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I. INTRODUCTION

While ohmic and dielectric losses in transmission lines (TL) have a simple RLCG tele-
graph model due to their local characteristics, there is no simple radiation losses model for
TL.

The aim of this work is to analyze the radiation process in two conductors TL in free
space with the scope of incorporating the radiation losses phenomenon into the RLCG model
of the TL. Some preliminary results have been presented in [1].

The methodology we use is the same one used to calculate any small losses: we use the
lossless (0’th order solution) for the electric current to derive the losses. This methodology
is used to derive the ohmic and dielectric losses [2, 3], and the same approach is used in
different radiation schemes from free electrons: one uses the 0’th order current (which is
unaffected by the radiation) to calculate the radiation [4, 5]. Corrections to the 0’th order
current are not considered in this work.

In section IT we present a short review on ohmic and dielectric losses, and show that the
RLCG model is accurate only for separate forward or backward waves, while in the case
both waves coexist, the interference between them results in an additional losses term.

In section III we define the cross section configuration for the TL that we analyze and show
that any open cross section can be modeled in the far field by a twin lead TL, i.e. parallel
wires separated by an equivalent distance d. For close cross sections (like the coaxial cable),
this equivalent separation d = 0, and they practically do not radiate.

In section IV we analyze an infinite TL and show that there is not radiate power (per
length unit), ignoring nearby objects which can interfere with the fields. This suggests that
radiation from TL must emerge from the termination, in analogy with Optical Transition
Radiation (OTR) [6, 7].

In section V we calculate the power radiated by a semi-infinite TL carrying a wave
traveling toward the termination and find that it is proportional to the frequency squared
times d? (the TL length has no effect, being infinite). We also show that the radiated power
results are identical for the case of a single wave traveling into the termination or out of the
termination, while in the case of a combination of waves their radiated powers add up, so
that the interference between the waves has no contribution.

In section VI we calculate the power radiated by a finite line of length 2L carrying a



forward wave. We find that for small L the radiation power increases like L? and for big L
it just tends to a constant which is twice the power radiated by a semi-infinite TL carrying
a forward wave, as expected. For a combination of waves, their powers just add up as in the
case of the semi-infinite TL.

In section VII we compare the analytic results of section VI with simulation results of
the ANSYS-HFSS commercial software. The simulation overestimate the analytic results
but show the general tendency of the radiated power to go to a constant with the increase
of the TL length. In section VIII we derive the RLCG model for the radiation losses, which
requires a series radiation resistance per length unit R which starts at a termination and
varies along the TL. The work is ended with some concluding remarks.

Note: through this work, we use RMS values, hence there is no 1/2 in the expressions for

power.

II. REMARKS ON OHMIC AND DIELECTRIC LOSSES

The ohmic and dielectric losses are easily incorporated into the RLCG “telegraph” model,
so that the ohmic loss per length unit is given by |I(z)|*R and the dielectric losses per length
unit is given by |V (2)|*G, where V(z) and I(z) are the voltage and current along the TL. Also
one defines the ohmic and dielectric decay coefficients as o, = R/(2Zy) and oy = GZ/2,
Zy being the characteristic TL impedance.

However, for unmatched TL, i.e. in presence of both forward and backward moving
waves, one has to be careful in evaluating the total ohmic or dielectric losses on the line.

For example, let us consider ohmic losses, for the current
I(z) = I*(0)e 9P%e % 4 [~(0)e/P?e? (1)
in a TL from z = —[/2 to z = [/2. The ohmic losses are
1/2
AP.=R / [1(2)|> = [PT(0) + P (0)][e*" — e ] — 4a,IPT(0) sinc(Bl)Re{T'(0)} (2)
—1/2
where P*(0) is the power of the forward /backward wave at z = 0, respectively, so the first
part of the result represents the individual losses of forward/backward waves. The second

part represents the contribution of the interference between the waves, and vanishes in some

special cases like the length [ is an integer multiple of half wavelengths, or the phase of



['(0) = —1(0)/17(0) is £7/2, i.e. |I(2)|? is an anti-symmetric function of 2. The “sinc”
function in Eq. (2) is defined

sinc(z) = sinzx/x (3)

The dielectric losses in presence of both forward and backward waves give a result similar
to (2) with a, replaced by ay.

