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I. INTRODUCTION

While ohmi and dieletri losses in transmission lines (TL) have a simple RLCG tele-

graph model due to their loal harateristis, there is no simple radiation losses model for

TL.

The aim of this work is to analyze the radiation proess in two ondutors TL in free

spae with the sope of inorporating the radiation losses phenomenon into the RLCG model

of the TL. Some preliminary results have been presented in [1℄.

The methodology we use is the same one used to alulate any small losses: we use the

lossless (0'th order solution) for the eletri urrent to derive the losses. This methodology

is used to derive the ohmi and dieletri losses [2, 3℄, and the same approah is used in

di�erent radiation shemes from free eletrons: one uses the 0'th order urrent (whih is

una�eted by the radiation) to alulate the radiation [4, 5℄. Corretions to the 0'th order

urrent are not onsidered in this work.

In setion II we present a short review on ohmi and dieletri losses, and show that the

RLCG model is aurate only for separate forward or bakward waves, while in the ase

both waves oexist, the interferene between them results in an additional losses term.

In setion III we de�ne the ross setion on�guration for the TL that we analyze and show

that any open ross setion an be modeled in the far �eld by a twin lead TL, i.e. parallel

wires separated by an equivalent distane d. For lose ross setions (like the oaxial able),

this equivalent separation d = 0, and they pratially do not radiate.

In setion IV we analyze an in�nite TL and show that there is not radiate power (per

length unit), ignoring nearby objets whih an interfere with the �elds. This suggests that

radiation from TL must emerge from the termination, in analogy with Optial Transition

Radiation (OTR) [6, 7℄.

In setion V we alulate the power radiated by a semi-in�nite TL arrying a wave

traveling toward the termination and �nd that it is proportional to the frequeny squared

times d

2

(the TL length has no e�et, being in�nite). We also show that the radiated power

results are idential for the ase of a single wave traveling into the termination or out of the

termination, while in the ase of a ombination of waves their radiated powers add up, so

that the interferene between the waves has no ontribution.

In setion VI we alulate the power radiated by a �nite line of length 2L arrying a
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forward wave. We �nd that for small L the radiation power inreases like L

2

and for big L

it just tends to a onstant whih is twie the power radiated by a semi-in�nite TL arrying

a forward wave, as expeted. For a ombination of waves, their powers just add up as in the

ase of the semi-in�nite TL.

In setion VII we ompare the analyti results of setion VI with simulation results of

the ANSYS-HFSS ommerial software. The simulation overestimate the analyti results

but show the general tendeny of the radiated power to go to a onstant with the inrease

of the TL length. In setion VIII we derive the RLCG model for the radiation losses, whih

requires a series radiation resistane per length unit R whih starts at a termination and

varies along the TL. The work is ended with some onluding remarks.

Note: through this work, we use RMS values, hene there is no 1/2 in the expressions for

power.

II. REMARKS ON OHMIC AND DIELECTRIC LOSSES

The ohmi and dieletri losses are easily inorporated into the RLCG \telegraph" model,

so that the ohmi loss per length unit is given by jI(z)j

2

R and the dieletri losses per length

unit is given by jV (z)j

2

G, where V (z) and I(z) are the voltage and urrent along the TL. Also

one de�nes the ohmi and dieletri deay oeÆients as �



= R=(2Z
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0

being the harateristi TL impedane.

However, for unmathed TL, i.e. in presene of both forward and bakward moving

waves, one has to be areful in evaluating the total ohmi or dieletri losses on the line.

For example, let us onsider ohmi losses, for the urrent
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in a TL from z = �l=2 to z = l=2. The ohmi losses are
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(0) sin(�l)Ref�(0)g (2)

where P

�

(0) is the power of the forward/bakward wave at z = 0, respetively, so the �rst

part of the result represents the individual losses of forward/bakward waves. The seond

part represents the ontribution of the interferene between the waves, and vanishes in some

speial ases like the length l is an integer multiple of half wavelengths, or the phase of
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�(0) � �I

�

(0)=I

+

(0) is ��=2, i.e. jI(z)j

2

is an anti-symmetri funtion of z. The \sin"

funtion in Eq. (2) is de�ned

sin(x) � sin x=x (3)

The dieletri losses in presene of both forward and bakward waves give a result similar

to (2) with �



replaed by �

d

.

