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There are three kind of losses in transmission lines: ohmi
, diele
tri
 and radia-

tion losses. While the �rst two are lo
al phenomena whi
h are easy to model, the

radiation losses la
k a simple model. This work analyzes the radiation losses from

two 
ondu
tors transmission lines in free spa
e, and derives a radiation model within

the RLCG transmission lines model.
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I. INTRODUCTION

While ohmi
 and diele
tri
 losses in transmission lines (TL) have a simple RLCG tele-

graph model due to their lo
al 
hara
teristi
s, there is no simple radiation losses model for

TL.

The aim of this work is to analyze the radiation pro
ess in two 
ondu
tors TL in free

spa
e with the s
ope of in
orporating the radiation losses phenomenon into the RLCG model

of the TL. Some preliminary results have been presented in [1℄.

The methodology we use is the same one used to 
al
ulate any small losses: we use the

lossless (0'th order solution) for the ele
tri
 
urrent to derive the losses. This methodology

is used to derive the ohmi
 and diele
tri
 losses [2, 3℄, and the same approa
h is used in

di�erent radiation s
hemes from free ele
trons: one uses the 0'th order 
urrent (whi
h is

una�e
ted by the radiation) to 
al
ulate the radiation [4, 5℄. Corre
tions to the 0'th order


urrent are not 
onsidered in this work.

In se
tion II we present a short review on ohmi
 and diele
tri
 losses, and show that the

RLCG model is a

urate only for separate forward or ba
kward waves, while in the 
ase

both waves 
oexist, the interferen
e between them results in an additional losses term.

In se
tion III we de�ne the 
ross se
tion 
on�guration for the TL that we analyze and show

that any open 
ross se
tion 
an be modeled in the far �eld by a twin lead TL, i.e. parallel

wires separated by an equivalent distan
e d. For 
lose 
ross se
tions (like the 
oaxial 
able),

this equivalent separation d = 0, and they pra
ti
ally do not radiate.

In se
tion IV we analyze an in�nite TL and show that there is not radiate power (per

length unit), ignoring nearby obje
ts whi
h 
an interfere with the �elds. This suggests that

radiation from TL must emerge from the termination, in analogy with Opti
al Transition

Radiation (OTR) [6, 7℄.

In se
tion V we 
al
ulate the power radiated by a semi-in�nite TL 
arrying a wave

traveling toward the termination and �nd that it is proportional to the frequen
y squared

times d

2

(the TL length has no e�e
t, being in�nite). We also show that the radiated power

results are identi
al for the 
ase of a single wave traveling into the termination or out of the

termination, while in the 
ase of a 
ombination of waves their radiated powers add up, so

that the interferen
e between the waves has no 
ontribution.

In se
tion VI we 
al
ulate the power radiated by a �nite line of length 2L 
arrying a
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forward wave. We �nd that for small L the radiation power in
reases like L

2

and for big L

it just tends to a 
onstant whi
h is twi
e the power radiated by a semi-in�nite TL 
arrying

a forward wave, as expe
ted. For a 
ombination of waves, their powers just add up as in the


ase of the semi-in�nite TL.

In se
tion VII we 
ompare the analyti
 results of se
tion VI with simulation results of

the ANSYS-HFSS 
ommer
ial software. The simulation overestimate the analyti
 results

but show the general tenden
y of the radiated power to go to a 
onstant with the in
rease

of the TL length. In se
tion VIII we derive the RLCG model for the radiation losses, whi
h

requires a series radiation resistan
e per length unit R whi
h starts at a termination and

varies along the TL. The work is ended with some 
on
luding remarks.

Note: through this work, we use RMS values, hen
e there is no 1/2 in the expressions for

power.

II. REMARKS ON OHMIC AND DIELECTRIC LOSSES

The ohmi
 and diele
tri
 losses are easily in
orporated into the RLCG \telegraph" model,

so that the ohmi
 loss per length unit is given by jI(z)j

2

R and the diele
tri
 losses per length

unit is given by jV (z)j

2

G, where V (z) and I(z) are the voltage and 
urrent along the TL. Also

one de�nes the ohmi
 and diele
tri
 de
ay 
oeÆ
ients as �




= R=(2Z

0

) and �

d

= GZ

0

=2,

Z

0

being the 
hara
teristi
 TL impedan
e.

However, for unmat
hed TL, i.e. in presen
e of both forward and ba
kward moving

waves, one has to be 
areful in evaluating the total ohmi
 or diele
tri
 losses on the line.