Hence the RLCG model for ohmic or dielectric losses, is accurate for a separate forward
or backward wave and in presence of both waves the interference between them adds an
additional term, which can be positive or negative.

We attempt in this work to derive a similar model for radiation losses, and in the next

section we define the cross section configuration on which we shall derive our results.

III. CONFIGURATION

We deal in this work with a two conductor transmission line having a well defined sep-
aration between the conductors, as shown in Figure 1. Considering the conductors in free
space, a forward wave evolves according to e=7¥* at zero order (neglecting the radiation
losses, as mentioned in the introduction), hence in the far field the z directed magnetic

potential vector A, due to a forward wave in the transmission line is expressed as

A, = 1o / dz' j[ de K, (c)e " G(R) (4)

where the dz’ integral goes on the whole length of the TL,

as) = S 5)

47s

is the 3D Green’s function, K, is the surface current distribution as function of the contour
parameter ¢ (i.e. ¢; and ¢y, see Figure 1) and R is the distance from the integration point

on the contour of the conductors to the observer:

R=/(zr—2'(c))>+(y —y'(c))* + (z — )% (6)

Changing variable

=2 -z (7)

in Eq. (4), one obtains

A, = uoe_jkz/ dz"?{dc K.(c)e %" G(R), (8)

1—2



FIG. 1: A basic configuration of a two conductor TL, with a well defined separation between
the conductors. The surface current distributions on the contours of the conductors is known from
electrostatic considerations, and the total current is the same on both conductors but with opposite
signs. The arrow shows the vector distance between the center of the surface current distributions,

named d and ¢ are the contours of the “upper” and “lower” conductors, respectively.

redefining

R=/(z—a'(c)?+ (y — y'(c))? + (") (9)

For a far observer, at distance p = /22 4+ y? from the TL, so that p is much bigger than

the transverse dimensions of the TL one approximates R in cylindrical coordinates as

Re~r— g [2/(c) cos ¢ + v/ (c) sin @] (10)
where
r(2") = v/ (2")2 + p?. (11)
Using this in Eq. (4), one obtains
pmer gkl ()] R o
A, = uoe—ﬂcz /ZIZ ds" ) ]{dc Kz(c)eyk(p/r)[x () cos p+y' (c) sin ] (12)



We consider the higher modes to be in deep cutoff, so that kz'(c), ky'(c) < 1, hence

o pmer k() | '
A, & pge J’”/ dZ”T(Z") f{chz(c) {1+ jk(p/r)[z'(c) cos o + y'(c) sin o]} .
1 (13)
Separating the contour integral ¢ dc = ¢ dcy + ¢ deo, where ¢ 5 are the contours of the

“upper” and “lower” conductors respectively, and using

j[dcle(cl) = —fdcle(@) = (14)

so that the integral on each surface current distribution results in the total current, which
is equal but with opposite signs on the conductors. We may define the 2D vector p(c) =
(2'(c),y'(c)), from which one defines the vector distance between the center of the surface

current distributions

d= [ f der K (c)pler) + jqf dcle(CQ)p(CQ)] /I, (15)

so that Eq. (13) may be written as

e IR+,

drr (") r(2")’

A, = poe ¥ Iy jk[d, cos ¢ + d, sin ¢ / dz" (16)
Z1—=2

where d, and the d, are the z and y components of the vector d. This represents a 2D dipole
approximation of the TL, so that it can be treated as a twin lead, as shown in Figure 2, and
without loss of generality, one redefines the x axis to be aligned with d, so that d, = d and

d, = 0, obtaining

. mmr G
_ —jkz7 .
A, = poe™ Iojkdcoscp/ZIZ dz o mE. (17)
which is equivalent of having a current confined on conductor 1 (at z = d/2)

I, = Ipe %2, (18)
and a current confined on conductor 2 (at z = —d/2),

I, = —Ipe 7% (19)

representing a twin lead, where the requirement of p to be much bigger than the transverse

dimensions, results in p > d.



