2. Hence {e1, e2} ⊂ E1 and E2. Therefore |E1 ∩ E2| ≥ 2,
which contradicts |Ei ∩ Ej | ≤ 1. So H* is linear. �
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Example of (2,3)- regular and linear hypergraph on 9 vertices

Now we define the adjacency matrix [1] of a hypergraph H. Adjacency matrix
of H is denoted by AH = (aij), where

aij =

{
|{Ek ∈ E : {vi, vj} ⊆ Ek}| if i 6= j

0 otherwise.

The eigen values of the adjacency matrix AH is called the eigen values of H.
Since AH is a real symmetric matrix, all the eigen values are real. The spectrum of
H is the set of all eigen values of AH together with their multiplicities. Spectrum
of H is denoted by Spec(H) or Spec(AH). Let λ1, λ2, · · ·λs be distinct eigen values
of H with multiplicities m1,m2, · · ·ms then we write

Spec(H) =

(
λ1 λ2 . . . λs
m1 m2 . . . ms

)
In the next section we derive some properties of the spectrum and Laplacian

spectrum of (r, k) - regular hypergraphs. Also discuss the relation between the
Line graph and dual of 2 - regular hypergraphs.

3. Spectrum of (r, k) - regular hypergraph

We know that the sum of the entries in each row and column of the adjacency
matrix of an (r, k) - regular hypergraph H is θ = r(k − 1). Thus θ is an eigen value
of A(H) [9, 11].

Theorem 3.1. Let H be an (r, k) - regular linear hypergraph then

(1) θ = r (k − 1) is an eigen value of H.
(2) If H is connected, then multiplicity of θ is one.
(3) For any eigen value λ of H we have |λ| ≤ θ.



Proof. (1) Let AH = A be the adjacency matrix of H. Also let u = (1, 1, 1, · · · , 1)
t
.

Since H is k-uniform, each edge has exactly k vertices. ie |Ej | ≤ k for i ≤ m.
Since H is r- regular each vertex xi belongs to exactly r hyperedge. Let vi ∈
E1, E2, · · · , Ek Then k hyper edge consist of rk vertices. So different pair of vertices
with xi as one factor is rk − r = r(k − 1). Let θ = r(k − 1). Then Au = θu ie θ is
an eigen value of H.

(2) let z = (z1, z2, · · · , zn)t, z 6= 0 be such that Az = θz Let zi be the entry of z
having the largest absolute value (Az)i = θzi

m∑
j=1

aijzj = θzi

We have each vertex xi is associated with r(k − 1) other vertices through a
hyperedge. By the maximality property of zi, zj = zi for all these vertices. Since
H is connected all the vertices of z are equal. ie z is a multiple of u = (1, 1, · · · , 1)t.
Therefore the space of eigen vector associated with the eigen value θ has dimension
one. So the multiplicity of θ is one.

(3) Suppose Ay = λy, y 6= 0. Let yi denote the entry of y which is the largest in
absolute value.

(Ay)i = λyi
n∑

j=1

aijyj = λyi

|λyi| =

∣∣∣∣∣∣
n∑

j=1

aijyj

∣∣∣∣∣∣
≤

n∑
j=1

aij |yj |

≤ |yi|
n∑

j=1

aij

= θ |yi|
ie

|λ| ≤ θ
�

Proposition 3.2. Let H be a k - uniform hypergraph with largest eigen value
λ1. If H is regular of degree r, then λ1 = θ where θ = r(k − 1). Otherwise
(k − 1)δmin ≤ δ ≤ λ1 ≤ (k − 1)δmax, where δmin, δmax and δ are the minimum,
maximum and average degree respectively.

Proof. Let 1 be the vector with all entries equal to 1. Then A1 ≤ (k − 1)δmax1.
By Theorem 2.1, λ1 ≤ θmax where θmax = (k − 1)δmax and equality happens if
and only if A1 = λ11, ie if and only if λ1 = r(k − 1) where r is the degree of the
vertices. Consider the partition of the vertex set consisting of a single part. By
Theorem 2.3 we have δ ≤ λ1. Equality happens if and only if H is regular. �

Proposition 3.3. Let H be a linear hypergraph with eigen values θ = λ1 ≥ λ2 ≥
· · · ≥ λn, then the following are equivalent.



(1) H is an (r, k) - regular hypergraph.
(2) AJ = θJ where θ = r(k−1) and J is an n×n matrix with all entries equal

to 1.
(3)

∑n
i=1 λ

2
i = θ n

Proof. The statments (1) and (2) are equivalent. Inorder to complete the theorem,
we prove that that (1) and (3) are equivalent. First assume H is an (r, k) - regular
hypergraph. Then

n∑
i=1

λ2i = tr(A2) = θ n

. Conversily assume (3). Then

1

n

n∑
i=1

λ2i = θ = r(k − 1) = λ1.

By Proposition 3.2, H is regular. �

Theorem 3.4. The dual H∗ of a (2,k) - regular hypergraph H is k - regular. Hence
k is an eigen value of H∗.