For example, let us 
onsider ohmi
 losses, for the 
urrent

I(z) = I

+

(0)e

�j�z

e

��




z

+ I

�

(0)e

j�z

e

�




z

(1)

in a TL from z = �l=2 to z = l=2. The ohmi
 losses are

�P




= R

Z

l=2

�l=2

jI(z)j

2

= [P

+

(0) + P

�

(0)℄[e

�




l

� e

��




l

℄� 4�




lP

+

(0) sin
(�l)Ref�(0)g (2)

where P

�

(0) is the power of the forward/ba
kward wave at z = 0, respe
tively, so the �rst

part of the result represents the individual losses of forward/ba
kward waves. The se
ond

part represents the 
ontribution of the interferen
e between the waves, and vanishes in some

spe
ial 
ases like the length l is an integer multiple of half wavelengths, or the phase of
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�(0) � �I

�

(0)=I

+

(0) is ��=2, i.e. jI(z)j

2

is an anti-symmetri
 fun
tion of z. The \sin
"

fun
tion in Eq. (2) is de�ned

sin
(x) � sin x=x (3)

The diele
tri
 losses in presen
e of both forward and ba
kward waves give a result similar

to (2) with �




repla
ed by �

d

.

Hen
e the RLCG model for ohmi
 or diele
tri
 losses, is a

urate for a separate forward

or ba
kward wave and in presen
e of both waves the interferen
e between them adds an

additional term, whi
h 
an be positive or negative.

We attempt in this work to derive a similar model for radiation losses, and in the next

se
tion we de�ne the 
ross se
tion 
on�guration on whi
h we shall derive our results.

III. CONFIGURATION

We deal in this work with a two 
ondu
tor transmission line having a well de�ned sep-

aration between the 
ondu
tors, as shown in Figure 1. Considering the 
ondu
tors in free

spa
e, a forward wave evolves a

ording to e

�jkz

at zero order (negle
ting the radiation

losses, as mentioned in the introdu
tion), hen
e in the far �eld the z dire
ted magneti


potential ve
tor A

z

due to a forward wave in the transmission line is expressed as

A

z

= �

0

Z

z

2

z

1

dz

0

I

d
K

z

(
)e

�jkz

0

G(R) (4)

where the dz

0

integral goes on the whole length of the TL,

G(s) =

e

�jks

4�s

(5)

is the 3D Green's fun
tion, K

z

is the surfa
e 
urrent distribution as fun
tion of the 
ontour

parameter 
 (i.e. 


1

and 


2

, see Figure 1) and R is the distan
e from the integration point

on the 
ontour of the 
ondu
tors to the observer:

R =

p

(x� x

0

(
))

2

+ (y � y

0

(
))

2

+ (z � z

0

)

2

: (6)

Changing variable

z

00

= z

0

� z (7)

in Eq. (4), one obtains

A

z

= �

0

e

�jkz

Z

z

2

�z

z

1

�z

dz

00

I

d
K

z

(
)e

�jkz

00

G(R); (8)
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FIG. 1: A basi
 
on�guration of a two 
ondu
tor TL, with a well de�ned separation between

the 
ondu
tors. The surfa
e 
urrent distributions on the 
ontours of the 
ondu
tors is known from

ele
trostati
 
onsiderations, and the total 
urrent is the same on both 
ondu
tors but with opposite

signs. The arrow shows the ve
tor distan
e between the 
enter of the surfa
e 
urrent distributions,

named d and 


1;2

are the 
ontours of the \upper" and \lower" 
ondu
tors, respe
tively.

rede�ning

R =

p

(x� x

0

(
))

2

+ (y � y

0

(
))

2

+ (z

00

)

2

: (9)

For a far observer, at distan
e � �

p

x

2

+ y

2

from the TL, so that � is mu
h bigger than

the transverse dimensions of the TL one approximates R in 
ylindri
al 
oordinates as

R ' r �

�

r

[x

0

(
) 
os'+ y

0

(
) sin'℄ ; (10)

where

r(z

00

) �

p

(z

00

)

2

+ �

2

: (11)

Using this in Eq. (4), one obtains

A

z

= �

0

e

�jkz

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

4�r(z

00

)

I

d
K

z

(
)e

jk(�=r)[x

0

(
) 
os'+y

0

(
) sin'℄

: (12)
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We 
onsider the higher modes to be in deep 
uto�, so that kx

0

(
); ky

0

(
)� 1, hen
e

A

z

� �

0

e

�jkz

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

4�r(z

00

)

I

d
K

z

(
) f1 + jk(�=r)[x

0

(
) 
os'+ y

0

(
) sin'℄g :

(13)

Separating the 
ontour integral

H

d
 =

H

d


1

+

H

d


2

, where 


1;2

are the 
ontours of the

\upper" and \lower" 
ondu
tors respe
tively, and using

I

d


1

K

z

(


1

) = �

I

d


1

K

z

(


2

) = I

0

(14)

so that the integral on ea
h surfa
e 
urrent distribution results in the total 
urrent, whi
h

is equal but with opposite signs on the 
ondu
tors. We may de�ne the 2D ve
tor �(
) �

