Elementary proof of The Fermat's Last Theorem

(Complete Edition)

Mr. Sattawat Suntisurat

King's Mongkut Institute of Technology Ladkrabang

Mechanical Engineering , Thailand

E-mail : ttoshibak@gmail.com

Sep 28, 2016

Fermat's Last Theorem (FLT) :

 $a^n + b^n \neq c^n$, if $n > 2$ and a, b, c are the integers.

Prove ,

Draw the graph (Pic.1) as below, I consider only $1st$ quadrant.

Pic .1

From Pic. 1 : if n is more, the curve will be near the point (c, c)

Then I make the grid (square 1×1) as below,

 Pic. 2

 Now I can define the intersection point means the integers**,** and I will prove these curves will not pass the intersection point for $n > 2$.

No intersection point area

There are no intersection point area (yellow area) , all curves in this area follow FLT.

Pic. 3

Next , I will find the intersection point between the curves and the symmetry axis.

$$
\sqrt[n]{c^n - b^n} = b
$$
\n
$$
b = \frac{c}{\sqrt[n]{2}}
$$
\n(1)

From (1), b can't be the integer, the curves will not pass the symmetry axis at intersection point.

From the Pic. 3, I will find the relation between b and c at the point (c-1, c-1),

$$
\frac{c}{\sqrt[n]{2}} = c - 1
$$
\n
$$
n = \frac{\ln(2)}{\ln(\frac{c}{c - 1})}
$$
\n(2)

From (2), in the no intersection point area, it can be determined

$$
n > \frac{\ln(2)}{\ln(\frac{c}{c-1})}
$$
 (3)

Next, consider the curves in the no intersection point area.

 $a^n + b^n = c^n$, a and b are not the integers.

a and b may be the rational (fraction) or irrational numbers,

Assume a and b are the rational number, $a =$ *e* $\frac{d}{dx}$ and $b =$ *e f*

 $(d, e) = 1$, $(f, e) = 1$ and d, e, f are the intergers.

$$
\left(\frac{d}{e}\right)^n + \left(\frac{f}{e}\right)^n = c^n \qquad \qquad (4)
$$

See pic. 4, I draw the line (L line) in the no intersection point area.

The line will pass all the curves for all degree of $n \rightarrow \infty$.

Assume L line pass a-axis at *e* $\stackrel{d}{=}$, it can be written as below,

$$
\left(\frac{d}{e}\right)^{n_1} + \left(\frac{f_1}{e}\right)^{n_1} = c^{n_1} \quad \text{for } n = n_1
$$
\n
$$
\left(\frac{d}{e}\right)^{n_2} + \left(\frac{f_2}{e}\right)^{n_2} = c^{n_2} \quad \text{for } n = n_2
$$
\n
$$
\left(\frac{d}{e}\right)^{n_3} + \left(\frac{f_3}{e}\right)^{n_3} = c^{n_3} \quad \text{for } n = n_3
$$
\n
$$
\dots
$$
\n
$$
\left(\frac{d}{e}\right)^{n_{\infty}} + \left(\frac{f_{\infty}}{e}\right)^{n_{\infty}} = c^{n_{\infty}} \quad \text{for } n \to \infty
$$

$$
f_1 < f_2 < f_3 < ... < f_\infty
$$
 and $n_1 < n_2 < n_3 < ... < n_\infty$

e

e

Multiply the e^n all of the equation,

 d^{n_1} + $f_1^{n_1}$ $f_1^{n_1}$ = $(ce)^{n_1}$ for n = n_1 d^{n_2} + $f_2^{n_2}$ $f_2^{n_2} = (ce)^{n_2}$ for n = n_2 d^{n_3} + $f_3^{n_3}$ $f_3^{n_3}$ = $(ce)^{n_3}$ for n = n_3 ……………………………………………. $d^{n_{\infty}}$ + $f_{\infty}^{n_{\infty}}$ $f_{\infty}^{n_{\infty}}$ = $\left(ce\right)^{n_{\infty}}$ for $n \to \infty$

All equations show it can be written in $a^n + b^n = c^n$ by a, b, c can be the intergers.

But it is conflict with (3) , if $n >$) 1 ln($ln(2)$ *ce* $\frac{z}{c}$ the curves will not pass the intersection point.

it can't be written in the form $a^n + b^n = c^n$ for $n \to \infty$ So I can judge a and b aren't the rational numbers. But they are the irrational numbers

in the no intersection point area.

 $a^n + b^n = c^n$, a and b are the irrational numbers in the no intersection point area.