Hene the RLCG model for ohmi or dieletri losses, is aurate for a separate forward

or bakward wave and in presene of both waves the interferene between them adds an

additional term, whih an be positive or negative.

We attempt in this work to derive a similar model for radiation losses, and in the next

setion we de�ne the ross setion on�guration on whih we shall derive our results.

III. CONFIGURATION

We deal in this work with a two ondutor transmission line having a well de�ned sep-

aration between the ondutors, as shown in Figure 1. Considering the ondutors in free

spae, a forward wave evolves aording to e

�jkz

at zero order (negleting the radiation

losses, as mentioned in the introdution), hene in the far �eld the z direted magneti

potential vetor A

z

due to a forward wave in the transmission line is expressed as

A

z

= �

0

Z

z

2

z

1

dz

0

I

dK

z

()e

�jkz

0

G(R) (4)

where the dz

0

integral goes on the whole length of the TL,

G(s) =

e

�jks

4�s

(5)

is the 3D Green's funtion, K

z

is the surfae urrent distribution as funtion of the ontour

parameter  (i.e. 

1

and 

2

, see Figure 1) and R is the distane from the integration point

on the ontour of the ondutors to the observer:

R =

p

(x� x

0

())

2

+ (y � y

0

())

2

+ (z � z

0

)

2

: (6)

Changing variable

z

00

= z

0

� z (7)

in Eq. (4), one obtains

A

z

= �

0

e

�jkz

Z

z

2

�z

z

1

�z

dz

00

I

dK

z

()e

�jkz

00

G(R); (8)
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FIG. 1: A basi on�guration of a two ondutor TL, with a well de�ned separation between

the ondutors. The surfae urrent distributions on the ontours of the ondutors is known from

eletrostati onsiderations, and the total urrent is the same on both ondutors but with opposite

signs. The arrow shows the vetor distane between the enter of the surfae urrent distributions,

named d and 

1;2

are the ontours of the \upper" and \lower" ondutors, respetively.

rede�ning

R =

p

(x� x

0

())

2

+ (y � y

0

())

2

+ (z

00

)

2

: (9)

For a far observer, at distane � �

p

x

2

+ y

2

from the TL, so that � is muh bigger than

the transverse dimensions of the TL one approximates R in ylindrial oordinates as

R ' r �

�

r

[x

0

() os'+ y

0

() sin'℄ ; (10)

where

r(z

00

) �

p

(z

00

)

2

+ �

2

: (11)

Using this in Eq. (4), one obtains

A

z

= �

0

e

�jkz

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

4�r(z

00

)

I

dK

z

()e

jk(�=r)[x

0

() os'+y

0

() sin'℄

: (12)
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We onsider the higher modes to be in deep uto�, so that kx

0

(); ky

0

()� 1, hene

A

z

� �

0

e

�jkz

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

4�r(z

00

)

I

dK

z

() f1 + jk(�=r)[x

0

() os'+ y

0

() sin'℄g :

(13)

Separating the ontour integral

H

d =

H

d

1

+

H

d

2

, where 

1;2

are the ontours of the

\upper" and \lower" ondutors respetively, and using

I

d

1

K

z

(

1

) = �

I

d

1

K

z

(

2

) = I

0

(14)

so that the integral on eah surfae urrent distribution results in the total urrent, whih

is equal but with opposite signs on the ondutors. We may de�ne the 2D vetor �() �

(x

0

(); y

0

()), from whih one de�nes the vetor distane between the enter of the surfae

urrent distributions

d �

�

I

d

1

K

z

(

1

)�(

1

) +

I

d

1

K

z

(

2

)�(

2

)

�

=I

0

; (15)

so that Eq. (13) may be written as

A

z

= �

0

e

�jkz

I

0

jk[d

x

os'+ d

y

sin'℄

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

4�r(z

00

)

�

r(z

00

)

; (16)

where d

x

and the d

y

are the x and y omponents of the vetor d. This represents a 2D dipole

approximation of the TL, so that it an be treated as a twin lead, as shown in Figure 2, and

without loss of generality, one rede�nes the x axis to be aligned with d, so that d

x

= d and

d

y

= 0, obtaining

A

z

= �

0

e

�jkz

I

0

jkd os'