FIG. 2: The transmission line is modeled as a twin lead in free space, with distance d between
the conductors. The currents in the transmission line flow in the z direction at z = +d/2 and
they are defined as contributions 1 and 2 respectively to the magnetic vector potential A,. The
termination currents (source or load) flow in the z direction and are defined as contributions 3 and
4 to the magnetic vector potential A,. The arrows on conductors 1,2,3 and 4 show the conventional
directions of those currents. The radius of the wires is a, but it is relevant only for the characteristic
impedance and not for the radiation. The length of the transmission line is 2L (but we also consider

infinite or semi-infinite lines).

We are interested in radiation, so we require the observer to be many wavelengths far

from the TL: kp > 1. Using this requirement, Eq. (17) may be further simplified to

A= _Moloe_jkzdcos 902 292 dz,le—jk[z”-i-r(z”)} (20)
A 0p S - r(z")
The dz" integral results in the exponential integral function Ei as follows
Tye7k2d 0 e
4, =B SIE L g gk [+ VE )| (21)
4dr Op s

where the Ei function satisfies d Ei(s)/ds = e®/s.

This twin lead model is used for all the cases we analyze: infinite TL, semi infinite TL
and finite TL, as follows. The twin lead geometry also allows us to use simple models for
the termination currents in the x direction, defining the x component of the magnetic vector

potential.



IV. INFINITE TL ANALYSIS

In this section we consider an infinite twin lead TL, carrying a forward moving wave, so

that we do not need to consider the termination currents, and we may use the result (21)

with z; = —o0 and 2z, = co. Replacing z; — 2z = —L and 25 — 2z = L, considering L. — 0o we
obtain
poloe**dcos O (. (.
b s [ ) - 1 VP
™ P
(22)

so that the integral itself does not converge, but we only need its derivative with respect to

p. For L > p the result is

poloe**dcosp 0 (. , PP
A, =— — <« Ei(—jk2L) — FEi | —jk— , 23
yp 3 i(—jk2L) — Ei | —jkoo (23)
so that the constant Ei(—jk2L) does not contribute and in the limit L — oo we obtain
T 9 —jkz
A, = M40—7r0 oS ep (24)
from which
1 Ik Iod N
H= VxA="_ %[—psingo—l—cpcoscp] (25)
o 2 p
and
1 k= Tod .
E = - VXH:noe %[pcosw-i—cpsingo], (26)
jweg 2T p
so that the Poynting vector is
1| Lo|?d? .

S=ExH"=n

047‘('2 p4 V4 (27)

Clearly, an infinite line (even having the geometry of an open structure), never radiates
in the usual sense, i.e. as an escaping power. Calculating here the “radiated” power just
results in the power carried by the TL (this is true if the space around the TL is completely
free of any objects that come in contact with the fields of the TL).

Therefore, any radiation from a TL must emerge from a termination, as we shall see in

the next section in which we analyze a semi-infinite TL.

V. SEMI-INFINITE TL ANALYSIS

In this section we consider a semi-infinite twin lead TL, carrying a forward moving wave.

Here we shall need also the contribution of the end current (conductor 3 in Figure 2), because



ignoring it violates the current continuity principle. But we first calculate the contribution of
conductors 1 and 2 and hence we call it A, 5. The termination point is at z = 0, so that we
may use the result (21) with 2; = —oco and 2, = 0. Replacing z; — 2 = —L and 2, — 2 = —2,

considering I — oo we obtain so the magnetic potential vector in the z direction

Ay = —“Oloe_jkzdcowa% {Ei (—jk [—z + /2 F p2]) _Ei (—jk [—L + \/L27+p2]> } ,

4
(28)
which for L > p is rewritten as
poloe 7**dcosp 0 | .. PP s
Ay = I Igi (- —E(—k[— 2 2]) : 29
1,2 gy o WLy 1 —7 ZHNzZ+tp (29)
which results in
T 267jkz ejkr
Az 1,2 — %dcos 2 |: - P :| = Az 1,2 plane + Az 1,2 sphericaly (30)
T p r—zr

where r = \/m is the radial coordinate in spherical coordinates. The left expression
describes the plane wave we received for the infinite line too, and the right expression
describes a spherical wave emerging from the end of the transmission line at the coordinates
origin.