(x

0

(
); y

0

(
)), from whi
h one de�nes the ve
tor distan
e between the 
enter of the surfa
e


urrent distributions

d �

�

I

d


1

K

z

(


1

)�(


1

) +

I

d


1

K

z

(


2

)�(


2

)

�

=I

0

; (15)

so that Eq. (13) may be written as

A

z

= �

0

e

�jkz

I

0

jk[d

x


os'+ d

y

sin'℄

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

4�r(z

00

)

�

r(z

00

)

; (16)

where d

x

and the d

y

are the x and y 
omponents of the ve
tor d. This represents a 2D dipole

approximation of the TL, so that it 
an be treated as a twin lead, as shown in Figure 2, and

without loss of generality, one rede�nes the x axis to be aligned with d, so that d

x

= d and

d

y

= 0, obtaining

A

z

= �

0

e

�jkz

I

0

jkd 
os'

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

4�r

�

r(z

00

)

; (17)

whi
h is equivalent of having a 
urrent 
on�ned on 
ondu
tor 1 (at x = d=2)

I

1

= I

0

e

�jkz

; (18)

and a 
urrent 
on�ned on 
ondu
tor 2 (at x = �d=2),

I

2

= �I

0

e

�jkz

(19)

representing a twin lead, where the requirement of � to be mu
h bigger than the transverse

dimensions, results in �� d.
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FIG. 2: The transmission line is modeled as a twin lead in free spa
e, with distan
e d between

the 
ondu
tors. The 
urrents in the transmission line 
ow in the z dire
tion at x = �d=2 and

they are de�ned as 
ontributions 1 and 2 respe
tively to the magneti
 ve
tor potential A

z

. The

termination 
urrents (sour
e or load) 
ow in the x dire
tion and are de�ned as 
ontributions 3 and

4 to the magneti
 ve
tor potential A

x

. The arrows on 
ondu
tors 1,2,3 and 4 show the 
onventional

dire
tions of those 
urrents. The radius of the wires is a, but it is relevant only for the 
hara
teristi


impedan
e and not for the radiation. The length of the transmission line is 2L (but we also 
onsider

in�nite or semi-in�nite lines).

We are interested in radiation, so we require the observer to be many wavelengths far

from the TL: k�� 1. Using this requirement, Eq. (17) may be further simpli�ed to

A

z

= �

�

0

I

0

e

�jkz

d 
os'

4�

�

��

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

r(z

00

)

: (20)

The dz

00

integral results in the exponential integral fun
tion Ei as follows

A

z

= �

�

0

I

0

e

�jkz

d 
os'

4�

�

��

Ei

�

�jk

h

z

00

+

p

(z

00

)

2

+ �

2

i�

�

�

�

�

z

2

�z

z

1

�z

; (21)

where the Ei fun
tion satis�es dEi(s)=ds = e

s

=s.

This twin lead model is used for all the 
ases we analyze: in�nite TL, semi in�nite TL

and �nite TL, as follows. The twin lead geometry also allows us to use simple models for

the termination 
urrents in the x dire
tion, de�ning the x 
omponent of the magneti
 ve
tor

potential.
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IV. INFINITE TL ANALYSIS

In this se
tion we 
onsider an in�nite twin lead TL, 
arrying a forward moving wave, so

that we do not need to 
onsider the termination 
urrents, and we may use the result (21)

with z

1

= �1 and z

2

=1. Repla
ing z

1

� z = �L and z

2

� z = L, 
onsidering L!1 we

obtain

A

z

= �

�

0

I

0

e

�jkz

d 
os'

4�

�

��

n

Ei

�

�jk

h

L +

p

L

2

+ �

2

i�

� Ei

�

�jk

h

�L +

p

L

2

+ �

2

i�o

;

(22)

so that the integral itself does not 
onverge, but we only need its derivative with respe
t to

�. For L� � the result is

A

z

= �

�

0

I

0

e

�jkz

d 
os'

4�

�

��

�

Ei(�jk2L)� Ei

�

�jk

�

2

2L

��

; (23)

so that the 
onstant Ei(�jk2L) does not 
ontribute and in the limit L!1 we obtain

A

z

=

�

0

I

0

4�

d 
os'

2e

�jkz

�

(24)

from whi
h

H =

1

�

0

r�A =

e

�jkz

2�

I

0

d

�

2

[�
b
� sin'+

b
' 
os'℄ (25)

and

E =

1

j!�

0

r�H = �

0

e

�jkz

2�

I

0

d

�

2

[
b
� 
os' +

b
' sin'℄; (26)

so that the Poynting ve
tor is

S = E�H

�

= �

0

1

4�

2

jI

0

j

2

d

2

�

4

b
z (27)

Clearly, an in�nite line (even having the geometry of an open stru
ture), never radiates

in the usual sense, i.e. as an es
aping power. Cal
ulating here the \radiated" power just

results in the power 
arried by the TL (this is true if the spa
e around the TL is 
ompletely

free of any obje
ts that 
ome in 
onta
t with the �elds of the TL).