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

4�r

�

r(z

00

)

; (17)

whih is equivalent of having a urrent on�ned on ondutor 1 (at x = d=2)

I

1

= I

0

e

�jkz

; (18)

and a urrent on�ned on ondutor 2 (at x = �d=2),

I

2

= �I

0

e

�jkz

(19)

representing a twin lead, where the requirement of � to be muh bigger than the transverse

dimensions, results in �� d.
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FIG. 2: The transmission line is modeled as a twin lead in free spae, with distane d between

the ondutors. The urrents in the transmission line ow in the z diretion at x = �d=2 and

they are de�ned as ontributions 1 and 2 respetively to the magneti vetor potential A

z

. The

termination urrents (soure or load) ow in the x diretion and are de�ned as ontributions 3 and

4 to the magneti vetor potential A

x

. The arrows on ondutors 1,2,3 and 4 show the onventional

diretions of those urrents. The radius of the wires is a, but it is relevant only for the harateristi

impedane and not for the radiation. The length of the transmission line is 2L (but we also onsider

in�nite or semi-in�nite lines).

We are interested in radiation, so we require the observer to be many wavelengths far

from the TL: k�� 1. Using this requirement, Eq. (17) may be further simpli�ed to

A

z

= �

�

0

I

0

e

�jkz

d os'

4�

�

��

Z

z

2

�z

z

1

�z

dz

00

e

�jk[z

00

+r(z

00

)℄

r(z

00

)

: (20)

The dz

00

integral results in the exponential integral funtion Ei as follows

A

z

= �

�

0

I

0

e

�jkz

d os'

4�

�

��

Ei

�

�jk

h

z

00

+

p

(z

00

)

2

+ �

2

i�

�

�

�

�

z

2

�z

z

1

�z

; (21)

where the Ei funtion satis�es dEi(s)=ds = e

s

=s.

This twin lead model is used for all the ases we analyze: in�nite TL, semi in�nite TL

and �nite TL, as follows. The twin lead geometry also allows us to use simple models for

the termination urrents in the x diretion, de�ning the x omponent of the magneti vetor

potential.



8

IV. INFINITE TL ANALYSIS

In this setion we onsider an in�nite twin lead TL, arrying a forward moving wave, so

that we do not need to onsider the termination urrents, and we may use the result (21)

with z

1

= �1 and z

2

=1. Replaing z

1

� z = �L and z

2

� z = L, onsidering L!1 we

obtain

A

z

= �

�

0

I

0

e

�jkz

d os'

4�

�

��

n

Ei

�

�jk

h

L +

p

L

2

+ �

2

i�

� Ei

�

�jk

h

�L +

p

L

2

+ �

2

i�o

;

(22)

so that the integral itself does not onverge, but we only need its derivative with respet to

�. For L� � the result is

A

z

= �

�

0

I

0

e

�jkz

d os'

4�

�

��

�

Ei(�jk2L)� Ei

�

�jk

�

2

2L

��

; (23)

so that the onstant Ei(�jk2L) does not ontribute and in the limit L!1 we obtain

A

z

=

�

0

I

0

4�

d os'

2e

�jkz

�

(24)

from whih

H =

1

�

0

r�A =

e

�jkz

2�

I

0

d

�

2

[�
b
� sin'+

b
' os'℄ (25)

and

E =

1

j!�

0

r�H = �

0

e

�jkz

2�

I

0

d

�

2

[
b
� os' +

b
' sin'℄; (26)

so that the Poynting vetor is

S = E�H

�

= �

0

1

4�

2

jI

0

j

2

d

2

�

4

b
z (27)

Clearly, an in�nite line (even having the geometry of an open struture), never radiates

in the usual sense, i.e. as an esaping power. Calulating here the \radiated" power just

results in the power arried by the TL (this is true if the spae around the TL is ompletely

free of any objets that ome in ontat with the �elds of the TL).

Therefore, any radiation from a TL must emerge from a termination, as we shall see in

the next setion in whih we analyze a semi-in�nite TL.

V. SEMI-INFINITE TL ANALYSIS

In this setion we onsider a semi-in�nite twin lead TL, arrying a forward moving wave.