Next, I will prove the FLT ,

 $a^n + b^n \neq c^n$, if $n > 2$ and a, b, c are the integers.

 Assume there is a equation $a^n + b^n = c^n$ and a, b, c, n are the integers. Divided k^n into equation $\left(\frac{a}{b}\right)^n$ *k* $\left(\frac{a}{b}\right)^n + \left(\frac{b}{b}\right)^n$ *k* $\left(\frac{b}{b}\right)^n = \left(\frac{c}{b}\right)^n$ *k c* () , *k* is a integer _______________ (5)

Then let k to $n >$) $(c / k) - 1$ $\ln(\frac{c}{c})$ $ln(2)$ c/k) – $\sqrt{\frac{c-1}{c}}$, the curve will be in the no intersection point area.

k $\frac{c}{l}$ may be integer or fraction.

Assume case#1) *k* $\frac{c}{l}$ is a integer, let *k* $\frac{c}{r}$ = m

From (5),
$$
\left(\frac{a}{k}\right)^n + \left(\frac{b}{k}\right)^n = (m)^n
$$
 _______ (6)

From (6), the equation is wrong, because it is conflict with the no intersection point area.

$$
\frac{a}{k}
$$
 and $\frac{b}{k}$ mustn't be the rational numbers, so the assumption case#1 is wrong.

Assume case#2) *k* $\frac{c}{\tau}$ is fraction. I can apply the plotting graph method as below

Pic. 5

From Pic. 5, If $n >$ $|c/k|$) $/k \mid -1$ $\ln(\frac{c}{\sqrt{c}})$ $ln(2)$ c/k $| \sqrt{c/k}$, the curve will be in the no intersection point area.

From (5) , I will prove *k* $\frac{a}{a}$ and *k* $\frac{b}{b}$ mustn't be the rational numbers for *k* $\frac{c}{c}$ too.

 I draw the line (L line) in the no intersection point area. The line will pass all the curves for all degree of $n \rightarrow \infty$.

 Assume L line pass a-axis at *k* $\frac{a}{b}$, it can be written as below,

$$
\left(\frac{a}{k}\right)^{n_1} + \left(\frac{b_1}{k}\right)^{n_1} = \left(\frac{c}{k}\right)^{n_1} \quad \text{for } n = n_1
$$
\n
$$
\left(\frac{a}{k}\right)^{n_2} + \left(\frac{b_2}{k}\right)^{n_2} = \left(\frac{c}{k}\right)^{n_1} \quad \text{for } n = n_2
$$
\n
$$
\left(\frac{a}{k}\right)^{n_3} + \left(\frac{b_3}{k}\right)^{n_3} = \left(\frac{c}{k}\right)^{n_3} \quad \text{for } n = n_3
$$
\n
$$
\left(\frac{a}{k}\right)^{n_{\infty}} + \left(\frac{b_{\infty}}{k}\right)^{n_{\infty}} = \left(\frac{c}{k}\right)^{n_{\infty}} \quad \text{for } n \to \infty
$$
\n
$$
b_1 < b_2 < b_3 < \dots < b_{\infty} \quad \text{and} \quad n_1 < n_2 < n_3 < \dots < n_{\infty}
$$

Multiply the k^n all of the equation,

 a^{n_1} + $b_1^{n_1}$ $b_1^{n_1}$ = c^n , for n = n_1 a^{n_2} + $b_2^{n_2}$ $b_2^{n_2}$ = c^{n_2} for n = n_2 a^{n_3} + $b_3^{n_3}$ $b_3^{n_3}$ = c^{n_3} for n = n_3 …………………………………………….

 $a^{n_{\infty}}$ + $b_{\infty}^{n_{\infty}}$ $b_{\infty}^{n_{\infty}}$ = $c^{n_{\infty}}$ for $n \to \infty$ All equations show it can be written in $a^n + b^n = c^n$ by a, b, c can be the intergers.

But it is conflict with (3) , if $n >$) 1 ln(ln(2) *c* $\frac{z}{c}$ the curves will not pass the intersection point.

it can't be written in the form $a^n + b^n = c^n$ for $n \to \infty$

So I can judge *k* $\frac{a}{a}$ and *k* $\frac{b}{\tau}$ aren't the rational numbers. But they are the irrational numbers

in the no intersection point area. **so the assumption case#2 is wrong.**

From proof of case#1 and case#2 , I can say….

No any integer a, b, c for $a^n + b^n = c^n$ if n > 2

The Fermat's last Theorem is proved completely !!!