Therefore, any radiation from a TL must emerge from a termination, as we shall see in

the next se
tion in whi
h we analyze a semi-in�nite TL.

V. SEMI-INFINITE TL ANALYSIS

In this se
tion we 
onsider a semi-in�nite twin lead TL, 
arrying a forward moving wave.

Here we shall need also the 
ontribution of the end 
urrent (
ondu
tor 3 in Figure 2), be
ause
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ignoring it violates the 
urrent 
ontinuity prin
iple. But we �rst 
al
ulate the 
ontribution of


ondu
tors 1 and 2 and hen
e we 
all it A

z 1;2

. The termination point is at z = 0, so that we

may use the result (21) with z

1

= �1 and z

2

= 0. Repla
ing z

1

� z = �L and z

2

� z = �z,


onsidering L!1 we obtain so the magneti
 potential ve
tor in the z dire
tion

A

z 1;2

= �

�

0

I

0

e

�jkz

d 
os'

4�

�

��

n

Ei

�

�jk

h

�z +

p

z

2

+ �

2

i�

� Ei

�

�jk

h

�L +

p

L

2

+ �

2

i�o

;

(28)

whi
h for L� � is rewritten as

A

z 1;2

=

�

0

I

0

e

�jkz

d 
os'

4�

�

��

�

Ei

�

�jk

�

2

2L

�

� Ei

�

�jk

h

�z +

p

z

2

+ �

2

i�

�

; (29)

whi
h results in

A

z 1;2

=

�

0

I

0

4�

d 
os'

�

2e

�jkz

�

�

�

r � z

e

jkr

r

�

� A

z 1;2 plane

+ A

z 1;2 spheri
al

; (30)

where r =

p

�

2

+ z

2

is the radial 
oordinate in spheri
al 
oordinates. The left expression

des
ribes the plane wave we re
eived for the in�nite line too, and the right expression

des
ribes a spheri
al wave emerging from the end of the transmission line at the 
oordinates

origin.

At z > 0, the plane wave and its singularity at � = 0 has to disappear, and one 
an easily


he
k that the spheri
al wave 
an
els it. For � � z, approximating the spheri
al wave to

�rst order, we have r � z+

�

2

2z

, so that r� z �

�

2

2z

and the spheri
al wave redu
es to �

2e

�jkz

�

.

The radiated power may be 
al
ulated from the spheri
al wave, whi
h is rewritten in

spheri
al 
oordinates as

A

z 1;2 spheri
al

= �

0

F

1;2

(�; ')G(r); (31)

We reintrodu
ed here the de�nition of the Green's fun
tion from Eq. (5), and the dire
tivity

fun
tion F

1;2

is

F

1;2

(�; ') = �I

0

d 
os'

sin �

1� 
os �

; (32)

We may 
al
ulate H =

1

�

0

r�A

1;2 spheri
al

by approximating r ' �jk
b
r, obtaining

H

1;2

= jkF

1;2

(�; ') sin �G(r)
b
'; (33)

and the ele
tri
 �eld 
omes out

E

1;2

= �

0

jkF

1;2

(�; ') sin �G(r)

b

�; (34)
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Now we 
al
ulate the 
ontribution of the end 
urrent (
ontribution 3 in Figure 2), whi
h


ows at z = 0 in the �bx dire
tion, and is of magnitude I

0

, giving rise to

A

x 3

= ��

0

I

0

Z

d=2

�d=2

dx

0

G(R

3

) (35)

where

R

3

' r � x

0

sin � 
os' (36)

is the distan
e of the far observer from the end 
urrent at z = 0 and �d=2 � x � d=2. This

results in

A

x 3

= �

0

F

3

(�; ')G(r); (37)

where the dire
tivity fun
tion F

3

is

F

3

(�; ') = �I

0

d sin


�

kd

2

sin � 
os'

�

' �I

0

d; (38)

so that for kd� 1, the argument of the sin
 fun
tion is very 
lose to 0 for any angles � and

', so we approximate it by 1. Next we obtain

H

3

=

1

�

0

r�A

3

'

1

�

0

(�jk
b
r)� (A

x 3

b
x) (39)

whi
h 
omes out

H

3

= �jk(
os � 
os'
b
'+ sin'

b

�)G(r)F

3

; (40)

from whi
h we 
al
ulate

E

3

=

1

j!�

0

(�jk
b
r)�H

3

= �

0

jk(� 
os � 
os'

b

� + sin'
b
')G(r)F

3

: (41)