Here we shall need also the ontribution of the end urrent (ondutor 3 in Figure 2), beause
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ignoring it violates the urrent ontinuity priniple. But we �rst alulate the ontribution of

ondutors 1 and 2 and hene we all it A

z 1;2

. The termination point is at z = 0, so that we

may use the result (21) with z

1

= �1 and z

2

= 0. Replaing z

1

� z = �L and z

2

� z = �z,

onsidering L!1 we obtain so the magneti potential vetor in the z diretion

A

z 1;2

= �

�

0

I

0

e

�jkz

d os'

4�

�

��

n

Ei

�

�jk

h

�z +

p

z

2

+ �

2

i�

� Ei

�

�jk

h

�L +

p

L

2

+ �

2

i�o

;

(28)

whih for L� � is rewritten as

A

z 1;2

=

�

0

I

0

e

�jkz

d os'

4�

�

��

�

Ei

�

�jk

�

2

2L

�

� Ei

�

�jk

h

�z +

p

z

2

+ �

2

i�

�

; (29)

whih results in

A

z 1;2

=

�

0

I

0

4�

d os'

�

2e

�jkz

�

�

�

r � z

e

jkr

r

�

� A

z 1;2 plane

+ A

z 1;2 spherial

; (30)

where r =

p

�

2

+ z

2

is the radial oordinate in spherial oordinates. The left expression

desribes the plane wave we reeived for the in�nite line too, and the right expression

desribes a spherial wave emerging from the end of the transmission line at the oordinates

origin.

At z > 0, the plane wave and its singularity at � = 0 has to disappear, and one an easily

hek that the spherial wave anels it. For � � z, approximating the spherial wave to

�rst order, we have r � z+

�

2

2z

, so that r� z �

�

2

2z

and the spherial wave redues to �

2e

�jkz

�

.

The radiated power may be alulated from the spherial wave, whih is rewritten in

spherial oordinates as

A

z 1;2 spherial

= �

0

F

1;2

(�; ')G(r); (31)

We reintrodued here the de�nition of the Green's funtion from Eq. (5), and the diretivity

funtion F

1;2

is

F

1;2

(�; ') = �I

0

d os'

sin �

1� os �

; (32)

We may alulate H =

1

�

0

r�A

1;2 spherial

by approximating r ' �jk
b
r, obtaining

H

1;2

= jkF

1;2

(�; ') sin �G(r)
b
'; (33)

and the eletri �eld omes out

E

1;2

= �

0

jkF

1;2

(�; ') sin �G(r)

b

�; (34)
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Now we alulate the ontribution of the end urrent (ontribution 3 in Figure 2), whih

ows at z = 0 in the �bx diretion, and is of magnitude I

0

, giving rise to

A

x 3

= ��

0

I

0

Z

d=2

�d=2

dx

0

G(R

3

) (35)

where

R

3

' r � x

0

sin � os' (36)

is the distane of the far observer from the end urrent at z = 0 and �d=2 � x � d=2. This

results in

A

x 3

= �

0

F

3

(�; ')G(r); (37)

where the diretivity funtion F

3

is

F

3

(�; ') = �I

0

d sin

�

kd

2

sin � os'

�

' �I

0

d; (38)

so that for kd� 1, the argument of the sin funtion is very lose to 0 for any angles � and

', so we approximate it by 1. Next we obtain

H

3

=

1

�

0

r�A

3

'

1

�

0

(�jk
b
r)� (A

x 3

b
x) (39)

whih omes out

H

3

= �jk(os � os'
b
'+ sin'

b

�)G(r)F

3

; (40)

from whih we alulate

E

3

=

1

j!�

0

(�jk
b
r)�H

3

= �

0

jk(� os � os'

b

� + sin'
b
')G(r)F

3

: (41)

Adding up the �elds we obtain

H = H

1;2

+H

3

= jkG(r)[
b
'(F

1;2

sin � � F

3

os � os')�

b

�F

3

sin'℄ (42)

and

E = E

1;2

+E

3

= �

0

jkG(r)[

b

�(F

1;2

sin � � F

3

os � os') +
b
'F

3

sin'℄; (43)

resulting in Poynting vetor E�H

�

:

