Elementary proof of The Fermat's Last Theorem

(Complete Edition)

Mr. Sattawat Suntisurat

King's Mongkut Institute of Technology Ladkrabang

Mechanical Engineering, Thailand

E-mail : ttoshibak@gmail.com

Sep 28, 2016

Fermat's Last Theorem (FLT) :

 $a^n + b^n \neq c^n$, if n > 2 and a, b, c are the integers.

Prove,

Draw the graph (Pic.1) as below, I consider only 1st quadrant.

Pic .1

From Pic. 1 : if n is more, the curve will be near the point (c, c)

Then I make the grid (square 1x1) as below,

Pic. 2

Now I can define the intersection point means the integers, and I will prove these curves will not pass the intersection point for n > 2.

No intersection point area

There are no intersection point area (yellow area), all curves in this area follow FLT.

Pic. 3

Next, I will find the intersection point between the curves and the symmetry axis.

$$\sqrt[n]{c^n - b^n} = b$$

$$b = \frac{c}{\sqrt[n]{2}}$$
(1)

From (1), b can't be the integer, the curves will not pass the symmetry axis at intersection point.

From the Pic. 3, I will find the relation between b and c at the point (c-1, c-1),

$$\frac{c}{\sqrt{2}} = c - 1$$

$$n = \frac{\ln(2)}{\ln(\frac{c}{c-1})}$$
(2)

From (2), in the no intersection point area, it can be determined

$$n > \frac{\ln(2)}{\ln(\frac{c}{c-1})}$$
(3)

Next, consider the curves in the no intersection point area.

 $a^n + b^n = c^n$, a and b are not the integers.

a and b may be the rational (fraction) or irrational numbers,

Assume a and b are the rational number, $a = \frac{d}{e}$ and $b = \frac{f}{e}$

(d, e) = 1, (f, e) = 1 and d, e, f are the intergers.

$$\left(\frac{d}{e}\right)^n + \left(\frac{f}{e}\right)^n = c^n \qquad (4)$$

See pic. 4, I draw the line (L line) in the no intersection point area.

The line will pass all the curves for all degree of n $\rightarrow \infty$.

Assume L line pass a-axis at $\frac{d}{e}$, it can be written as below,

$$\begin{aligned} &(\frac{d}{e})^{n_1} + (\frac{f_1}{e})^{n_1} &= c^{n_1} & \text{for } n = n_1 \\ &(\frac{d}{e})^{n_2} + (\frac{f_2}{e})^{n_2} &= c^{n_2} & \text{for } n = n_2 \\ &(\frac{d}{e})^{n_3} + (\frac{f_3}{e})^{n_3} &= c^{n_3} & \text{for } n = n_3 \\ & & & \\$$

Multiply the e^n all of the equation,

 $d^{n_1} + f_1^{n_1} = (ce)^{n_1} \text{ for } n = n_1$ $d^{n_2} + f_2^{n_2} = (ce)^{n_2} \text{ for } n = n_2$ $d^{n_3} + f_3^{n_3} = (ce)^{n_3} \text{ for } n = n_3$ \dots $d^{n_{\infty}} + f_{\infty}^{n_{\infty}} = (ce)^{n_{\infty}} \text{ for } n \neq \infty$

All equations show it can be written in $a^n + b^n = c^n$ by a, b, c can be the intergers.

But it is conflict with (3), if $n > \frac{\ln(2)}{\ln(\frac{ce}{ce-1})}$ the curves will not pass the intersection point.

it can't be written in the form $a^n + b^n = c^n$ for $n \rightarrow \infty$

So I can judge a and b aren't the rational numbers. But they are the irrational numbers in the no intersection point area.

 $a^n + b^n = c^n$, a and b are the irrational numbers in the no intersection point area.

Next, I will prove the FLT,

 $a^n + b^n \neq c^n$, if n > 2 and a, b, c are the integers.

Assume there is a equation $a^n + b^n = c^n$ and a, b, c, n are the integers.

Divided k^n into equation $\left(\frac{a}{k}\right)^n + \left(\frac{b}{k}\right)^n = \left(\frac{c}{k}\right)^n$, k is a integer _____(5)

Then let k to $n > \frac{\ln(2)}{\ln(\frac{c/k}{(c/k)-1})}$, the curve will be in the no intersection point area.

 $\frac{c}{k}$ may be integer or fraction.

Assume case#1) $\frac{c}{k}$ is a integer, let $\frac{c}{k}$ = m

From (5),
$$(\frac{a}{k})^n + (\frac{b}{k})^n = (m)^n$$
 (6)

From (6), the equation is wrong, because it is conflict with the no intersection point area.

$$\frac{a}{k}$$
 and $\frac{b}{k}$ mustn't be the rational numbers, so the assumption case#1 is wrong.

Assume case#2) $\frac{c}{k}$ is fraction. I can apply the plotting graph method as below

From Pic. 5, If $n > \frac{\ln(2)}{\ln(\frac{c/k}{\lceil c/k \rceil - 1})}$, the curve will be in the no intersection point area.

From (5), I will prove $\frac{a}{k}$ and $\frac{b}{k}$ mustn't be the rational numbers for $\frac{c}{k}$ too.

I draw the line (L line) in the no intersection point area. The line will pass all the curves for all degree of $n \rightarrow \infty$.

Assume L line pass a-axis at $\frac{a}{k}$, it can be written as below,

$$\begin{aligned} &(\frac{a}{k})^{n_1} + (\frac{b_1}{k})^{n_1} &= (\frac{c}{k})^{n_1} & \text{for } n = n_1 \\ &(\frac{a}{k})^{n_2} + (\frac{b_2}{k})^{n_2} &= (\frac{c}{k})^{n_1} & \text{for } n = n_2 \\ &(\frac{a}{k})^{n_3} + (\frac{b_3}{k})^{n_3} &= (\frac{c}{k})^{n_3} & \text{for } n = n_3 \\ &\cdots \\ &(\frac{a}{k})^{n_{\infty}} + (\frac{b_{\infty}}{k})^{n_{\infty}} &= (\frac{c}{k})^{n_{\infty}} & \text{for } n \neq \infty \\ &b_1 < b_2 < b_3 < \dots < b_{\infty} & \text{and} & n_1 < n_2 < n_3 < \dots < n_{\infty} \end{aligned}$$

Multiply the k^n all of the equation,

 $a^{n_1} + b_1^{n_1} = c^{n_1}$ for $n = n_1$ $a^{n_2} + b_2^{n_2} = c^{n_2}$ for $n = n_2$ $a^{n_3} + b_3^{n_3} = c^{n_3}$ for $n = n_3$

 $a^{n_{\infty}} + b_{\infty}^{n_{\infty}} = c^{n_{\infty}}$ for $n \rightarrow \infty$

All equations show it can be written in $a^n + b^n = c^n$ by a, b, c can be the intergers.

But it is conflict with (3), if $n > \frac{\ln(2)}{\ln(\frac{c}{c-1})}$ the curves will not pass the intersection point.

it can't be written in the form $a^n + b^n = c^n$ for $n \rightarrow \infty$

So I can judge $\frac{a}{k}$ and $\frac{b}{k}$ aren't the rational numbers. But they are the irrational numbers

in the no intersection point area. so the assumption case#2 is wrong.

From proof of case#1 and case#2, I can say....

No any integer a , b , c for $a^n + b^n = c^n$ if n > 2

The Fermat's last Theorem is proved completely !!!