Adding up the �elds we obtain

H = H

1;2

+H

3

= jkG(r)[
b
'(F

1;2

sin � � F

3


os � 
os')�

b

�F

3

sin'℄ (42)

and

E = E

1;2

+E

3

= �

0

jkG(r)[

b

�(F

1;2

sin � � F

3


os � 
os') +
b
'F

3

sin'℄; (43)

resulting in Poynting ve
tor E�H

�

:

S = �

0

k

2

b
r

16�

2

r

2

(jF

1;2

sin � � F

3


os � 
os'j

2

+ jF

3

sin'j

2

); (44)

whi
h results in

S = �

0

(kd)

2

b
r

16�

2

r

2

jI

0

j

2

; (45)
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So that the total radiated power is

P

rad

=

Z

2�

0

Z

�

0

sin �d�d'r

2

b
r � S = �

0

(kd)

2

4�

jI

0

j

2

(46)

Clearly, this result shows that any TL radiates only from its terminations, spe
i�
ally the

semi-in�nite line radiates from its end. It therefore looks like the radiation pro
ess forms

in a region near the termination in analogy with Opti
al Transition Radiation (OTR) as a

formation length [6, 7℄.

A. Non mat
hed line

In 
ase the TL is not mat
hed we have to deal with a forward an ba
kward wave. The

ba
kward wave is de�ned as in Eqs. (18) and (19), only e

�jkz

is repla
ed by e

jkz

. De�ning

the 
omplex amplitude of the ba
kward wave I

b

, after some algebra, we �nd that a ba
kward

wave results in the z dire
ted magneti
 potential ve
tor

A

z 1;2 b

=

�

0

I

b

4�

d 
os'

�

r + z

e

jkr

r

(47)

where the subs
ript \b" means ba
kward. The plane wave 
an be re
overed from (47) for

negative z whi
h satis�es jzj � � by approximating the spheri
al wave to �rst order, so that

r � jzj +

�

2

2jzj

. The spheri
al wave redu
es in this 
onditions to

2e

jkz

�

, re
overing the plane

wave in Eq. (30), only traveling to the left.

Therefore for a ba
kward wave F

1;2

in Eq. (32) has an opposite sign with 
os� repla
ed

by �
os�, so that

F

1;2 b

(�; ') = I

b

d 
os'

sin �

1 + 
os �

; (48)

The end 
urrent is the same as for the forward wave, only repla
e I

0

by I

b

, hen
e F

3

is

similar to (38):

F

3 b

(�; ') = �I

b

d; (49)

To 
al
ulate the power radiated by both waves, we have to repla
e F

1;2

! F

1;2

+ F

1;2 b

and

F

3

! F

3

+ F

3 b

in Eq. (44), and the result is

S = �

0

(kd)

2

b
r

16�

2

r

2

�

jI

0

j

2

+ jI

b

j

2

�

: (50)

This means that separate forward or ba
kward waves have the same radiation, or in other

words a wave traveling into the termination or out of it radiates the same. We also see that
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the interferen
e between the waves does not 
ontribute to the radiation, so that the powers

radiated by the separate waves is added up.

To examine how the radiation forms as fun
tion of the distan
e from the termination we

analyze in the next se
tion a �nite twin lead transmission line.

VI. FINITE TL ANALYSIS

We 
onsider in this se
tion a �nite twin lead transmission line, of length 2L, from z = �L

to z = L, 
arrying a forward moving wave. Before 
al
ulating, we understand from the


on
lusions of the previous se
tion that for a long enough TL, we 
an look at it as one

termination (the sour
e) sending out a wave whi
h is re
eived by the other termination (the

load). A wave exiting from a termination or entering into a termination radiates a

ording

to Eq. (46) and in this 
ase both waves have the same amplitude I

0

, so one forward wave

has to result in twi
e the result of Eq. (46)

P

rad (long �nite TL)

= 2� �

0

(kd)

2

4�

jI

0

j

2

= �

0

(kd)

2

2�

jI

0

j

2

; (51)

and we shall 
on�rm this result for big L.

To 
al
ulate the magneti
 ve
tor potential for the �nite TL we may use the result (21),

but it will be qui
ker for to do the 
al
ulations from s
rat
h.

There are four 
urrents 
ontributing to the radiation: 
urrents 1 and 2 
ontribute to

the z 
omponent of the magneti
 potential ve
tor and 
urrents 3 and 4 
ontribute to the x


omponent of the magneti
 potential ve
tor, see Figure 2 (
ontribution 3 and 4 have been

negle
ted in [1℄, therefore the result obtained there was not a

urate).