At z > 0, the plane wave and its singularity at p = 0 has to disappear, and one can easily
check that the spherical wave cancels it. For p < z, approximating the spherical wave to
first order, we have r ~ 2z + %, so that r — z =~ % and the spherical wave reduces to iy

The radiated power may be calculated from the spherical wave, which is rewritten in

spherical coordinates as

A, 1,2 spherical = M0F1,2(9, SO)G(T); (31)

We reintroduced here the definition of the Green’s function from Eq. (5), and the directivity

function Fi 5 is
sin

F (0 = —Iyd _ 32
12(0, %) 0 COSSOI—COSQ, (32)
We may calculate H = ﬁV X A 2spherical Dy approximating V ~ —jkT, obtaining

H,, = ijl,Q(ea @) sin G (r)ep, (33)

and the electric field comes out

~

Ei,= 770ij1,2(9, @) sin G (r)8, (34)
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Now we calculate the contribution of the end current (contribution 3 in Figure 2), which

flows at z = 0 in the —Z direction, and is of magnitude I,, giving rise to

d/2
Ay = — o]y / 02/ G(Rs) (35)
—d/2
where
R3 ~r —x'sinf cos ¢ (36)

is the distance of the far observer from the end current at z = 0 and —d/2 < x < d/2. This

results in
Ax?) = FLOF?)(Ha SO)G(T)v (37)
where the directivity function Fj is

kd
F3(0,¢) = —Iydsinc <? sin @ cos <p> ~ —Jyd, (38)

so that for kd < 1, the argument of the sinc function is very close to 0 for any angles # and

©, so we approximate it by 1. Next we obtain

1 1 ~ ~
H3 =—V x A3 ~ —(—]kl‘) X (Axg,X) (39)
Ho Ho
which comes out
H; = —jk(cos 6 cos i + sin ¢§)G(r)F3, (40)
from which we calculate
1 R . ~
E; = ——(—jkr) x H3 = ngjk(— cos 0 cos @ + sin o)G(r) F3. (41)
Jwep
Adding up the fields we obtain
H=H,,+H; =jkG(r)[@(Fisinf — F5cosfcosp) — 6 F, sin ¢ (42)
and
E =E,+ E; = nyjkG(r)[8(F2sinf — F; cos  cos ) + @F sin ], (43)

resulting in Poynting vector E x H* :

k*T
S = nol(iT;ﬂ(|F1’2 sin ) — F; cos 0 cos <,0|2 + | F3sin g0|2), (44)

which results in
(kd)F
= T 4
S 770 1671'27’2 | 0| ) ( 5)




A Non matched line 11

So that the total radiated power is

(kd)®
4

27 s
Py = / / sin §dfdrt - S = no~—2| Iy (46)
0 0

Clearly, this result shows that any TL radiates only from its terminations, specifically the
semi-infinite line radiates from its end. It therefore looks like the radiation process forms
in a region near the termination in analogy with Optical Transition Radiation (OTR) as a

formation length [6, 7).

A. Non matched line

In case the TL is not matched we have to deal with a forward an backward wave. The
backward wave is defined as in Eqgs. (18) and (19), only e /%7 is replaced by e/**. Defining
the complex amplitude of the backward wave I}, after some algebra, we find that a backward

wave results in the z directed magnetic potential vector

toly p e*
A, = —d
1,25 47 €03 SOr +zr

(47)

where the subscript “b” means backward. The plane wave can be recovered from (47) for

negative z which satisfies |z| > p by approximating the spherical wave to first order, so that

2¢eikz

ra |zl + %. The spherical wave reduces in this conditions to , recovering the plane
wave in Eq. (30), only traveling to the left.
Therefore for a backward wave Fj, in Eq. (32) has an opposite sign with cosf replaced

by —cosf, so that
sin #

F 0 = Id T
1,2b( 7()0) b COSSOl—FCOS@’

(48)
The end current is the same as for the forward wave, only replace I, by I, hence F3 is
similar to (38):

F34(0, ) = —Ihd, (49)
To calculate the power radiated by both waves, we have to replace F} o — Fj o + F} 95 and
F3; — F3+ F3, in Eq. (44), and the result is

(kd)*t
167272

S = oo (1 + [P (50)

This means that separate forward or backward waves have the same radiation, or in other

words a wave traveling into the termination or out of it radiates the same. We also see that
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the interference between the waves does not contribute to the radiation, so that the powers
radiated by the separate waves is added up.
To examine how the radiation forms as function of the distance from the termination we

analyze in the next section a finite twin lead transmission line.