S = �

0

k

2

b
r

16�

2

r

2

(jF

1;2

sin � � F

3

os � os'j

2

+ jF

3

sin'j

2

); (44)

whih results in

S = �

0

(kd)

2

b
r

16�

2

r

2

jI

0

j

2

; (45)
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So that the total radiated power is

P

rad

=

Z

2�

0

Z

�

0

sin �d�d'r

2

b
r � S = �

0

(kd)

2

4�

jI

0

j

2

(46)

Clearly, this result shows that any TL radiates only from its terminations, spei�ally the

semi-in�nite line radiates from its end. It therefore looks like the radiation proess forms

in a region near the termination in analogy with Optial Transition Radiation (OTR) as a

formation length [6, 7℄.

A. Non mathed line

In ase the TL is not mathed we have to deal with a forward an bakward wave. The

bakward wave is de�ned as in Eqs. (18) and (19), only e

�jkz

is replaed by e

jkz

. De�ning

the omplex amplitude of the bakward wave I

b

, after some algebra, we �nd that a bakward

wave results in the z direted magneti potential vetor

A

z 1;2 b

=

�

0

I

b

4�

d os'

�

r + z

e

jkr

r

(47)

where the subsript \b" means bakward. The plane wave an be reovered from (47) for

negative z whih satis�es jzj � � by approximating the spherial wave to �rst order, so that

r � jzj +

�

2

2jzj

. The spherial wave redues in this onditions to

2e

jkz

�

, reovering the plane

wave in Eq. (30), only traveling to the left.

Therefore for a bakward wave F

1;2

in Eq. (32) has an opposite sign with os� replaed

by �os�, so that

F

1;2 b

(�; ') = I

b

d os'

sin �

1 + os �

; (48)

The end urrent is the same as for the forward wave, only replae I

0

by I

b

, hene F

3

is

similar to (38):

F

3 b

(�; ') = �I

b

d; (49)

To alulate the power radiated by both waves, we have to replae F

1;2

! F

1;2

+ F

1;2 b

and

F

3

! F

3

+ F

3 b

in Eq. (44), and the result is

S = �

0

(kd)

2

b
r

16�

2

r

2

�

jI

0

j

2

+ jI

b

j

2

�

: (50)

This means that separate forward or bakward waves have the same radiation, or in other

words a wave traveling into the termination or out of it radiates the same. We also see that
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the interferene between the waves does not ontribute to the radiation, so that the powers

radiated by the separate waves is added up.

To examine how the radiation forms as funtion of the distane from the termination we

analyze in the next setion a �nite twin lead transmission line.

VI. FINITE TL ANALYSIS

We onsider in this setion a �nite twin lead transmission line, of length 2L, from z = �L

to z = L, arrying a forward moving wave. Before alulating, we understand from the

onlusions of the previous setion that for a long enough TL, we an look at it as one

termination (the soure) sending out a wave whih is reeived by the other termination (the

load). A wave exiting from a termination or entering into a termination radiates aording

to Eq. (46) and in this ase both waves have the same amplitude I

0

, so one forward wave

has to result in twie the result of Eq. (46)

P

rad (long �nite TL)

= 2� �

0

(kd)

2

4�

jI

0

j

2

= �

0

(kd)

2

2�

jI

0

j

2

; (51)

and we shall on�rm this result for big L.

To alulate the magneti vetor potential for the �nite TL we may use the result (21),

but it will be quiker for to do the alulations from srath.

There are four urrents ontributing to the radiation: urrents 1 and 2 ontribute to

the z omponent of the magneti potential vetor and urrents 3 and 4 ontribute to the x

omponent of the magneti potential vetor, see Figure 2 (ontribution 3 and 4 have been

negleted in [1℄, therefore the result obtained there was not aurate).