We start with 
urrents 1 and 2, de�ned in Eqs. (18) and (19). The distan
es of a far

observer from the 
ondu
tors 
arrying those 
urrents are

R

1;2

' r � z

0


os � � (d=2) sin � 
os'; (52)

and they 
ontribute to the z dire
ted ve
tor potential

A

z 1;2

= �

0

I

0

Z

L

�L

dz

0

e

�jkz

0

(G(R

1

)�G(R

2

)) (53)

where G(s) is de�ned in Eq. (5) is the 3D Green's fun
tion. The result of integral (53) in

the far �eld is

A

z 1;2

= �

0

G(r)F

1;2

(�; ') (54)
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where

F

1;2

(�; ') = jI

0

2Lkd sin � 
os' sin


�

kd

2

sin � 
os'

�

sin
 [kL(1� 
os �)℄ (55)

is the radiation fun
tion from 
ontributions 1 and 2, and the \sin
" fun
tion is de�ned in

Eq. (3). In the far �eld, the r operator is approximated by �jk
b
r and one obtains the far

H �eld

H

1;2

=

1

�

0

r�A

1;2

= jkG(r)F

1;2

(�; ') sin �
b
' (56)

and the far E �eld is obtained by

E

1;2

=

1

j!�

0

r�H

1;2

= �

0

jkG(r)F

1;2

(�; ') sin �

b

�; (57)

where �

0

=

p

�

0

=�

0

is the free spa
e impedan
e.

Next we 
onsider the 
ontributions 3 and 4

I

3

(x) = �I

0

e

�jkL

(58)


owing at (z = L; y = 0) in the �x dire
tion, and

I

4

(x) = I

0

e

jkL

(59)


owing at (z = �L; y = 0) in the x dire
tion. Both I

3

and I

4

are �xed and don't depend on

x. The distan
es of a far observer from those 
urrents is

R

3;4

' r � L 
os � � x

0

sin � 
os': (60)

Those 
urrents 
ontribute to a x dire
ted ve
tor potential

A

x 3;4

= �

0

I

0

Z

d=2

�d=2

dx

0

(e

jkL

G(R

4

)� e

�jkL

G(R

3

)) (61)

The result of integral (61) in the far �eld is

A

x 3;4

= �

0

G(r)F

3;4

(�; ') (62)

where

F

3;4

(�; ') = jI

0

dk2L(1� 
os �) sin
 [kL(1� 
os �)℄ sin


�

kd

2

sin � 
os'

�

(63)
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is the radiation fun
tion from 
ontributions 3 and 4. One obtains the far H �eld

H

3;4

=

1

�

0

r�A

3;4

= �jkG(r)F

3;4

(
os � 
os'
b
'+ sin'

b

�) (64)

and the far E �eld is obtained by

E

3;4

=

1

j!�

0

r�H

3;4

= �

0

jkG(r)F

3;4

(sin'
b
'� 
os � 
os'

b

�): (65)

The total H = H

1;2

+H

3;4


omes out

H = jkG(r)[
b
'(F

1;2

sin � � F

3;4


os � 
os')�

b

�F

3;4

sin'℄ (66)

and the total E = E

1;2

+E

3;4


omes out

E = �

0

jkG(r)[

b

�(F

1;2

sin � � F

3;4


os � 
os') +
b
'F

3;4

sin'℄ (67)

The far Poynting ve
tor is

S = E�H

�

= �

0

k

2

b
r

16�

2

r

2

(jF

1;2

sin � � F

3;4


os � 
os'j

2

+ jF

3;4


os � 
os'j

2

); (68)

whi
h 
omes out

S =
b
r�

0

k

4

(2L)

2

d

2

jI

0

j

2

16�

2

r

2

(1� 
os �)

2

sin


2

�

kd

2

sin � 
os'

�

sin


2

[kL(1� 
os �)℄ (69)

so that the total radiated power is

P

rad

=

Z

2�

0

Z

�

0

sin �d�d'r

2

b
r � S (70)

As mentioned before, we 
onsider frequen
ies for whi
h TE/TM modes are in deep 
uto�,

so that kd � 1. We therefore approximate sin


2

�

kd

2

sin � 
os'

�

' 1, so that the integrand

in (70) is not a fun
tion of ', obtaining

P

rad

=

�

0

(kd)

2

jI

0

j

2

2�

[1� sin
(4kL)℄ ; (71)

whi
h for 2L bigger than a few wavelengths 
on�rms the expe
ted result in Eq. (51), so that

for a �xed frequen
y, the radiated power goes to a 
onstant when in
reasing the TL length

2L:

lim

L!1

P

rad

=

�

0

(kd)

2

jI

0

j

2

2�

: (72)

This 
onstant is exa
tly twi
e the power radiated from the semi-in�nite TL, and in pra
ti
e

this limit is rea
hed at around few wavelengths. This means that for a longer line, only the

last wavelengths at the end of the TL radiate, and this last wavelengths 
an be understood

in analogy with Opti
al Transition Radiation (OTR) as a formation length [6, 7℄.
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A. Non mat
hed line

The results of non mat
hed line analysis we did for the semi-in�nite TL, apply also to

the �nite TL, so that 
alling again the amplitudes of the forward and ba
kward waves I

0

and I

b

, the result (71) be
omes

P

rad

=

�

0

(kd)

2

2�

�

jI

0

j

2

+ jI

b

j

2

�

[1� sin
(4kL)℄ ; (73)

showing again that the interferen
e between the waves does not 
ontribute to the radiation,

so that the powers radiated by the forward or ba
kward waves add up.