Proof. Let H be a (2, k) - regular hypergraph. We know that d(vi) = 2 for i ≤ n
and |Ej | = k, for j ≤ m . Xi = {ej/xi ∈ Ej in H}. Each xi belongs to exactly two
edges in H. So |xj | ≤ 2 for j ≤ n. Since |Ej | = k, each ei is adjacent to exactly
k, e′js hence d(ej) = k. Therefore H∗ is a k - regular simple graph. Hence k is an
eigen value of H∗. �

Theorem 3.5. Let H be a (2, k) - regular linear hypergraph. Its line graph L ∼= H∗

Proof. By Theorem 3.4 , H∗ is a k - regular simple graph. Let {x1, x2, · · · , xm}
be the vertices of L. In H, each edge Ej has k - vertices. Since the vertex xj is
adjacent to k other vertices, d(xj) = k for j ≤ m. L is a k - regular simple graph.
Hence L and H∗ have same number of vertices and edges. Also incidence relation
is preserved. Therefore L(H) ∼= H∗.

�

4. Laplacian Spectrum of (r, k) - regular hypergraph

We define the itLaplacian degree of a vertex vi ∈ X(H) as δl(vi) =
∑n

j=1 aij .
We say that the hypergraph H is Laplacian regular of degree δl if any vertex v ∈
X(H) has Laplacian degree δl(v) = δl. If H is a simple graph, then δl(vi) = δ(vi).
The Laplacian matrix of a hypergraph H is denoted by L = L(H) and is defined as
L = D −A where D = diag{δl(v1), δl(v2), · · · , δl(vn)}. The matrix L is symmetric
and positive semi definite. All the eigen values are real and non negative. The
smallest eigen value is 0 and the corresponding eigen vector is j = (1, 1, ..., 1).
Moreover the multiplicity is the number of connected components of H. Second
smallest and largest Laplacian eigen values and parameters related are studied by
Rodrigues [10]. The eigen values of L are denoted by 0 = µ1 < µ2 < · · · < µb

and their multiplicities m1,m2,m3, ...,mb. Thus the Laplacian spectrum of H and
Laplacian degree of its vertices are related by

b∑
l=1

mlµl = tr(L(H)) =

n∑
i=1

δl(vi).



If H is a regular hypergraph of degree δ(l), then L = D − A = δlI − A. Thus the
eigen values of A and L are related by µi = δi − λi, i = 1, 2, ..., b.

The second smallest eigen value of the graph gives the most important informa-
tion contained in the spectrum. This eigen value is called the algebraic connectivity
and is related to several graph invariants and imposes reasonably good bounds on
the value of several parameters of graphs which are very hard to compute. The
concept of algeraic connectivity was introduced by Fiedler [7]. Also µ2 ≥ 0 with
equality if and only if H is disconnected. Algebraic connectivity is monotone. It
doesnot decrease when edges are added to the graph.

Theorem 4.1. Let H be a k - uniform hypergraph. Also let µ2 be the algebraic
connectivity of H. For any non adjacent vertices s and t in H we have,

µ2(H) ≤ k − 1

2
(deg(s) + deg(t)).

Proof. We have,

µ2(H) =
Min
u {< Lu, u >

< u, u >
:< u,1 >= 0}

The vector u is defined by,

ux =


1 if x = s

−1 if x = t

0 otherwise.

Clearly < u,1 >= 0.

µ2(H) ≤ < Lu, u >

< u, u >

=

∑
xy∈Ej

axy(ux − uy)2∑
x∈V u

2
x

=
(k − 1)(

∑
x axs +

∑
x atx)

2

=
(k − 1)

2
(deg(s) + deg(t))

�

Let G be the weighted graph on the same verex set X. Two vertices x and y
are adjacent in X if they are adjacent in H also. The edge weight of xy is equal to
(aij), the number of edges in H containing both x and y. Clearly L(G) = L(H).
Rodriguez [10] obtain the result from Fiedler [7] on weighted graph as

(4.2) µ2 = 2n min{
∑

xy∈Ej
axy(ux − uy)2∑

x∈X
∑

x∈X(ux − uy)2
: u 6= α1 for α ∈ R}

(4.3) µb = 2n max{
∑

xy∈Ej
axy(ux − uy)2∑

x∈X
∑

x∈X(ux − uy)2
: u 6= α1 for α ∈ R}



This eigen values µ2 and µb are bounded in terms of maximum and minimum
degree of H. For any vertex x, ex denote the corresponding unit vector of the
cannonical basis of Rn by putting u = ex in equations (4.2) and (4.3) we get,

µ2 ≤
n

n− 1
δx ≤ µb

This leads to

µ2 ≤
n

n− 1
δl min ≤

n

n− 1
δl max ≤ µb

Theorem 4.4. Let H1 and H2 be two edge disjoint hypergraphs on the same vertex
set and H1 ∪H2 be their union. Then

µ2(H1 ∪H2) ≥ µ2(H1) + µ2(H2) ≥ µ2(H1)

Proof. Let L1, L2 and L be the Laplace adjacency matrix of H1, H2 and H =
H1 ∪H2 respectively. We have,

µ2(H) =
Min
u {< Lu, u >

< u, u >
:< u,1 >= 0}

=
Min
u {< (L1 + L2)u, u >

< u, u >
:< u,1 >= 0}

=
Min
u {< (L1u+ L2u), u >

< u, u >
:< u,1 >= 0}

≥ Min
u {< L1u, u >

< u, u >
:< u,1 >= 0}+ Min

u {< L2u, u >

< u, u >
:< u,1 >= 0}

≥ µ1(H1) + µ2(H2)

≥ µ1(H1)

�
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