We start with urrents 1 and 2, de�ned in Eqs. (18) and (19). The distanes of a far

observer from the ondutors arrying those urrents are

R

1;2

' r � z

0

os � � (d=2) sin � os'; (52)

and they ontribute to the z direted vetor potential

A

z 1;2

= �

0

I

0

Z

L

�L

dz

0

e

�jkz

0

(G(R

1

)�G(R

2

)) (53)

where G(s) is de�ned in Eq. (5) is the 3D Green's funtion. The result of integral (53) in

the far �eld is

A

z 1;2

= �

0

G(r)F

1;2

(�; ') (54)
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where

F

1;2

(�; ') = jI

0

2Lkd sin � os' sin

�

kd

2

sin � os'

�

sin [kL(1� os �)℄ (55)

is the radiation funtion from ontributions 1 and 2, and the \sin" funtion is de�ned in

Eq. (3). In the far �eld, the r operator is approximated by �jk
b
r and one obtains the far

H �eld

H

1;2

=

1

�

0

r�A

1;2

= jkG(r)F

1;2

(�; ') sin �
b
' (56)

and the far E �eld is obtained by

E

1;2

=

1

j!�

0

r�H

1;2

= �

0

jkG(r)F

1;2

(�; ') sin �

b

�; (57)

where �

0

=

p

�

0

=�

0

is the free spae impedane.

Next we onsider the ontributions 3 and 4

I

3

(x) = �I

0

e

�jkL

(58)

owing at (z = L; y = 0) in the �x diretion, and

I

4

(x) = I

0

e

jkL

(59)

owing at (z = �L; y = 0) in the x diretion. Both I

3

and I

4

are �xed and don't depend on

x. The distanes of a far observer from those urrents is

R

3;4

' r � L os � � x

0

sin � os': (60)

Those urrents ontribute to a x direted vetor potential

A

x 3;4

= �

0

I

0

Z

d=2

�d=2

dx

0

(e

jkL

G(R

4

)� e

�jkL

G(R

3

)) (61)

The result of integral (61) in the far �eld is

A

x 3;4

= �

0

G(r)F

3;4

(�; ') (62)

where

F

3;4

(�; ') = jI

0

dk2L(1� os �) sin [kL(1� os �)℄ sin

�

kd

2

sin � os'

�

(63)
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is the radiation funtion from ontributions 3 and 4. One obtains the far H �eld

H

3;4

=

1

�

0

r�A

3;4

= �jkG(r)F

3;4

(os � os'
b
'+ sin'

b

�) (64)

and the far E �eld is obtained by

E

3;4

=

1

j!�

0

r�H

3;4

= �

0

jkG(r)F

3;4

(sin'
b
'� os � os'

b

�): (65)

The total H = H

1;2

+H

3;4

omes out

H = jkG(r)[
b
'(F

1;2

sin � � F

3;4

os � os')�

b

�F

3;4

sin'℄ (66)

and the total E = E

1;2

+E

3;4

omes out

E = �

0

jkG(r)[

b

�(F

1;2

sin � � F

3;4

os � os') +
b
'F

3;4

sin'℄ (67)

The far Poynting vetor is

S = E�H

�

= �

0

k

2

b
r

16�

2

r

2

(jF

1;2

sin � � F

3;4

os � os'j

2

+ jF

3;4

os � os'j

2

); (68)

whih omes out

S =
b
r�

0

k

4

(2L)

2

d

2

jI

0

j

2

16�

2

r

2

(1� os �)

2

sin

2

�

kd

2

sin � os'

�

sin

2

[kL(1� os �)℄ (69)

so that the total radiated power is

P

rad

=

Z

2�

0

Z

�

0

sin �d�d'r

2

b
r � S (70)

As mentioned before, we onsider frequenies for whih TE/TM modes are in deep uto�,

so that kd � 1. We therefore approximate sin

2

�

kd

2

sin � os'

�

' 1, so that the integrand

in (70) is not a funtion of ', obtaining

P

rad

=

�

0

(kd)

2

jI

0

j

2

2�

[1� sin(4kL)℄ ; (71)

whih for 2L bigger than a few wavelengths on�rms the expeted result in Eq. (51), so that

for a �xed frequeny, the radiated power goes to a onstant when inreasing the TL length

2L:

lim

L!1

P

rad

=

�

0

(kd)

2

jI

0

j

2

2�

: (72)

This onstant is exatly twie the power radiated from the semi-in�nite TL, and in pratie

this limit is reahed at around few wavelengths. This means that for a longer line, only the

last wavelengths at the end of the TL radiate, and this last wavelengths an be understood

in analogy with Optial Transition Radiation (OTR) as a formation length [6, 7℄.