VII. COMPARISON WITH SIMULATIONS

We shall 
ompare with simulation the ratio between the radiated power and the power

to the load:

P

rad

P

+

=

�

0

Z

0

(kd)

2

2�

[1� sin
(4kL)℄ : (74)

where Z

0

=

�

0

�

ln(d=a) is the 
hara
teristi
 impedan
e of this twin lead TL.

We simulated the 
on�guration in Figure 2 using ANSYS-HFSS 
ommer
ial software,

in the frequen
y domain, FEM te
hnique. We ran the simulation at a �xed frequen
y of

240 MHz, using d = 2:54 
m, d=a = 7:91 and obtained S matri
es de�ned for a 
hara
teristi


impedan
e of R = 257:4
 at both ports, for di�erent lengths of the transmission line. By

symmetry, the S matrix has the form

S =

0

�

� �

� �

1

A

; (75)

from whi
h one may 
al
ulate the ABCD matrix of the TL [2, 12, 13℄, using

A = D =

1

2

�

� + (1� �

2

)=�

�

(76)

B =

R

2

�

�� + (1 + �)

2

=�

�

(77)

C =

1

2R

�

�� + (1� �)

2

=�

�

(78)

from whi
h we 
ompute the delay angle of the TL

� = ar

os(A) (79)
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and the 
hara
teristi
 impedan
e

Z

0

=

p

B=C (80)

The radiated power, relative to the load power is obtained by

P

rad

P

+

= �2Imf�g; (81)

and Imf�g < 0 always. In Figure 3 we 
ompare the analyti
 result in Eq. (74) with the

result obtained from simulation Eq. (81). We see that the simulation overestimates the

1e-06

1e-05

0.0001

0.001

0.01

0 0.2 0.4 0.6 0.8 1

P
ra

d
/P

+

TL length [m]

Analytic
Simulated

FIG. 3: Relative radiation losses P

rad

=P

+

: 
omparison between the analyti
 result in Eq. (74) and

the simulation result in Eq. (81).

radiation losses, but shows the general tenden
y of the radiation losses as fun
tion of the

TL length, proving that this theory is reliable. We still have to improve the simulation

a

ura
y to handle smaller radiation losses, however the good 
omparison between the �nite

and semi-in�nite TL in
reases our 
on�den
e that the theoreti
al result is 
orre
t.
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VIII. RADIATION MODEL FOR TL

The radiation pro
ess 
an be in
orporated in the RLCG model, either by a series re-

sistan
e per length unit R or by a parallel 
ondu
tan
e per length unit G. This radiation

element in the model represents the power loss per TL length unit due to radiation. For a

wave moving forward in the z dire
tion, the power 
arried by the wave should de
rease with

z, so that �dP=dz = jI

0

j

2

R in 
ase of the serial representation or �dP=dz = jV

0

j

2

G in 
ase

of the parallel representation.

Both representations are possible, and the question is whi
h one is the more adequate.

Using the Lorenz gauge in the frequen
y domain we have

r �A+

j!




2

V = 0: (82)

Under the Lorenz gauge, the magneti
 ve
tor potential A and the ele
tri
 s
alar potential

V satisfy wave equations with separate ex
itations J and �, respe
tively:

�

r

2

+ k

2

�

A = ��

0

J (83)

and

�

r

2

+ k

2

�

V = ��=�

0

: (84)

The solution of Eq. (83) is the 
onvolution integral with the Green's fun
tion, like the integral

in Eq. (53) for example. The solution of Eq. (84) is similar, only use the 
harge density

per length unit (�) on the TL instead of the 
urrent (I). Given the 
urrent 
ontinuity

equation �I=�z + j!� = 0, � 
an be derived from I, and so the s
alar potential V 
an be

derived from the magneti
 ve
tor potential A via the Lorenz gauge (82), making Eq. (84)

redundant. However, it is worthwhile to understand whi
h part of the ele
tri
 �eld, whi
h


an be expressed by

E = �j!A�rV � E

I

+E

�

(85)

is due to the 
urrent and whi
h part is due to the 
harges. The �rst part E

I

= �j!A is

due to the 
urrent and the se
ond part E

�

= �rV is due to the 
harges. For z dire
ted


urrents, so that A = A

z

b
z, we 
an work out this two parts, using for the far �eld r ' �jk

b
r

and using the Lorenz gauge, obtaining

E

I

= �j!A

z

(
b
r 
os � �

b

� sin �) (86)
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and

E

�

= j!A

z

b
r 
os �; (87)

so that their sum is in the

b

� dire
tion as it should. But we see that while E

I

has a

b

�


omponent, E

�

is entirely dire
ted toward
b
r, so that it does not 
ontribute to the

b
r dire
ted

Poynting ve
tor.