VI. FINITE TL ANALYSIS

We consider in this section a finite twin lead transmission line, of length 2L, from z = — L
to z = L, carrying a forward moving wave. Before calculating, we understand from the
conclusions of the previous section that for a long enough TL, we can look at it as one
termination (the source) sending out a wave which is received by the other termination (the
load). A wave exiting from a termination or entering into a termination radiates according
to Eq. (46) and in this case both waves have the same amplitude I, so one forward wave
has to result in twice the result of Eq. (46)

(kd)*

2T

kd)?
Prad (long finite TL) = 2 X UO%HOF ="

|To]?, (51)
and we shall confirm this result for big L.

To calculate the magnetic vector potential for the finite TL we may use the result (21),
but it will be quicker for to do the calculations from scratch.

There are four currents contributing to the radiation: currents 1 and 2 contribute to
the z component of the magnetic potential vector and currents 3 and 4 contribute to the x
component of the magnetic potential vector, see Figure 2 (contribution 3 and 4 have been
neglected in [1], therefore the result obtained there was not accurate).

We start with currents 1 and 2, defined in Egs. (18) and (19). The distances of a far

observer from the conductors carrying those currents are
Ris~r—2"cosfF (d/2)sinf cos g, (52)
and they contribute to the z directed vector potential

L
Aovs = oo / i % (G(Ry) — G(Ry) (53)
—L

where G(s) is defined in Eq. (5) is the 3D Green’s function. The result of integral (53) in
the far field is
A, 1,2 = MOG(T)Fl,Q(ea 90) (54)
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where

kd
Fi5(0,¢) = jly2Lkdsin 6 cos p sinc <7 sin 6 cos gO) sinc [kL(1 — cos 0)] (55)
is the radiation function from contributions 1 and 2, and the “sinc¢” function is defined in
Eq. (3). In the far field, the V operator is approximated by —jkT and one obtains the far
H field
1 ~
H,,= M_V X Az = jEG(r)Fi2(0, ) sin 0@ (56)
0

and the far E field is obtained by

1

Jwep

E ., = V xH = nﬂjkG(T)Fl,Z(ea @) sin oéa (57)

where 19 = \/ju0/€o is the free space impedance.

Next we consider the contributions 3 and 4
I;(z) = — e *" (58)
flowing at (z = L,y = 0) in the —z direction, and
Ii(z) = Tyel*" (59)

flowing at (z = —L,y = 0) in the z direction. Both I3 and I, are fixed and don’t depend on

x. The distances of a far observer from those currents is
R34 ~1r F Lcosf — 2’ sinf cos . (60)
Those currents contribute to a x directed vector potential

d/2 _ )
Agsa = poly / dz' (" G(R,) — e "G (Ry)) (61)
—d/2

The result of integral (61) in the far field is
Agza = poG(r)Fsu(0, ) (62)
where

F3.4(0,¢) = jlydk2L(1 — cosf) sinc [k L(1 — cos #)] sinc (% sin 6 cos cp) (63)



14

is the radiation function from contributions 3 and 4. One obtains the far H field

1 .
H3’4 = —V X A3,4 = —jkG(T)Fg,A (COS f cos PP + sin (,00) (64)
Ho
and the far E field is obtained by
1 ~
Esy = —V x Hy 4 = nojkG(r)F;34(sin o — cos 6 cos ¢0). (65)
JWeo

The total H = H, » + Hj3 4 comes out

H = jkG(r)[@(Fi5sinf — Fy 4 cosf cos @) — OF; 4 sin ] (66)
and the total E = E; 3 + E3 4 comes out

E = nyjkG(r) [é(FLQ sinf — Fy 4 cos @ cos @) + @F; 4 sin @] (67)

The far Poynting vector is
% kQ/f . 2 2
S=EXxH"=n——=(|Fi12sinf — F;4cosfcos p|” + |F3,4cos B cos p|*), (68)
167212 ’ ’ ’
which comes out
k*(2L)2d? |1, |?