15

A. Non mathed line

The results of non mathed line analysis we did for the semi-in�nite TL, apply also to

the �nite TL, so that alling again the amplitudes of the forward and bakward waves I

0

and I

b

, the result (71) beomes

P

rad

=

�

0

(kd)

2

2�

�

jI

0

j

2

+ jI

b

j

2

�

[1� sin(4kL)℄ ; (73)

showing again that the interferene between the waves does not ontribute to the radiation,

so that the powers radiated by the forward or bakward waves add up.

VII. COMPARISON WITH SIMULATIONS

We shall ompare with simulation the ratio between the radiated power and the power

to the load:

P

rad

P

+

=

�

0

Z

0

(kd)

2

2�

[1� sin(4kL)℄ : (74)

where Z

0

=

�

0

�

ln(d=a) is the harateristi impedane of this twin lead TL.

We simulated the on�guration in Figure 2 using ANSYS-HFSS ommerial software,

in the frequeny domain, FEM tehnique. We ran the simulation at a �xed frequeny of

240 MHz, using d = 2:54 m, d=a = 7:91 and obtained S matries de�ned for a harateristi

impedane of R = 257:4
 at both ports, for di�erent lengths of the transmission line. By

symmetry, the S matrix has the form

S =

0

�

� �

� �

1

A

; (75)

from whih one may alulate the ABCD matrix of the TL [2, 12, 13℄, using

A = D =

1

2

�

� + (1� �

2

)=�

�

(76)

B =

R

2

�

�� + (1 + �)

2

=�

�

(77)

C =

1

2R

�

�� + (1� �)

2

=�

�

(78)

from whih we ompute the delay angle of the TL

� = aros(A) (79)
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and the harateristi impedane

Z

0

=

p

B=C (80)

The radiated power, relative to the load power is obtained by

P

rad

P

+

= �2Imf�g; (81)

and Imf�g < 0 always. In Figure 3 we ompare the analyti result in Eq. (74) with the

result obtained from simulation Eq. (81). We see that the simulation overestimates the

1e-06

1e-05

0.0001

0.001

0.01

0 0.2 0.4 0.6 0.8 1

P
ra

d
/P

+

TL length [m]

Analytic
Simulated

FIG. 3: Relative radiation losses P

rad

=P

+

: omparison between the analyti result in Eq. (74) and

the simulation result in Eq. (81).

radiation losses, but shows the general tendeny of the radiation losses as funtion of the

TL length, proving that this theory is reliable. We still have to improve the simulation

auray to handle smaller radiation losses, however the good omparison between the �nite

and semi-in�nite TL inreases our on�dene that the theoretial result is orret.
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VIII. RADIATION MODEL FOR TL

The radiation proess an be inorporated in the RLCG model, either by a series re-

sistane per length unit R or by a parallel ondutane per length unit G. This radiation

element in the model represents the power loss per TL length unit due to radiation. For a

wave moving forward in the z diretion, the power arried by the wave should derease with

z, so that �dP=dz = jI

0

j

2

R in ase of the serial representation or �dP=dz = jV

0

j

2

G in ase

of the parallel representation.

Both representations are possible, and the question is whih one is the more adequate.

Using the Lorenz gauge in the frequeny domain we have

r �A+

j!



2

V = 0: (82)

Under the Lorenz gauge, the magneti vetor potential A and the eletri salar potential

V satisfy wave equations with separate exitations J and �, respetively:

�

r

2

+ k

2

�

A = ��

0

J (83)

and

�

r

2

+ k

2

�

V = ��=�

0

: (84)

The solution of Eq. (83) is the onvolution integral with the Green's funtion, like the integral

in Eq. (53) for example. The solution of Eq. (84) is similar, only use the harge density

per length unit (�) on the TL instead of the urrent (I). Given the urrent ontinuity

equation �I=�z + j!� = 0, � an be derived from I, and so the salar potential V an be

derived from the magneti vetor potential A via the Lorenz gauge (82), making Eq. (84)

redundant. However, it is worthwhile to understand whih part of the eletri �eld, whih

an be expressed by

E = �j!A�rV � E

I

+E

�

(85)

is due to the urrent and whih part is due to the harges. The �rst part E

I

= �j!A is

due to the urrent and the seond part E

�

= �rV is due to the harges. For z direted

urrents, so that A = A

z

b
z, we an work out this two parts, using for the far �eld r ' �jk

b
r

and using the Lorenz gauge, obtaining

E

I

= �j!A

z

(
b
r os � �

b

� sin �) (86)
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and

E

�

= j!A

z

b
r os �; (87)

so that their sum is in the

b

� diretion as it should. But we see that while E

I

has a

b

�

omponent, E

�

is entirely direted toward
b
r, so that it does not ontribute to the

b
r direted

Poynting vetor.