The 
on
lusion from this analysis is that the radiation is due to the 
urrent, so that the

serial representation is the 
orre
t one. An additional argument in favor of this 
hoi
e is

the \self for
e" (or damping for
e) on radiating 
harges [8{11℄ whi
h is 
o-linear with the


harges a

eleration so that it may be represented by a serial resistor.

Hen
e, we model the radiation by a serial resistan
e per length unit R in the RLCG

model. The radiation being attributed to the terminations of the TL, the radiation model

is symmetri
 around the middle of the line (at z = 0), we shall therefore examine how half

of P

rad

in Eq. (71) 
hanges with half the TL length L.

The radiation resistan
e per length unit R, satis�es

d(P

rad

=2)=dL

P

+

=

�

0

Z

0

(kd)

2

4�L

[sin
(4kL)� 
os(4kL)℄ =

R(L)

Z

0

: (88)

For the model to be appli
able to a semi-in�nite TL, it has to start at the termination

point. We de�ne s the distan
e from the termination of the TL (for example if we deal with

a semi-in�nite TL whi
h terminates at z = 0, we have s = �z, for 0 � s < 1). The value

of R(L) in Eq. (88) is expressed as fun
tion of s as follows

R(s) =

�

0

(kd)

2

4�s

[sin
(4ks)� 
os(4ks)℄ (89)

The behavior of the normalized R(s) for a semi-in�nite TL is shown in Figure 4. This model

reprodu
es the 
orre
t radiation power, sin
e

jI

0

j

2

Z

1

0

R(s)ds = �

0

(kd)

2

4�

jI

0

j

2

(90)

Clearly, to des
ribe the 
orre
t radiation losses, R(s) must also have negative values, due to

the os
illatory behavior of the radiated power as fun
tion of the TL length. But this does

not represent any problem, be
ause the overall losses 
ome out always positive.

For a �nite TL, we set R(s) in Eq. (89) from ea
h side up to the middle of the TL. Hen
e

if the TL length is 2L, 0 � s � L from ea
h side, as shown in Figure 5 and the model
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FIG. 4: Normalized value of the radiation resistan
e per length unit R(s) for a semi-in�nite trans-

mission line ending at z = 0. The parameter s is the distan
e from the TL termination point, and

R(s) is linear with s for small s. For big s it os
illates around 0 till it pra
ti
ally be
omes 0 far

from the termination of the TL.

des
ribes 
orre
tly the radiation power sin
e

jI

0

j

2

Z

L

�L

R(s)ds = 2jI

0

j

2

Z

L

0

R(s)ds =

�

0

(kd)

2

jI

0

j

2

2�

[1� sin
(4kL)℄ (91)

Unlike in the 
ase of ohmi
 or diele
tri
 losses, for whi
h the RLCG losses model is

a

urate only for a separate forward or ba
kward wave, the radiation model is a

urate

for any 
ombination of waves, be
ause as we saw in the previous se
tions, the interferen
e

between the waves does not 
ontribute to the radiation.

IX. CONCLUSIONS

We showed in this work that radiation losses in TL originate from the 
urrent in the region

of several wavelengths near the termination(s) of the TL (in analogy with OTR [6, 7℄), so
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FIG. 5: Same as in Figure 4, only that for a �nite TL of length 2L, s measures the distan
e from

ea
h termination, up to the middle of the line, so that 0 � s � L. In this example, L is one

wavelength.

that one 
annot properly de�ne a \per length radiated power".

However, we where able to 
on
eive a radiation model based on a variable radiation

resistan
e per length unit R(s), where s measures the distan
e from ea
h termination up to

the middle of the TL (or from the termination to in�nity for a semi-in�nite TL).

Unlike in the 
ase of ohmi
 or diele
tri
 losses, for whi
h the R or G models respe
tively

are a

urate only for a separate forward or ba
kward wave, the radiation model is a

urate

for any 
ombination of 
urrent waves, be
ause the interferen
e between the waves does not


ontribute to the radiation.

Further work to be done: generalize the radiation model for TL inside a diele
tri
 insu-
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lator, and generalize the radiation model for multi
ondu
tor transmission lines (MTL).
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