167272

kd
S =11 (1 — cos 6)*sinc? <7 sin 6 cos go) sinc? [kL(1 — cos )] (69)

so that the total radiated power is

2w g
Proa = / / sin 0dOdor’T - S (70)
o Jo

As mentioned before, we consider frequencies for which TE/TM modes are in deep cutoff,
so that kd < 1. We therefore approximate sinc? (% sin 6 cos cp) ~ 1, so that the integrand
in (70) is not a function of ¢, obtaining

mo(kd)*|Io|”

Pra =
d 27

[1 — sinc(4kL)], (71)

which for 2L bigger than a few wavelengths confirms the expected result in Eq. (51), so that

for a fixed frequency, the radiated power goes to a constant when increasing the TL length

2L:

Jim P, = REIGE (72)
This constant is exactly twice the power radiated from the semi-infinite TL, and in practice
this limit is reached at around few wavelengths. This means that for a longer line, only the
last wavelengths at the end of the TL radiate, and this last wavelengths can be understood

in analogy with Optical Transition Radiation (OTR) as a formation length [6, 7).
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A. Non matched line

The results of non matched line analysis we did for the semi-infinite TL, apply also to
the finite TL, so that calling again the amplitudes of the forward and backward waves I
and I, the result (71) becomes

7’]0(kd)2

Pra =
d 27

(|Io|* + |I,|*) [1 — sinc(4kL)], (73)

showing again that the interference between the waves does not contribute to the radiation,

so that the powers radiated by the forward or backward waves add up.

VII. COMPARISON WITH SIMULATIONS

We shall compare with simulation the ratio between the radiated power and the power

to the load:
Prad . @(kdy

P+  Zy om

where 7, = ™ In(d/a) is the characteristic impedance of this twin lead TL.

[1 — sinc(4kL)]. (74)

We simulated the configuration in Figure 2 using ANSYS-HFSS commercial software,
in the frequency domain, FEM technique. We ran the simulation at a fixed frequency of
240 MHz, using d = 2.54 cm, d/a = 7.91 and obtained S matrices defined for a characteristic
impedance of R = 257.4€) at both ports, for different lengths of the transmission line. By

symmetry, the S matrix has the form

I
g — . (75)
T T

from which one may calculate the ABCD matrix of the TL [2, 12, 13], using

A=D= [+ (-T2 (76)

B= g ‘4 (14 T)2/7] (77)
1 2

C:ﬁ [T+ (1 —-1)%/7] (78)

from which we compute the delay angle of the TL

© = arccos(A) (79)
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and the characteristic impedance
Zy=+/B/C (80)
The radiated power, relative to the load power is obtained by

Prad
P+

= —2Im{O}, (81)

and Im{©} < 0 always. In Figure 3 we compare the analytic result in Eq. (74) with the

result obtained from simulation Eq. (81). We see that the simulation overestimates the

0.01 1

0.001

rad/ P*

Q- 0.0001 |

1e-05 |

Analytic
§imu|ated X

16-06 ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

TL length [m]

FIG. 3: Relative radiation losses P,,q/P*: comparison between the analytic result in Eq. (74) and

the simulation result in Eq. (81).

radiation losses, but shows the general tendency of the radiation losses as function of the
TL length, proving that this theory is reliable. We still have to improve the simulation
accuracy to handle smaller radiation losses, however the good comparison between the finite

and semi-infinite TL increases our confidence that the theoretical result is correct.
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VIII. RADIATION MODEL FOR TL

The radiation process can be incorporated in the RLCG model, either by a series re-
sistance per length unit R or by a parallel conductance per length unit G. This radiation
element in the model represents the power loss per TL length unit due to radiation. For a
wave moving forward in the z direction, the power carried by the wave should decrease with
2, so that —dP/dz = |IH|*R in case of the serial representation or —dP/dz = |V,|*G in case
of the parallel representation.

Both representations are possible, and the question is which one is the more adequate.