The onlusion from this analysis is that the radiation is due to the urrent, so that the

serial representation is the orret one. An additional argument in favor of this hoie is

the \self fore" (or damping fore) on radiating harges [8{11℄ whih is o-linear with the

harges aeleration so that it may be represented by a serial resistor.

Hene, we model the radiation by a serial resistane per length unit R in the RLCG

model. The radiation being attributed to the terminations of the TL, the radiation model

is symmetri around the middle of the line (at z = 0), we shall therefore examine how half

of P

rad

in Eq. (71) hanges with half the TL length L.

The radiation resistane per length unit R, satis�es

d(P

rad

=2)=dL

P

+

=

�

0

Z

0

(kd)

2

4�L

[sin(4kL)� os(4kL)℄ =

R(L)

Z

0

: (88)

For the model to be appliable to a semi-in�nite TL, it has to start at the termination

point. We de�ne s the distane from the termination of the TL (for example if we deal with

a semi-in�nite TL whih terminates at z = 0, we have s = �z, for 0 � s < 1). The value

of R(L) in Eq. (88) is expressed as funtion of s as follows

R(s) =

�

0

(kd)

2

4�s

[sin(4ks)� os(4ks)℄ (89)

The behavior of the normalized R(s) for a semi-in�nite TL is shown in Figure 4. This model

reprodues the orret radiation power, sine

jI

0

j

2

Z

1

0

R(s)ds = �

0

(kd)

2

4�

jI

0

j

2

(90)

Clearly, to desribe the orret radiation losses, R(s) must also have negative values, due to

the osillatory behavior of the radiated power as funtion of the TL length. But this does

not represent any problem, beause the overall losses ome out always positive.

For a �nite TL, we set R(s) in Eq. (89) from eah side up to the middle of the TL. Hene

if the TL length is 2L, 0 � s � L from eah side, as shown in Figure 5 and the model
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FIG. 4: Normalized value of the radiation resistane per length unit R(s) for a semi-in�nite trans-

mission line ending at z = 0. The parameter s is the distane from the TL termination point, and

R(s) is linear with s for small s. For big s it osillates around 0 till it pratially beomes 0 far

from the termination of the TL.

desribes orretly the radiation power sine

jI

0

j

2

Z

L

�L

R(s)ds = 2jI

0

j

2

Z

L

0

R(s)ds =

�

0

(kd)

2

jI

0

j

2

2�

[1� sin(4kL)℄ (91)

Unlike in the ase of ohmi or dieletri losses, for whih the RLCG losses model is

aurate only for a separate forward or bakward wave, the radiation model is aurate

for any ombination of waves, beause as we saw in the previous setions, the interferene

between the waves does not ontribute to the radiation.

IX. CONCLUSIONS

We showed in this work that radiation losses in TL originate from the urrent in the region

of several wavelengths near the termination(s) of the TL (in analogy with OTR [6, 7℄), so
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FIG. 5: Same as in Figure 4, only that for a �nite TL of length 2L, s measures the distane from

eah termination, up to the middle of the line, so that 0 � s � L. In this example, L is one

wavelength.

that one annot properly de�ne a \per length radiated power".

However, we where able to oneive a radiation model based on a variable radiation

resistane per length unit R(s), where s measures the distane from eah termination up to

the middle of the TL (or from the termination to in�nity for a semi-in�nite TL).

Unlike in the ase of ohmi or dieletri losses, for whih the R or G models respetively

are aurate only for a separate forward or bakward wave, the radiation model is aurate

for any ombination of urrent waves, beause the interferene between the waves does not

ontribute to the radiation.

Further work to be done: generalize the radiation model for TL inside a dieletri insu-
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lator, and generalize the radiation model for multiondutor transmission lines (MTL).
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