Using the Lorenz gauge in the frequency domain we have
v-a+Zv—o (82)
c

Under the Lorenz gauge, the magnetic vector potential A and the electric scalar potential

V' satisfy wave equations with separate excitations J and p, respectively:
(V2 + K A = —poJd (83)

and

(V?+£)V =—p/e. (84)

The solution of Eq. (83) is the convolution integral with the Green’s function, like the integral
in Eq. (53) for example. The solution of Eq. (84) is similar, only use the charge density
per length unit (A) on the TL instead of the current (/). Given the current continuity
equation 0I/0z + jwA = 0, A can be derived from I, and so the scalar potential V' can be
derived from the magnetic vector potential A via the Lorenz gauge (82), making Eq. (84)
redundant. However, it is worthwhile to understand which part of the electric field, which

can be expressed by

E=—jwA - VV=E,+E, (85)

is due to the current and which part is due to the charges. The first part E; = —jwA is
due to the current and the second part Ey = —VV is due to the charges. For z directed
currents, so that A = A,Z, we can work out this two parts, using for the far field V ~ —jkr

and using the Lorenz gauge, obtaining

E; = —jwA,(Fcosf — Osin ) (86)
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and

E), = jwA,Tcos0, (87)

so that their sum is in the @ direction as it should. But we see that while E; has a 0
component, E, is entirely directed toward T, so that it does not contribute to the T directed
Poynting vector.

The conclusion from this analysis is that the radiation is due to the current, so that the
serial representation is the correct one. An additional argument in favor of this choice is
the “self force” (or damping force) on radiating charges [8-11] which is co-linear with the
charges acceleration so that it may be represented by a serial resistor.

Hence, we model the radiation by a serial resistance per length unit R in the RLCG
model. The radiation being attributed to the terminations of the TL, the radiation model
is symmetric around the middle of the line (at z = 0), we shall therefore examine how half
of P,y in Eq. (71) changes with half the TL length L.

The radiation resistance per length unit R, satisfies

R(L)
Zy

A(Praaf/2)/dL _ o (kd)?

D = 7L [sinc(4kL) — cos(4kL)] =

(88)

For the model to be applicable to a semi-infinite TL, it has to start at the termination
point. We define s the distance from the termination of the TL (for example if we deal with
a semi-infinite TL which terminates at z = 0, we have s = —z, for 0 < s < 00). The value

of R(L) in Eq. (88) is expressed as function of s as follows

R(s) = 1o fd)” [sinc(4ks) — cos(4ks)] (89)

41s

The behavior of the normalized R(s) for a semi-infinite TL is shown in Figure 4. This model
reproduces the correct radiation power, since

(kd)?
4

|10|2/ R(s)ds = no " 12 (90)
0

Clearly, to describe the correct radiation losses, R(s) must also have negative values, due to
the oscillatory behavior of the radiated power as function of the TL length. But this does
not represent any problem, because the overall losses come out always positive.

For a finite TL, we set R(s) in Eq. (89) from each side up to the middle of the TL. Hence
if the TL length is 2L, 0 < s < L from each side, as shown in Figure 5 and the model
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FIG. 4: Normalized value of the radiation resistance per length unit R(s) for a semi-infinite trans-
mission line ending at z = 0. The parameter s is the distance from the TL termination point, and
R(s) is linear with s for small s. For big s it oscillates around 0 till it practically becomes 0 far

from the termination of the TL.

describes correctly the radiation power since

|10|2/L R(s)ds:2|10|2/0 R(s)ds = %W[l—sinc(élkl/)] (91)

Unlike in the case of ohmic or dielectric losses, for which the RLCG losses model is
accurate only for a separate forward or backward wave, the radiation model is accurate
for any combination of waves, because as we saw in the previous sections, the interference

between the waves does not contribute to the radiation.

IX. CONCLUSIONS

We showed in this work that radiation losses in TL originate from the current in the region

of several wavelengths near the termination(s) of the TL (in analogy with OTR [6, 7]), so
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FIG. 5: Same as in Figure 4, only that for a finite TL of length 2L, s measures the distance from
each termination, up to the middle of the line, so that 0 < s < L. In this example, L is one

wavelength.

that one cannot properly define a “per length radiated power”.

However, we where able to conceive a radiation model based on a variable radiation
resistance per length unit R(s), where s measures the distance from each termination up to
the middle of the TL (or from the termination to infinity for a semi-infinite TL).

Unlike in the case of ohmic or dielectric losses, for which the R or G models respectively
are accurate only for a separate forward or backward wave, the radiation model is accurate
for any combination of current waves, because the interference between the waves does not
contribute to the radiation.

Further work to be done: generalize the radiation model for TL inside a dielectric insu-
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lator, and generalize the radiation model for multiconductor transmission lines (MTL).
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